TWO EXISTENCE THEOREMS FOR SYSTEMS OF LINEAR INEQUALITIES

Leonard M. Blumenthal

1. Introduction. In a previous paper [1], the writer initiated the development of the theory of linear inequalities by means of metric methods. This program is continued in the present note to obtain existence theorems for the solutions of two types of (finite) homogeneous systems of inequalities; existence criteria for such systems, different from those established in this paper, are given in the fundamental work of Theodore Motzkin [4]; see also [3].

If A denotes an $m \times n$ matrix of real elements, and x a column matrix of n indeterminates, then the matrix $A x$ gives rise to the two systems of m homogeneous linear inequalities in n unknowns,

$$
\begin{equation*}
A x \geq 0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
A x \geqq 0, \tag{2}
\end{equation*}
$$

where the notation ≥ 0 is interpreted to demand that at least one of the left members in (1) be positive. In this note necessary and sufficient conditions are found in order that these systems have a solution, which is nontrivial in the case of system (2). These conditions are expressed in terms of the signs of certain minors of the symmetric positive semi-definite matrix of order m formed upon multiplying the matrix A by its transpose A^{T}. They follow easily from a lemma concerning the distribution of $n+2$ points of the convexly metrized unit n-sphere S_{n}; this lemma is stated without proof in [2].
2. The Lemma. Let $p_{0}, p_{1}, \cdots, p_{n+1}$ be $n+2$ points of the S_{n} and denote the geodesic distance of p_{i}, p_{j} by $p_{i} p_{j}$; that is, $p_{i} p_{j}$ is the length of a shorter great circle arc that joins p_{i} and p_{j}. Denoting the determinant

$$
\left|\cos p_{i} p_{j}\right| \quad(i, j=0,1, \cdots, n+1)
$$

[^0]by
$$
\Delta\left(p_{0}, p_{1}, \cdots, p_{n+1}\right)
$$
we recall the well-known result that
$$
\Delta\left(p_{0}, p_{1}, \cdots, p_{n+1}\right)=0
$$
while each principal minor of the determinant is nonnegative. If, moreover, a principal minor satisfies
$$
\Delta\left(p_{i_{0}}, p_{i_{1}}, \cdots, p_{i_{k}}\right) \neq 0
$$
then the points $p_{i_{0}}, p_{i_{1}}, \cdots, p_{i_{k}}$ are contained irreducibly in a k-dimensional (great) hypersphere S_{k}, and conversely. Clearly each ($m+1$)-tuple of such a set of $k+1$ points is contained irreducibly in an S_{m}.

Lemma. If

$$
p_{0}, p_{1}, \cdots, p_{n}, p_{n+1} \in S_{n}
$$

with

$$
\Delta\left(p_{0}, p_{1}, \cdots, p_{n}\right) \neq 0
$$

then (i) the points $p_{0}, p_{1}, \cdots, p_{n-1}$ determine uniquely an ($n-1$)-dimensional great hypersphere S_{n-1}, and (ii) the points $p_{n,} p_{n+1}$ lie on the same or on opposite sides of the hypersphere S_{n-1} if and only if the cofactor $\left[\cos p_{n} p_{n+1}\right]$ of the element $\cos p_{n} p_{n+1}$ in $\Delta\left(p_{0}, p_{1}, \ldots, p_{n+1}\right)$ be negative or positive, respectively.

Proof. Since $\Delta\left(p_{0}, p_{1}, \cdots, p_{n}\right) \neq 0$ (and consequently is positive), the points $p_{0}, p_{1}, \cdots, p_{n}$ are irreducibly contained in S_{n}, and so $p_{0}, p_{1}, \cdots, p_{n-1}$ are irreducibly contained in a great hypersphere $S_{n-1}\left(p_{0}, p_{1}, \ldots, p_{n-1}\right)$ which they determine uniquely.

