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1. Introduction. A central result in diophantine analysis is the following [4]:

For every irrational real number OC and every positive constant h < y 5/2

there exists an infinite sequence of reduced fractions pi/qi such that

(1) α - < (i = 1, 2, 3, . . . ) •

The property obviously fails if α is rational.

This result can be related to the theory of the (elliptic) modular group [3] We

sketch the proof for a smaller value of h. The fundamental regions of the modular

group lie in the upper half-plane and have cusps or vertices at every real rational

point. Thus the fractions pi/qi are the parabolic vertices of the modular group,

while α is a limit point of vertices which is not itself a vertex. To establish

(1), take a vertical line L in the upper half-plane ending at OC. Then L cuts

infinitely many fundamental regions. Select a point *£ = &£+ 0 ^ lying on L in

the region /?, (k - 1, 2, 3, ); there is a unique modular substitution

%z ~ Pk

which carries R^ and therefore z^ into the standard fundamental region Ro:

(\z\ > 1, | R z | < 1/2).

We have z£ = zkVk = %k + iyk and yζ = Ύk/Q> where

Now y£ > y/~3/29 since this is true for every point in Ro; equality is attained

only for points with rational abscissae. Since the arithmetic mean is not less

than the geometric, we have

k > Q>2\qkyk\ | ^ α - p J ,
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which is (1) with h = y/S/2. This result was first obtained by Hermite [2]; he

used algebraic methods.

The above proof depends only on the circumstance that there is a funda-

mental region of the modular group which is at a positive distance from the real

axis. This suggests a generalization to Fuchsian groups whose fundamental

regions have the same property. But the result can be proved for more general

groups. We are not particularly interested in the best possible value of A, but

only in the existence of a constant h depending only on the group and not on

α.
First, let us note that in a Fuchsian group with a finite number of generators

and with real axis as principal circle, the set of parabolic points (which we

shall assume includes the point oo) consists of real numbers, of the form p/q,

p real, q > 0. Moreover, p and q have distinguishable identities; that is, they

cannot be replaced by λp, λq. For the number of inequivalent parabolic vertices

of the group is finite; p/q must be equivalent Jto one of them, say oo. Then the

group contains a substitution carrying p/q to oo; that is, the first but in general

not the second of the substitutions

belongs to the group. Thus the statement that (1) is satisfied by infinitely many

of the parabolic points p^/q of a Fuchsian group has a nontrivial content.

Our result is now as follows:

THEOREM. Let G be a Fuchsian group, with real axis as principal circle,

which is generated by a finite number of substitutions. Let P, the set of para-

bolic points of Gf be an infinite set including the point oo. Let (X £ P -P.

Then there exist pjq^ (ι = 1, 2, •••) for which (1) is true9 where p^/qi £ P>

and h = h{G) is a geometrical constant depending only on the group G.

That oo is a parabolic point of G is no real restriction since the group can

always be transformed by a linear transformation (G—>T~ιGT) to secure this.

We intend to develop further arithmetic properties of the Fuchsian groups in

future investigations. A generalization of the semi-regular continued fractions

is indicated.

2. Preliminaries. In this section we gather together some known facts con-

cerning the fundamental regions of Fuchsian groups which will be needed in §3.

Reference may be made to Ford [ l ] .

We shall find it convenient to transform G into Γ = S ιGS, choosing S so

that no substitution V of Γ has infinity as a fixed point, and so that the real

axis and upper half-plane are mapped into the unit circle (Q) plus its interior.
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Then every substitution

γz + 8

has γ -=f 0 and possesses the isometric circle \γz + 8 \ = 1, which is orthogonal

to Q. Furthermore, in any infinite sequence of isometric circles, the radii

(= γ~ι) tend to zero.

The fundamental region Ro of Γ is that part of the interior of Q which is

exterior to all isometric circles; it is a simply connected region, bounded by

arcs of isometric circles, which are called sides. Two sides intersect if at all

in a single point (vertex) which may lie in the interior of Q or on Q; in the latter

case the sides must be tangent. The boundary of Ro on Q consists entirely of

vertices if Γ is a Fuchsian group of the first kind; in a group of the second kind,

it contains arcs of Q; it may also contain vertices. These arcs are not sides of

Ro; they will be called bounding arcs. A side which, together with its endpoints,

lies entirely inside Q is called an open side.

The transformations Vi of Γ map Ro into fundamental regions /?j, which in

their entirety, fill the interior of Q completely and without overlapping, and

cluster in infinite number about each parabolic vertex.

