
GROUPS OF ORTHGONAL ROW-LATIN SQUARES

D O N A L D A. N O R T O N

1. Introduction. An n by n square array of n2 elements, consisting of n dis-

tinct elements each repeated n times, will be called a pseudo-latin square. If

each row contains each distinct element once, the square will be called row-

latin. Correspondingly a column-latin square will be one where each column con-

tains each distinct element once. A square which is both column-latin and row-

latin is a latin square. From two pseudo-latin squares A and B, a composite

square may be constructed by superimposing the square B on the square A. If

the composite square contains each of the n2 possible distinct pairs, the square

A is orthogonal to the square B9 and the resulting square is called greco-latin.

In this paper a product operation for row-latin squares is defined analogous

to that of Mann [ l , p. 418] for latin squares. It is shown that under this opera-

tion the set of row-latin squares forms a group. It is further shown that the

existence of sets of mutually orthogonal latin squares depends on the parallel

problem for row-latin squares so that existence problems of latin squares may

be studied in the light of row-latin squares.

In §§3 and 4 some of the sets of orthogonal row-latin squares which arise

from this product operation are studied.

2. Row-latin squares. To each theorem concerning row-latin squares, there

is an immediate dual theorem concerning column-latin squares; this will not be

given, but the reader can easily supply it.

Let the distinct elements of an n by n row-latin square be designated by the

natural numbers 1, 2, , n. Then the i th row of the square determines a permu-

tation 5β/ of these numbers from their natural ordering. The square is completely

determined by giving the permutations (^ϊ9 •••, 5βn ) defined by the rows 1,

2, , n respectively. The product of two row-latin squares A and β, which

describe permutations (5β t, , tyn ) and ( Ώί, , Ώn ), may be defined as the

square C - AB = (5pt Q 1, , ^n ϋn ) whose i th row is given by the product

permutation ^ Ωj . The product of two permutations of n elements is a permu-

tation of the same elements, so the product of two row-latin squares is a row-
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latin square.

THEOREM 1. The set of all row-latin squares is a group of order (n\)n.

Proof. Let 3 be the identity permutation,

s = ( 1 2 ").
\l 2 nl

Then the square
1 2 . . . n
1 2 n

I = ( 3 , 3, . . . , 3) =

•
1 2 n

is the unit element of the group. If 5β ι is the inverse permutation of 5β , then the

square

is the inverse square of 4 in the group. The group is not in general commutative

since the permutation group is not commutative. Each row of a row-latin square

may be constructed in nl ways; and since the n rows are independent of each

other, the order of the group is (nl)n.

COROLLARY la. The group of all row-latin squares is isomorphic to the

direct product group of n permutation groups, each on n elements.

To prove the corollary it is sufficient to note that every row-latin square

A = (5$!, ••• 9 tyn) can be written as the product of squares A{ ' A2

 # # * An,

where Aι = ( 3 , 3, , 3, $βj, 3, , 3 ) with the permutation 5βt in the i th posi-

tion. Moreover, the set of all squares (3 , , 3, 5β, 3, , 3 ) , where 5p is any

permutation, but always in the i th position, is a normal subgroup of the set of

all row-latin squares.

The following lemma is useful and obvious:

LEMMA 1. A row-latin square is orthogonal to the square I if and only if it

is a latin square.

It will also be helpful to have the lemma:

LEMMA 2. // A9 B9 ••• , L are a set of mutually orthogonal row-latin squares

and X is any row-latin square9 then XA, XB9 , XL are a set of mutually or-

thogonal row-latin squares.
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To prove Lemma 2 it is sufficient to show that if A and B are orthogonal then

XA and XB are orthogonal. By Theorem 1 they are row-latin. If they are not or-

thogonal, the greco-latin square obtained by composing them contains some re-

peated number pair (u, v). Suppose a repeated pair occurs in row m, column p,

and in row n, column q. Let the element of X in row m, column p be x(m9 p ), and

similarly label the elements of A and B. Then

u = a[m, x{m, p ) ] = a[n, x(n, q)]

while

v = b [ m , x ( m , p ) ] = b [ n , x ( n 9 q ) ] .

So the greco-latin square composed from A and B contains the pair (u, v) in row

m, column x(m, p), and in row n, column x(n, p ). Since A is assumed orthogo-

nal to B this is a contradiction.

