
NOTE ON SOME TAUBERIAN THEOREMS OF 0. SZASZ

C. T. RAJAGOPAL

1. Introduction. The object of this note is to record extensions of the

Tauberian theorems for Abel summability which form the subject of a recent

paper of Sza'sz in this journal [6, Theorem 2] The extensions given as Theorems

II, III', concern a process of summability which may be called the (Φ, λ)—proc-

ess, discussed elsewhere [3] and defined below. Theorems II, III' include simi-

lar results, given as Theorems I, III, which are implicit in [3]

The process of (Φ, λ) — summability is defined for any real series 2* On as

follows.

Let φ(u) satisfy the following conditions:

C ( i ) φ{u) is positive, continuous and monotonic decreasing in (0,oc);

C(i i) φ(0) = 1, J { φ{u )/u! du is convergent for every € > 0

C(ii i) φ(u) has a continuous derivative -φ{u) in (0,00), this derivative

being, on account of ( i), negative and such that

φ(u) = f~ φ(x)dx;

C(iv) φ(u) is monotonic decreasing and has a continuous derivative in

(0,oo);

C(v) J°° uix φ(u)du £ 0 ( - c o < x < 0 0 ) .

L e t

Φ λ ( O = Σ an φ ( λ n t ) , t > 0 , 0 = λ 0 < \χ < λ 2 < ••• , λ n — > 0C .

Then Z*n = ι an is said to be (Φ, λ)~sumrnable if

lim Φ-χ(O exists.
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Examples of φ(u) which satisfy the conditions (C) are furnished by

φ(u) = e~u [Abel-Laplace kernel],

φ(u) = (1 + u)~p, p > 0 [Stieltjes kerenel],

φ(u) = u/(eu - 1), u > 0, φ(0) = 1 [Lambert kernel].

The theorems of this note rest primarily on a result proved in my note already

referred to [3, Theorem 2] and running as follows:

THEOREM A. Let φ(u) fulfil the conditions C ( i ) - ( v ) . Suppose that A {u)

is a function of bounded variation in every finite interval of ( 0, oo), A ( 0 ) = 0. //

( 1 ) lim inf - / " u d\A(u)\ > - oo,
U —too U 0

and

(2) Φ ( ί ) = f°° φ(ut) d{A (u)\ exists for t > 0 and converges as t—» + 0 ,

then we have

Λx(u)
( 3 ) lim = lim Φ ( ί ) , where Ax(u) ~ f A(x)dx.

U-*oo U £->+0 ^0

2. Extensions of Szsfez's Tauberian theorems. It is clear that Theorem A

can be restated for a λ-step function defined thus:

A (u) = ax + α2 + . . + an for λn < u < λ Λ + 1 ,

(4)

A(u) = 0 for 0 < u < λ l β

For such a step function Szasz has proved the following result [5, pp. 126-

127].

LEMMA 1. If A(u) defined by (4) is (/?, λ, l) — summable to s, that is9if

1 v AΛ*)

— 2* (x — λv) av = — > s a s x —> °°»
x κ<_*

Aγ(x) being alternatively defined as in (3), and if, as n —»oo, we have
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n

Σ ( K l - « v ) p AP ( λ v - xv-t)
l~p = 0 ( λ B ) (P > l ) ,

1

(5)

π=i an converges to s.

If, in Theorem A, A (u) is the step function of (4), then (1) is a consequence

of

( I 7 ) lim inf Y α v > - oo,

which in turn is a consequence of the first condition in (5), as shown by Szasz

[5, p. 126], while (2) becomes the hypothesis of (Φ, λ) — summability of 2* an.

Thus Theorem A, in conjunction with Lemma 1, yields the following result.

THEOREM I. // Σ T = i a" ι s ^ ' ^^"" s u m m a ^ e t o s? then (5) implies that

ΣT=i ajι i S converSenί; to s

Theorem I was proved by Szasz in the case φ(u) = e~u [5, Theorem 4 ( a ) ]

It is the case λn - n, φ(u)~ e~u of this theorem which he has recently gener-

al ized [6, Theorem 2]. Repeating his arguments, in a sl ightly more general form,

we obtain the following extension of Theorem L

THEOREM Π. // Σ Λ = I an is (Φ> λ) — summable to s and if, as n —-»oo, we

have

( 6 ) Un = ^ λ v (\av\ - av)

' ' ' T — "" ••— —> 0 whenever "•— —> 1 >
^ λ

ί/ien 2*n=ι an ι s convergent to s.