The sides of Ro are arranged in conjugate pairs (Zy, Zy'); that is, there is a

substitution Tj of Γ carrying lj into Zy. (If a side is followed immediately by its

conjugate, the two sides are part of the same isometric circle.) Starting with

any particular vertex in RQ9 we label the sides and bounding arcs 1, 2, 3, ,

in counterclockwise order; as the conjugate of a side appears, it is labelled with

the corresponding primed integer. (The bounding arcs are not considered to have

conjugates.) As an example, the usual fundamental region for the modular group

would be labelled 1, 2, 2', l ' , if we start from the vertex corresponding to

infinity in the upper half-plane.

Since each region /?; is a directly conformal image of Ro, the sides are

described in the same order in both. The side of /?/ which is the image of the

side k in Ro is written Ic. When two regions abut, the common side bears two

labels, one for each region.

Suppose two regions /?;, Rj abut along a side V in /?;. The substitution

carrying Rι into Rj carries some side, evidently Z, into Z'. Therefore, the side of

Rj common to /?,-, being the image of Z in /?;, is labelled Z in Rj and, as we have

seen, is labelled Γ in /?;. When two regions abut, then, the common side bears

labels in the two regions which are conjugate to each other.

We are now able to define a quantity η = 77 ( Γ ) which in §4 will be related

to h(G) of (1). If Z is any side of Ro> let dι be the maximum of the distances
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of points of I from Q. If I is a bounding arc, construct the unique circle orthogo-

nal to Q which passes through the endpoints of I; then dj is the largest distance

from Q of points of the arc of this circle lying in Q. Now we define

(2) η(Γ) = min d{ ,

where I runs over the (finite number) of sides and bounding arcs of Ro. Obviously

(3) τ / ( Γ ) > 0 .

3. Lemma. Denote by Pι the set of parabolic vertices of Γ, and let β C

Pί — Pί Plf and therefore β, lies on Q. Denote by π the image of oo on Q under

the transformation S (§2). Let λ be the unique orthogonal arc connecting π and

β. Since β is not in Pί9 λ crosses infinitely many regions, say Ri9 R29 ••• > in

that order. Let λj be the closed arc of λ lying in R(. The substitution Fj ι maps

Ri on Ro and λj on an arc λj' = λiVf1 lying in Ro. Our object is to prove the

following:

LEMMA. For each β there exist infinitely many values of y, and correspond-

ing points tj on λy whose images t/ on λy are at a distance from Q greater that

η ( Γ ) . Further, £y—>/3.

To this end let us study the sequence of sides of the fundamental regions

crossed in turn as λ is traversed from π to β We may just as well consider the

maps of these sides in Ro and thus write the sequence as

Λ p K\9 & 2 ? n>2* ™ 3 ' * * * *

(It is understood that all letters appearing stand for either unprimed or primed

integers, and (/&')'= n.) Since the first side in each pair is merely the conju-

gate of the last side in the preceding pair, we may abbreviate the above to

(4) ki9 k2, k 3 >

where only the last side crossed in each region is written down. This sequence,

which is uniquely determined by β, will be denoted by (β ).

It is clear that (β) must contain some pair (k> I) infinitely often, for Ro has

only a finite number of sides and arcs. The appearance of k in the (y — l ) t h

place of (β ) followed by I means that, in /?y, λy starts from the side A;'and ends

in the side Z. Then λy starts from the side k' of Ro and ends in the side I of Ro

and is orthogonal to Q.

Suppose first that &' and I are not consecutive sides of Ro in the labelling

already adopted, so that there is at least one side or bounding arc m following
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k' and preceding /. Then λy, being orthogonal to Q and cutting only k' and Z,

must lie between m and the center of Q. There is a point tj on λj whose distance

from Q exceeds dm; and hence exceeds 77 ( Γ ) . This is obvious if m is not a

bounding arc. Otherwise, the circle which determines dm lies completely interior

to λy'. Hence, in all cases, the image of tj is a point tj in λy with the desired

properties. Since / assumes infinitely many values, the lemma is proved under

the above mentioned supposition.

According to this result, the lemma may be established by demonstrating the

existence of a pair (x, y) occurring indefinitely often in the sequence (β) such

that x'9 y are not consecutive sides of Ro. This we proceed to do.