THEOREM 2. Two row-latin squares A and B are orthogonal if and only if

there is a latin square L such that AL = B.

If L is any latin square, then, since L is orthogonal to /, AL is orthogonal to

AI by Lemma 2; hence, A is orthogonal to B, Conversely, if A is orthogonal to

β, then by Theorem 1 there is a row-latin square L such that AL = B. We have

B ιA — L? B ιB = /; so, by Lemma 2, L is orthogonal to /. From Lemma 1, L

is latin.

If S is a member of a set of m mutually orthogonal row-latin squares, multiply

each square of the set on the left by S ι . The result, by Theorem 1 and Lemma

2, is still a set of m mutually orthogonal row-latin squares. Since it contains

5 ι 5 = /, all other squares of the set are orthogonal to / and are latin by Lemma

1. A complete set of mutually orthogonal latin squares may always be extended

as a set of orthogonal row-latin squares by adjoining the unit square /. Therefore

we have:

THEOREM 3. A row-latin square S is a member of a set of m mutually or-

thogonal row-latin squares if and only if there exists a set of m — 1 mutually

orthogonal latin-squares.

A set of n mutually orthogonal row-latin squares of order n will be called a

complete set. This is the maximum number of row-latin squares of order n which

can belong to a mutually orthogonal set. A set of n-\ mutually orthogonal latin

squares is customarily called a complete set of latin squares. The following

corollary is immediate from Theorem 3*.
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COROLLARY 3a. There exists a complete set of mutually orthogonal latin

squares if and only if each row-latin square is a member of a complete set of

mutually orthogonal row-latin squares. If such a set exists for one row-latin

square, it exists for every row-latin square of the same order.

3. Powers of A. In a row latin square A = (5βp , $βn ) each permutation

5βj has an exponent p(i)9 the least positive integer such that 5β?'1' = /. Let

p = LciD. [ p( 1 ) , . - . , p U ) L Ύhen AP = /, but 4? £ I for 0 < q < p.

The squares /, A, , AP~ι form a series of row-latin squares. If A is latin

then each is orthogonal to its predecessor in the series. Let m be the smallest

exponent such that Am is not latin. Then any m successive powers of A form a

mutually orthogonal set of row-latin squares. For suppose that the squares are

A 1 , , A i + m ~ ι . Ui<j<k<i + m-l, t h e n A k =-AUk~L S i n c e k - j < m ,

A J is latin; and A is orthogonal to A} by Theorem 2. Therefore we have:

THEOREM 4. If A is a latin square and m is the smallest exponent such that

Am is not latiny then any m successive powers of A form a set of mutually or-

thogonal row-latin squares.

The theorem of H. B. Mann [3, p. 418] follows as a corollary:

COROLLARY 4a. The squares A9 ••• , Am 1 are a set of mutually orthogo-

nal latin squares if and only if they are all latin squares.

We need the following:

THEOREM 5. If A is a latin square> then so is A~ι.

By Theorem 1, A~ι is row-latin. Since A is orthogonal to /, A ιA - I is or-

thogonal to A ι ' / = A ι by Lemma 2. Then by Lemma 1, A ι is latin.

Combining Theorems 4 and 5 we have:

COROLLARY 5a. // A, •• ,Am ι are latin squares, then any m-1 suc-

cessive squares of A~m ιA ~m 2 , , A ι

fA9A
2

f 9 Am~ι form a tnutually

orthogonal set of latin squares.

Suppose Ap = /. Then A~J = AP~J, so we have the following:

COROLLARY 5b. // Ap = 1, and A, ••• , Am~ι are latin squares for some

m— 1 > p/2 then A9 , A? are a set of mutually orthogonal latin squares.

Examples may be constructed to show that it is not true conversely that

if A9 ••* 9 An are latin squares, and Ar, for some r > n, is a latin square, then

Aτ belongs to a series of n successive powers of A which form a mutually or-
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thogonal set.