Theorem II is an extension of Theorem I in the sense that the hypotheses of

the former cover those of the latter. This observation, contained in the next

lemma, can be substantiated exactly as in its particular case for which λn = n
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[6, p. 119].

LEMMA 2. The first relation in (5) implies the first relation in (6), while

(5) as a whole implies (7) through the relation

um - un xm
—> 0 as >1 {n —>oo).

λn λn

For the proof of Theorem II we require a further lemma which is virtually

contained in Sza'sz's proof of the case λn - n, φ(u) = e~u of Theorem II.

LEMMA 3. // Σrc=i an i S (^» K 1)"" summable to s9 and the second con-

dition of (6) holds along with (7), then Σrc = i an ι s convergent to s.

Proof. The hypothesis of (/?, λ, 1) — summability of 2* an to s implies that

1 n n
σn = ^ ( λ v + 1 - λv) sv — > s , where sn = £ α v .

Now, we have the identities

Σ (λπ+λ + i ~" λn+v) an+v ,

Kσn - σn-k-ι)

1
+

By using these identities, exactly as they have been used by Szasz in the case

λπ = Λ L6, pp. 118-119, pp. 120- 121], we can prove that

lim sup sn _< s, lim inf sn >_ s ,
n—>oQ n —»oo

whence the conclusion of Lemma 3 follows at once.
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Proof of Theorem II. From the first condition in (6) we get

n n

- Σ λ v α v < £ λ v ( | α v | - av) ^ Un = O ( λ n ) .

Therefore, defining A (u) in Theorem A as the λ-step function of (4), we observe

that hypothesis (1) of the theorem obtains as a result of ( l ' ) Since hypothesis

(2) also holds, in the form of the (Φ, λ) —summability of Z* ««> we are led to

conclusion (3) in the form of the (/?, λ, 1) — summability of 2* a>n The desired

conclusion now follows from Lemma 3.

3. A second generalization of Theorem I. There is a generalization of

Theorem I, different from Theorem II and very similar to a theorem of Delange

[l , The'oreme 8] which may be regarded as one more result of employing the

technique of Sza'sz embodied in Theorem A and in certain arguments, already

cited, involving (/?, λ, 1 )-summability [5, pp. 126-127].

THEOREM I ' . // ΣrΓ=i an ι s a series (Φ, X)summable to s, and if

n

( 5 ' ) Σ ( U v l - α v )P λP ( λ v - λ v - x ) 1 ^ = 0 ( λ n ) , p > l , n—»oo,
1

then \sn\, the sequence of partial sums of ^ Λ = i an > ι s such that

lim sup sn = 5, lim inf sn = s — I

where

I - lim sup (I an \ - an ) / 2 .
n->oo

The proof of Theorem I ' is like that of Theorem I, but uses (in conjunction

with Theorem A) the following lemma instead of Lemma l

LEMMA l ' // Σ/ ι=i an ι s summable (R, λ, 1) to s and satisfies (5'), then

the sequence \sn \ of its partial sums behaves as in (8).

Proof. The first half of Szasz's arguments [5, p 126] proving Lemma 1, with-

out any modification, establishes the first conclusion of (8).

To obtain the second conclusion of (8), we note that / >_ 0 by definition and

/ < oo by (5') as shown in Lemma 4 which follows this proof. From the fact
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\<*n\ - an

we then infer that

lim inf an >_ — Z.
Λ-»oo

We thereafter employ the second half of the aforesaid arguments of Sza'sz [5,

pp. 126-127] and reach the conclusion

(9) lim inf sn > s - Z.