We divide the discussion into two cases:

A. Ro has all vertices on Q. Let (k, x) be an infinitely recurring pair in

(β). If there is an x such that k'9 x are not consecutive, apply the previous

result. Otherwise, from a certain point on in (/3), k occurs followed always by

/ where k'9 I are consecutive. Now consider infinitely recurring triples {k9 Z,Λ).

If an x exists for which Z', x are not consecutive, there is nothing further to

prove. If not, all late triples in (β) involving k, I are (k9 Z, m), where V9 m are

consecutive.

In the continuation of this process, two possible situations can arise. We

may find a block (A;, Z, , r, s ) occurring infinitely often in {β ) with r', 5 not

consecutive. If this does not happen, then we arrive at an infinitely recurring

block (k9 Z, ••• , u9 v) with k'9 I consecutive, ••• , u'9 v consecutive, and υ\ k

consecutive. This block may contain all or only some of the vertices of Ro. But

now these blocks must occur in succession with no entries in between in (j8).

For if we assume z £ k follows v infinitely often in (β)9 we have the recurring

pair (v, z), and (v'9 z) are not consecutive since v'9 k are.

The sequence (/3) now looks like this:

a l 9 α 2 , ••• , a^-^ B> B> B 9 ••• ,

where B is the block (k9 Z, , u9 v). The sides k\ I of the first block B lie in

RN + ί Let the vertex at the intersection of these sides be K. Then K lies on Q9

and k' and I issue from K. The next side cut by λ is ~m. Since Z'and m are con-

secutive in R09 it follows that V and m issue from K. Continuing in this way, we

see that from a certain point on all the sides cut by λ issue from K. Let k be

one of these sides; k is an arc of an isometric circle which cuts Q in two points,

K and another point Kγ\ and β lies in the interior of the arc KKi In fact, β lies

inside all such arcs formed from the sides of all regions cut by λ. Since the radii

of the isometric circles tend to zero, the distance from β to K is arbitrarily
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small. This contradicts the hypothesis that β is not in Px.

B. Ro has some vertices not on Q. Let k', I be sides of Ro meeting at a

vertex K which lies on Q. Suppose {k\ I) recurs indefinitely in (/3). We con-

tinue the argument as in case A. The side Z is not open since it meets ά ' a t / L

Hence, V is not open. The side m consecutive to / ' i s thus not open. Therefore,

the block (k9 Z, m, ••• , u, v) consists entirely of sides which are not open.

Then we are in case A.

If (k\ I) does not occur infinitely often for any nonopen k\ then all pairs

(x, y) which do recur indefinitely consist of open sides. Then the argument is

similar to that of case A except that the vertex K lies in the interior of Q. Infin-

itely many sides cut by λ issue from K. This is known to be an impossibility:

since K i s a vertex in the interior of Q, only a finite number of sides of funda-

mental regions can end at K. Hence the possibility envisaged cannot actually

occur.

This completes the proof of the lemma.

4. Proof of the theorem. Let Q* be an interior circle concentric with Q and

at a distance η(Γ) from Q. The content of the lemma is that on the arc con-

necting the fixed vertex π to any point β C P t - P x there exists a sequence of

points ti9 t29 —> β whose transforms t{> ί2> iR ^o ^ e inside Q*

Recalling that Γ = S~ιGS9 we map Q back onto the real axis E by means of

S. Then the interior of Q is mapped onto the upper half-plane H and π is carried

to infinity, Pt to P, and β C Pι - Px to α € P - P. The sides of Ro in Q

are mapped into sides of Ro' in //, some of which may extend to infinity. The

bounding arcs become intervals of E of finite length. The image of λ is a verti-

cal line L ending at GC, and Q* is carried into a circle E* whose lowest point is

at a distance h(G) above E; we use this to define h(G).

The sequence tn —> β is mapped into a sequence zn —> (X, zn on L. The

lemma then states that the sequence zn has transforms zn' in Ro which lie inside

£**. The distance of zπ'from E is therefore greater than h; that is,

(5) h ; > h u = l, 2 , 3 , . . . ) .

Let \qn ~qn) be the substitution of G carrying Rn into Ro; then pn/qn is

carried to infinity, and pn/qn is thus a parabolic vertex.

Now applying the argument in §1, we see that pi/qi (i = 1, 2, 3, ,)

satisfies (1) with h = h{G) .

A geometrical definition of h can be given. For each side I of /?0, set

d<ι (< + oo) equal to the maximum height of points on Z. If Z is a bounding arc, set

dι equal to half the length of Z. Then
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(6) h(G) = min dt > 0 ,
i

where I varies over the sides and bounding arcs of Ro'.
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