Let s be any element of $S_{n}, s \neq p_{0}, p_{1}, \cdots, p_{n}$. Now

$$
\begin{align*}
\Delta\left(p_{0}, p_{1},\right. & \left.\cdots, p_{n-1}\right) \Delta\left(p_{0}, p_{1}, \cdots, p_{n}, s\right) \tag{1}\\
& =\Delta\left(p_{0}, p_{1}, \cdots, p_{n}\right) \Delta\left(p_{0}, p_{1}, \cdots, p_{n-1}, s\right)-\left[\cos p_{n} s\right]^{2}
\end{align*}
$$

and the vanishing of $\Delta\left(p_{0}, p_{1}, \cdots, p_{n}, s\right)$, together with the nonvanishing of $\Delta\left(p_{0}, p_{1}, \cdots, p_{n}\right)$, implies that $\left[\cos p_{n} s\right]=0$ if and only if

$$
\Delta\left(p_{0}, p_{1}, \cdots, p_{n-1}, s\right)=0
$$

that is, if and only if $s \in S_{n-1}\left(p_{0}, p_{1}, \cdots, p_{n-1}\right)$.
It follows at once that if p, q are any elements of S_{n} which are on the same side of $S_{n-1}\left(p_{0}, p_{1}, \cdots, p_{n-1}\right)$, then

$$
\operatorname{sgn}\left[\cos p_{n} p\right]=\operatorname{sgn}\left[\cos p_{n} q\right]
$$

where $\left[\cos p_{n} p\right],\left[\cos p_{n} q\right]$ are cofactors of the indicated elements in the determinants $\Delta\left(p_{0}, p_{1}, \cdots, p_{n}, p\right), \Delta\left(p_{0}, p_{1}, \cdots, p_{n}, q\right)$, respectively. For in the contrary case, the continuous function $\left[\cos p_{n} s\right]$ changes sign for $s=p$ and $s=q$, and consequently it vanishes for some point of the geodesic (shorter) arc joining p and q. But by the above, this point belongs to $S_{n-1}\left(p_{0}, p_{1}, \cdots, p_{n}\right)$, and so p, q are on opposite sides of this great hypersphere, contrary to assumption.

If, therefore, p_{n} and p_{n+1} are on the same side of $S_{n-1}\left(p_{0}, p_{1}, \cdots, p_{n-1}\right)$, then

$$
\operatorname{sgn}\left[\cos p_{n} p_{n+1}\right]=\operatorname{sgn}\left[\cos p_{n} p_{n}\right]=-\operatorname{sgn} \Delta\left(p_{0}, p_{1}, \cdots, p_{n}\right)
$$

and consequently $\left[\cos p_{n} p_{n+1}\right]<0$.
Suppose, now, that p_{n} and p_{n+1} are on opposite sides of

$$
S_{n-1}\left(p_{0}, p_{1}, \cdots, p_{n-1}\right)
$$

and denote the reflection of p_{n} in this hypersphere by $p_{n}{ }^{*}$. Then $p_{n}{ }^{*}, p_{n+1}$ are on the same side of the hypersphere, and so

$$
\operatorname{sgn}\left[\cos p_{n} p_{n+1}\right]=\operatorname{sgn}\left[\cos p_{n} p_{n}^{*}\right]
$$

From the vanishing of $\Delta\left(p_{0}, p_{1}, \cdots, p_{n}, p_{n}{ }^{*}\right)$ and the relations

$$
p_{i} p_{n}^{*}=p_{i} p_{n} \quad(i=0,1, \cdots, n-1)
$$

which follow from the definition of $p_{n}{ }^{*}$, (1) yields

$$
\left[\cos p_{n} p_{n}^{*}\right]= \pm \Delta\left(p_{0}, p_{1}, \cdots, p_{n}\right)
$$

To determine the sign, we have, first,

$$
\left[\cos p_{n} p_{n}^{*}\right]=-\left|\begin{array}{cccc}
1 & \cos p_{0} p_{1} & \cdots & \cos p_{0} p_{n} \\
\cos p_{0} p_{1} & 1 & \cdots & \cos p_{1} p_{n} \\
\cdot & \cdot & \cdots & \cdot \\
\cos p_{0} p_{n-1} & \cos p_{1} p_{n-1} & \cdots & 1 \\
\cos p_{0} p_{n}^{*} & \cos p_{1} p_{n}^{*} & \cdots & \cos p_{n-1} p_{n}^{*}
\end{array}\right| .
$$

Taking account of the relations $p_{i} p_{n}{ }^{*}=p_{i} p_{n}(i=0,1, \cdots, n-1)$, and writing the determinant as the sum of two determinants whose last rows are $\cos p_{0} p_{n}$, $\cos p_{1} p_{n}, \cdots, \cos p_{n-1} p_{n}, l$ and $0,0, \cdots, 0, \cos p_{n} p_{n}{ }^{*}-1$, respectively, we easily obtain
(2) $\left[\cos p_{n} p_{n}{ }^{*}\right]$

$$
=-\Delta\left(p_{0}, p_{1}, \cdots, p_{n}\right)+\left(1-\cos p_{n} p_{n}^{*}\right) \Delta\left(p_{0}, p_{1}, \cdots, p_{n-1}\right) .
$$