When I = 0, (9) and the universal relation, lim inf sn _< s, together establish the

second conclusion of (8). When Z > 0, we see that there is an increasing se-

quence of positive integers nί9 n2, ••• , nn c such that, as r—> oo, | anf \ -

anγ—> 2Z which implies (since Z > 0) that aUf is ultimately negative and aUr —>

- Z. Hence, when Z > 0,

(10) lim inf sn < lim sup sUr = lim sup (sτlr-.ι + aUr)

= lim sup sn -! - I £ s - I.
Γ-*oo

Consequently, in the case Z > 0, the second conclusion of (8) follows from (9)

and (10). The proof of Lemma 1' is now complete.

Theorem I is a special case of Theorem V with Z = 0 as we can see from the

following plain statement.

LEMMA 4. // Σ n = i an is anJ (real) series satisfying (5'), then

In particular, (5') and the condition lim λn/λn~ι - 1 together imply that

I = lim sup (t an \ - an ) /2 = 0.

Now, in any (real) series ^ an,

- a

n
min (0, an)
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so that lim inf an >_ 0 implies / = 0 and conversely. Thus, from Theorem I ', we

can say that there is a variant of Theorem I with the second condition of (5)

replaced by lim inf an >_ 0; in fact, we can say more as follows.

For series Σn=ι an summable (Φ, λ) and satisfying the Tauberian condition

(5'), a necessary and sufficient convergence condition is lim inf an >_ 0.

In the above statement, (5') can be replaced by the following simpler con-

dition which implies (5')*.

an λn

lim inf > — oo
n-*oo \ n - \ n ^ ί

4. A generalization of Theorem II. Following Szasz, we have seen that

conditions (6) and (7) of Theorem II together include the corresponding condition

(5) of Theorem I. Following Szasz further [6, §§4.5], we see that conditions

(6) and (7) together can be expressed in the Schmidt form, and the following

equivalent of Theorem II obtained.

THEOREM IΠ. // Σn=ι an ι s (Φ> λ)-summable to s and if, as n —>oo,

(11) —>oo, jΓ ( | α ^ | - a>v)—*0 whenever
λ

then 2*n=ι an ι s convergent to sum s.

A generalization of Theorem III, related to it as Theorem I ' is to Theorem I,

may now be stated in a familiar form as under.

THEOREM IIΓ. // Σ Γ = i an ^s a series (Φ, Xysummable to s and such that

either lim lim sup 2* ( | α v l ~ " α v ) = 0 ,

8+
< λ v<\n<(l+S)λn

(12)

or lim lim inf min ^ α^ > 0,
S ^ + o n^oo λre + l l λ v < λ m < ( i + δ ) λ n

then the sequence { sn } of partial sums of the series satisfies (8), provided that

I s lim sup (I an \ - an ) / 2 < oo.
n —»oo

Since — av _< \av\ — α v , t h e first alternative of (12) implies the second, and

the second is the only alternative that need be considered. Now the second
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alternative clearly implies that, on the assumption λ n + ι / λ n — > 1, we have

lim inf an >_ 0 and hence I = 0. Therefore, in Theorem III ' , we can drop the

explicit assumption / < oo and assume instead, either

lim λn + ι/λn = 1, or lim inf an >^ 0,

getting the two cases of I = 0 in the following corollary of which the first case

is Theorem III.

COROLLARY III ' . // a series 2*n=ι an is (Φ> λ)-summable and such that

(12) holds along with

either \imλn^.ι/λn - 1, or lim inf an >_ 0,

then 2*n=ι an ι s convergent to s.

Corollary III ' , in the case φ(u) — e u, is a classic theorem of Szasz [4,

p. 338]. Theorem III' in the same case and in an incomplete form has been al-

ready obtained by me [2, Theorem F]; its proof readily suggests the following

proof of Theorem ΠI' in its generality.

Proof of Theorem HI ' . Confining ourselves, as we may, to the second al-

ternative of (12), we can show that this alternative and the condition I < oo

(equivalent to lim inf an > — oo) together imply ( I 7 ) , using an argument in-

dicated elsewhere [2, Lemma 1] After this we can appeal to Theorem A. and

infer that 2^ an is (R> λ, l)-summable to s. The subsequent completion of the

proof is along the lines of the proof of Lemma 1 ' .
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