4. Squares as multiplication tables. A pseudo-latin square may be con-

sidered as the multiplication table of a groupoid. Two groupoids G( ) and H{°)

are isotopic if there exist mappings 11, 55, and SB of G into H such that

U y) 8 = Utt) o(yB)

for all x and y of G (for this and other concepts for finite multiplicative systems

see for instance Bruck [ l , pp. 245-255] ). If the groupoids are defined on the

same set G, then the mappings 11, 55, and 2$ induce a permutation of the rows,

columns, and elements respectively of the multiplication table of G( ), trans-

forming it into the multiplication table of £ ( ° ) . It is natural therefore to call

two pseudo-latin squares isotopic if one may be transformed into the other by

a permutation of rows, columns, and elements. The row-latin, column-latin, or

latin squares are then multiplication tables of groupoids in which every element

is left nonsingular, right nonsingular, or nonsingular, respectively.

Every latin square is isotopic to a standard latin square in which the first

row and first column are the elements in their natural order. A latin square is a

basis square [3 p. 249] if there is a latin square orthogonal to it. If A is a basis

latin square, there are latin squares X and B such that AX = δ . From this we

have X - A~ιB, and A'1 is also a basis square. If A = A ι then A2 = /. All

other basis latin squares occur in pairs A and A ι , so there are an even number

of basis latin squares with exponent greater than 2.

Let A be an n x n row-latin square of exponent 2. If α, 6, c, are the

elements of the groupoid defined by A, then

(1) bll = b .

Let pirn) be the number of ways of selecting the order of m elements of row a of

A to satisfy (1). Equivalent to (1) is the statement that ab = c implies ac = b. If

c = 6, the element of the 6 th column alone is determined. If c ^ b the elements

of both columns b and c are determined, so only n — 2 remain to be fixed. Hence

p{n> = 1 p<* - 1> + U - 1) p<n - 2> .

Since each row is independent of the other rows, we have:

THEOREM 6. The number of n x n row-latin squares with exponent 2 is

[p(n)]n, where pin} is given inductively by

p(n> = p < n - l > + U - l ) p < n - 2 >

and
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p<l>= 1, p<2> = 2.

If the square is further restricted to be standard, the first row is prede-

termined as well as the first element of each row. But if this first element is 6,

then in the statement equivalent to (1) above we have c ^ b so that two elements

of each row are predetermined and we have:

COROLLARY 6a. The number of n x n standard row-latin squares with

exponent 2 is [pin - 2 > ] n " 1 .

We might further note that p<2> = 2, p<3> = 4, so that the number o f / i x / i

row-latin squares with exponent 2 is even for n > 1.

Suppose A is a standard latin square with exponent 2. It is the multiplication

table for a loop, and the element in row i, column j i s the product element ij in

the loop. The permutation §βj carries the element j into the element ij. Repeating

5βj further carries ij into i(ij) - jL2; so the element of the ith row, /th column

of A2 i s jL2. Since A2 = /, then jL2 = / for all i, /'. In particular if j = i then

/ ( / 2 ) = /, so j 2 = 1 for all y. Every element of the loop has exponent 2, and the

loop has the left inverse property. Conversely if the loop has the left inverse

property and every element has exponent 2, then i(ij) - i~ι(ij) = 1 y = y.

Therefore A2 = /. We have proved the following:

THEOREM 7. If A is a standard latin square, then A2 - I if and only if the

loop defined by A has exponent 2 and has the left inverse property.

If A is an n x n latin square with exponent p, let {A} be the cyclic group

of elements /, A, ••• , Ap~ι. If { A \ is a set of mutually orthogonal row-latin

squares then p < n.

As before, if A i s considered as the multiplication table of a loop, the ele-

ment in the £ th row, yth column of AΓ i s y'L£. Then jLV = y. If {A \ i s a set of

mutually orthogonal row-latin squares, then A, ••• , Ap~ι are latin squares; so

for any r < p and for any j , we have jL7^ = jU^ if and only if i = k. This proves:

THEOREM 8. If A is a row-latin square with exponent p, then \ A] is a group

of mutually orthogonal row-latin squares if and only if for any /, we have jL? -

j, but for any r < p the equality jL^ = jL^ implies i = k.

If a finite loop of order n has a subloop of order m < n9 then it contains an

element i with left exponent p, 1 * L? = 1, p < m* If A is the multiplication

table of the loop then Ap is not a latin square. So we have:

COROLLARY 8a. If A is a latin square, then a necessary condition that Ap

be a latin square is that the quasigroup L, defined by Af be not isotopic to a
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loop with a subloop of order less than or equal to p.
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