Then clearly

$$
\left[\cos p_{n} p_{n}^{*}\right]=\Delta\left(p_{0}, p_{1}, \cdots, p_{n}\right)>0
$$

for if the negative sign were valid, substitution in (2) would give

$$
\left(1-\cos p_{n} p_{n}^{*}\right) \Delta\left(p_{0}, p_{1}, \cdots, p_{n-1}\right)=0
$$

But

$$
\Delta\left(p_{0}, p_{1}, \cdots, p_{n-1}\right) \neq 0
$$

because $p_{0}, p_{1}, \cdots, p_{n-1}$ are irreducibly contained in S_{n-1}, while, since p_{0}, $p_{1}, \cdots, p_{n-1}, p_{n}$ are irreducibly contained in $S_{n}, p_{n} \notin S_{n-1}\left(p_{0}, p_{1}, \cdots, p_{n-1}\right)$, and so p_{n} is distinct from its reflection $p_{n}{ }^{*}$ in that hypersphere; that is,

$$
1-\cos p_{n} p_{n}^{*} \neq 0
$$

Hence if p_{n}, p_{n+1} are on opposite sides of $S_{n-1}\left(p_{0}, p_{1}, \cdots, p_{n-1}\right)$, then $\left[\cos p_{n} p_{n+1}\right]>0$. To complete the proof, it suffices to observe that if

$$
\left[\cos p_{n} p_{n+1}\right] \neq 0
$$

then $p_{n+1} \notin S_{n-1}\left(p_{0}, p_{1}, \cdots, p_{n-1}\right)$. This is evident upon substituting p_{n+1} for s in (1).

Corollary. Let $p_{0}, p_{1}, \cdots, p_{n+1}$ be pairwise distinct points of S_{n}, no $n+1$ of which are in a great hypersphere. If $\epsilon_{i j}=1$ or -1 according as p_{i} and p_{j} are on opposite sides or on the same side, respectively, of the great hypersphere

$$
\begin{aligned}
S_{n-1}\left(p_{0}, \cdots, p_{i-1}, p_{i+1}, \cdots, p_{j-1}, p_{j+1}, \cdots,\right. & \left.p_{n+1}\right) \\
& (i, j=0,1, \cdots, n+1 ; i \neq j)
\end{aligned}
$$

and $\epsilon_{i i}=1(i=0,1, \cdots, n+1)$, then the matrix $\left(\epsilon_{i j}\right)(i, j=0,1, \cdots, n+1)$ has rank 1 .

REmark. In a manner similar to that employed above, companion theorems that characterize in a purely metric way the sides of hyperplanes in n-dimensional euclidean and hyperbolic spaces that are determined by a given set of n points may be obtained. We state the euclidean theorem, which may be exploited to obtain existence theorems for systems of linear inequalities in much the same way as the lemma just proved will be used in the next section.

Theorem l. Let $p_{0}, p_{1}, \cdots, p_{n+1}$ be $n+2$ points of euclidean n-space E_{n} with $p_{0}, p_{1}, \cdots, p_{n}$ irreducibly contained in E_{n}. Then $p_{0}, p_{1}, \cdots, p_{n-1}$ determine a unique hyperplane E_{n-1}, and p_{n}, p_{n+1} are on the same side or on opposite sides of this hyperplane if and only if

$$
\operatorname{sgn}\left[p_{n} p_{n+1}^{2}\right]=(-1)^{n} \text { or }(-1)^{n+1}
$$

respectively, where $\left[p_{n} p_{n+1}^{2}\right]$ denotes the cofactor of $p_{n} p_{n+1}^{2}$ in the determinant

$$
D\left(p_{0}, p_{1}, \cdots, p_{n+1}\right)=\left|\begin{array}{ccccc}
0 & 1 & 1 & \cdots & 1 \\
1 & 0 & p_{0} p_{1}^{2} & \cdots & p_{0} p_{n+1}^{2} \\
1 & p_{0} p_{1}^{2} & 0 & \cdots & p_{1} p_{n+1}^{2} \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
1 & p_{0} p_{n+1}^{2} & p_{1} p_{n+1}^{2} & \cdots & 0
\end{array}\right|
$$

We observe, moreover, that for $p_{0}, p_{1}, \cdots, p_{n}$ irreducibly contained in E_{n} it may be shown that

$$
\begin{aligned}
& {\left[p_{n-1} p_{n}^{2}\right]} \\
& \begin{aligned}
=(-1)^{n-1} 2^{n-1}[(n-1)!]^{2} V\left(p_{0}, \cdots,\right. & \left.p_{n-2}, p_{n-1}\right) V\left(p_{0}, p_{1}, \cdots, p_{n-2}, p_{n}\right) \\
& \times \cos \Varangle\left(p_{0}, p_{1}, \cdots, p_{n-2}: p_{n-1}, p_{n}\right),
\end{aligned}
\end{aligned}
$$

where $\left[p_{n-1} p_{n}^{2}\right.$] is the cofactor of $p_{n-1} p_{n}{ }^{2}$ in $D\left(p_{0}, p_{1}, \cdots, p_{n}\right), V$ is the volume of the ($n-1$)-dimensional simplex determined by the points indicated, and $\Varangle\left(p_{0}, p_{1}, \cdots, p_{n-2}: p_{n-1}, p_{n}\right)$ denotes the "dihedral" angle with ($n-2$)dimensional edge $E_{n-2}\left(p_{0}, p_{1}, \cdots, p_{n-2}\right)$ of the simplex with vertices p_{0}, $p_{1}, \cdots, p_{n-1}, p_{n}$.

Hence $\left[p_{n-1} p_{n}^{2}\right]=0$ if and only if $\Varangle\left(p_{0}, p_{1}, \cdots, p_{n-2}: p_{n-1}, p_{n}\right)=\pi / 2$, and $\operatorname{sgn}\left[p_{n-1} p_{n}^{2}\right]=(-1)^{n-1}$ if and only if the dihedral angle is acute.

It is, perhaps, worth pointing out that Theorem 1 yields a purely metric characterization of a nondegenerate simplex (interior and boundary) of E_{n}. For if $p_{0}, p_{1}, \cdots, p_{n}$ are the vertices of such a simplex, a point p of E_{n} evidently belongs to its interior or boundary if and only if p and p_{i} are not on opposite sides of the hyperplane $E_{n-1}\left(p_{0}, \cdots, p_{i-1}, p_{i+1}, \cdots, p_{n}\right)(i=0,1, \cdots, n)$; that is, according to the theorem, if and only if

$$
\operatorname{sgn}\left[p_{i} p^{2}\right]=(-1)^{n} \text { or } 0 \quad(i=0,1, \cdots, n)
$$

where [$p_{i} p^{2}$] is the cofactor of $p_{i} p^{2}$ in the determinant $D\left(p_{0}, p_{1}, \cdots, p_{n}, p\right)$.
Since a point of E_{n} is contained in the convex extension of a k-tuple of E_{n} (not of E_{n-1}) if and only if it belongs to the simplex determined by some $n+1$ points of the k-tuple, the above observation yields a metric characterization of such convex extensions.
3. The theorems. We are now in position to prove the two existence theorems.

Theorem 2. Let $A x \geq 0$ be a system of m linear inequalities in n indeterminates with rank $r+1$, and let B denote the determinant of the matrix $A A^{T}$. The system has a solution if and only if a shifting of rows and corresponding columns of A exists such that
(i) the upper left principal minor M of B of order $r+1$ does not vanish,
(ii) each minor of B formed from M by replacing its last row with that part of the j-th row of B contained in the first $r+1$ columns $(j=r+2, r+3, \cdots, m)$ is positive or zero.

Proof. Each row of A gives, after normalization, a point of the unit n-sphere S_{n}, and since the rank of A is $r+1$ it follows that the m "row points" are contained irreducibly in an r-dimensional hypersphere S_{r} of the S_{n}. Denoting by p_{i} the point corresponding to the i-th row of $A(i=1,2, \cdots, m)$ after a shifting of rows and columns of A in conformity with the hypotheses has been carried out, we see that $p_{1}, p_{2}, \cdots, p_{r}, p_{r+1}$ lie irreducibly in S_{r}, and that $p_{1}, p_{2}, \cdots, p_{r}$ determine a unique ($r-1$)-dimensional great hypersphere $S_{r-1}\left(p_{1}, p_{2}, \cdots, p_{r}\right)$.

Now the cofactor $\left[\cos p_{r+1} p_{j}\right]$ of the element $\cos p_{r+1} p_{j}$ in the vanishing determinant $\Delta\left(p_{1}, p_{2}, \cdots, p_{r+1}, p_{j}\right)(j=r+2, r+3, \cdots, m)$ has the sign opposite to that of the minor of that element which, in turn, has the same sign as the minor of B described in hypothesis (ii). Hence

$$
\left[\cos p_{r+1} p_{j}\right] \leqq 0 \quad(j=r+2, \cdots, m)
$$

and so, by the lemma, each of the points $p_{r+2}, p_{r+3}, \cdots, p_{m}$ lies on the same side of $S_{r-1}\left(p_{1}, p_{2}, \cdots, p_{r}\right)$ as p_{r+1}, or is contained in that hypersphere.

Hence the m points are contained in a hemi- S_{r} with at least one of the m points, p_{r+1}, not on the S_{r-1} forming its "rim". The center of this hemi- S_{r} is evidently a solution of the system of inequalities, and so the conditions stated in the theorem are sufficient. We have, indeed, found that the S_{r} itself contains a solution of the system.

To extablish the necessity, we remark that if the system has a solution in S_{n}, then it has a solution in the S_{r} containing the m points $p_{1}, p_{2}, \cdots, p_{m}$ irreducibly. For if $p \in S_{\dot{n}}$ which is a solution of the system, then p is the center of a hemi- S_{n} which contains $p_{1}, p_{2}, \cdots, p_{m}$ and has at least one of these points, say, p_{m}, in its interior. But if the S_{r} has no solution of the system, the (spherical) convex extension of the m-tuple is the whole S_{r}, which must be contained in the hemi- S_{n} on which the m points lie. But this is impossible since the point p_{m}^{*} diametral to p_{m} lies in the S_{r} but it clearly does not belong to the hemi- S_{n}.

If, therefore, the system has a solution, there is a point of the S_{r} containing $p_{1}, p_{2}, \cdots, p_{m}$ which is the center of a hemi- S_{r} that contains $p_{1}, p_{2}, \cdots, p_{m}$, with at least one of these points in its interior. It is easily seen that any such hemi- S_{r} may be rotated so as to retain this property and have some r of the m points, say $p_{1}, p_{2}, \cdots, p_{r}$, on the S_{r-1} forming its rim. If p_{r+1} is in the interior of the hemi- S_{r} so obtained, then clearly each of the remaining points is either on its rim or on the same side of the rim as p_{r+1}. Invoking, now, the lemma, we see that the conditions of the theorem are satisfied.

Remark. The direction-cosines of the normal to the hyperplane E_{r} determined by the points $p_{1}, p_{2}, \cdots, p_{r}$ (and the origin) give a solution of the system of inequalities; but since these numbers are found by evaluating determinants, a solution method based on the theorem is probably not suitable for computing machines.

Theorem 3. Let $A x \geqq 0$ be a system of m linear inequalities in n indeterminates. The system possesses a nontrivial solution if and only if whenever the
rank of A equals n, a shifting of rows and corresponding columns of the determinant B of $A A^{T}$ exists such that (i) the nth order upper left principal minor M of B is not zero, while (ii) each nth order minor of B obtained from M by replacing the last row of M with that part of the j-th row contained in the first n columns of B is positive or zero for $j=n+1, n+2, \cdots, m$.

Proof. The rank of A is, of course, at most n; and if it is less than n then the m row points lie in an E_{n-1} containing the origin, the coefficients of which annul all the members of the system of inequalities and hence form a solution.

If the rank of A equals n then the row points are not contained in any E_{n-1} passing through the origin, and so the system has a nontrivial solution if and only if the system $A x \geq 0$ has a solution; that is (by virtue of Theorem 3), if and only if conditions (i) and ($i i$) are satisfied.

References

1. L. M. Blumenthal, Metric methods in linear inequalities, Duke Math. J. 15 (1948), 955-966.
2. L. M. Blumenthal and B. E. Gillam, Distribution of points in n-space, Amer. Math. Monthly 50 (1943), 181-186.
3. W. B. Carver, Systems of linear inequalities, Ann. of Math. 23 (1921-22), 212-220.
4. T. S. Motzkin, Beiträge zur Theorie der linearen Ungleichungen, Dissertation, Basel, 1933 (Jerusalem, 1936).

National Bureau of Standards, Los Angeles, and
University of Missouri

[^0]: Received January 22, 1952. The preparation of this paper was sponsored (in part) by the Office of Scientific Research, USAF. Presented to the American Mathematical Society, February, 1952.

 Pacific J. Math. 3 (1953), 523-530

