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Introduction. The normal completion of a partially ordered set C is a com-

plete lattice C whose elements are subsets of C. However, in practice a par-

tially ordered set C is usually given as a subset of a complete lattice B, and it

seems desirable to be able to describe directly a subset of B which contains C

and which is isomorphic with C. Such a construction is given in ξ 1 below. The

idea of the construction is suggested by the method of formation of the normal

completion itself, and is undoubtedly known. However, it does not seem to ap-

pear explicitly in the literature. In § 2 we treat the case where C is the lattice

of real-valued continuous functions on a topologic space X, and B is the lattice

of all real-valued functions on λ. This leads to a simple proof of a result of

Dilworth [ 2 ] . In § 3 we extend another result of ϋilworth in proving that for any

two topologic spaces, the lattices of regular open sets are isomorphic if and

only if the lattices of normal lower semicontinuous functions are isomorphic.

Notations and definitions. If S is a subset of a partially ordered set P,

then Σ p ( 5 ) and Ylp (S) will be used to denote the least upper bound and the

greatest lower bound of S, respectively. If S is empty, Σlp(S) is the least

element of P, and Π p ( 5 ) is the greatest element of P. A subset of P will

always be given the order induced by that of P. If x €1 P9 S C P, we shall write

x > S whenever x > γ for all γ in S. Two partially ordered sets Pι and P 2 are

said to be isomorphic, in symbols Pj 21 P21 if there exists a function /on Pγ on-

to P 2 such that

This implies that / is one-to-one.

If A is a subset of a topologic space, we use &A9 and C A for the interior

and the closure of A, A set S is called regular open if S = cϋC 5, and regular

closed if S = CcSίS A zero-dimensional space is one whose open sets have a

basis each member of which is both open and closed. A space shall be called
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extremallγ disconnected if every regular open set is closed, that is, if the clo-

oure of every open set is open. Co.ntrary to the usual custom, we do not require

a completely regular space to satisfy any of the separation axioms. If A is a

set, kA will stand for the characteristic function of A. If f is a function, we use

E (/ > λ ) to denote Ex(f(χ) > λ ) .

1. The normal completion of a subset of a complete lattice. Let B be a

complete lattice on which are defined a "closure operation" x* and a "dual

closure operation" x* with the following properties:

i) x x " < x < x* ,

ϋ) U*)* = **, (**)* = **,

iii) x < γ—>x* < y* and x* < y*.

As a simple consequence, we have

iv) (((%*)*)*)* = (**)* and (((%*)*)*)* = (%*)*.

Throughout this section, Σ ( S ) and Π(S) will be used to denote Σ2β(S) and

UB(S). Let

L = Ex(x = Xχ\ and U = A^(Λ; = % * ) .

A proof of the following theorem is given in [ 1, p . 4 9 ] .

THEOREM 1. L and U are complete lattices in which

y y = Π(s).

Now let

NL = £ x ( x ^ U ) J , and NU = £ X U = ( * , ) * ) .

We note that Λ'L C L and Λ'£/ C U, by ii).

THEOREM 2. /VL orec? Λ/ί/ are isomorphic complete lattices in which

*NU
, ΠΛ,,,(S) =
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Proof. It is easy to verify by i ) , i i ) , i i i ) , and iv) that (%*)* is a closure

operation in L. By Theorem 1 it follows that NL is a complete latt ice in which

Σ,NL(s) = ( Σ L ( s n , = (Σ(sn,, ΠyvL(s) = ΠL(S) = Π(S),.

For the other half of the proof, we define the dual closure operation ( # * ) * in

U, and apply Theorem 1 again. The mapping f (x) = x* is easily seen to be an

isomorphism of NL onto Nil whose inverse is /" ι (x ) = x* .

As an example, if B is the lattice of all subsets of a topologic space, and

x* = ax, x* = C i ,

then L and t/ are the lattices of open sets and closed sets, while NL and NU

are the lattices of regular open sets and regular closed sets respectively.

The normal completion (completion by cuts) of a partially ordered set C is

a canonicalembedding of C in a complete lattice C which preserves all existing

sums and products. See [ 1, p. 58] for details. Now C may be constructed as

follows. If S C C, let

S A = Ex(x £ C, x > S) and S = £ X ( % C C , Λ; < S A ) .

Then S is a closure operation in the lattice of all subsets of C. The class

£ = ES(S = S )

is the normal completion of C; C is embedded in C by the mapping

where Sx is the class whose only member is x.

Now suppose C is an arbitrary subset of B. Our aim is to describe a subset

of B which is isomorphic with C. If x €1 5 , we define

x0 = £y (y C C, y < Λ: ) and x° = Eγ (y £ Cy y > x).

Now let

x, = Σ,{x0), x- = Π u ° ) .

It is easily verified that x* and %* are closure and dual closure operations on

B. To check property ii), we need only note that if γ^ζL C, then
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γ < x* <-> y < x.

We also remark that

x €_ C —» x * = Λ; = x * .

We now consider the lattices L> ί/y NLy and /Vt/ obtained from this particular

definition of x*s x*. Obviously C C Λ'L, C C /Vί/, and the following theorem

shows that NL and NU are extensions of C.

T H E O R E M 3. //

x = Σ C ( S ) , y = Π C ( S ) ,

* = Σ W L ( S ) = Σ,NU{S) and y = Π W L ( S ) = Π w ι / ( S ) .

,NU{S) and y = Π W L ( S ) = Π w ι /

Proof. First

u> C C , M; >_ Z-/ (S ) —> w GLC, w > 5 —> ̂  > Z-/c (S ) =

Ijence

Σ(S)° >x,

and therefore

Also

since x C C and % > Σ^{S). Thus

Also, since ί C C ,

* =«» = (Σ(S)*), = Σ W ί (s ) .

We omit the proof of the dual statement.

THEOREM 4. NL (and hence NU) is isomorphic with C.
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Proof. Let S be any subset of C. We first note that S A = Σ ( S ) ° and that

x < Σ (S )° if and only if * < Σ (S )*. Hence

(1) S= £*(* CC, x < Σ(S)*).

It follows that

(2) Σ(s) = (Σ(s)*)*.

Thus if S = S, then Σ ( S ) € NL .

We now define a mapping φ oί C onto Λ/L by

.̂(s) = Σ(s).

c/ί> is onto NL because

x ζl NL —> x C L —> % = <L^{XQ ) ,

and by ( 2 ),

φ(Ίc0) = Σ ( % 0 ) = (%*)* = %.

F i n a l l y if S C T C C , t h e n φ ( S ) < φ ( T ) , w h i l e b y ( 1 ) ,

φ ( S ) < φ ( T ) — > S = Ex(x€C, x < φ ( S ) * ) cEx(xCC, x < φ { T ) * ) = T.

Using Theorem 4, we can show that C may be characterized as follows:

Let A be a complete lattice which contains a subset D isomorphic with C and

such that, for any S C D, whenever Σ,D(S) or l l ^ ( S ) exists then it is equal

to Σ*A (S) or Π4 (5). If no proper subset of A which contains D is a complete

lattice, then A is isomorphic with C.

As applications of Theorem 4 we have the following examples. If C is the

class of open and closed subsets of a zero-dimensional space Z, then C is

isomorphic with the lattice of regular open sets of Z. For it is easily seen that

if x is any subset of Z, then

x* =z Cx, and x^ = <Stac.

If C is a class of subsets of a set /4 which contains all one-point subsets and

their complements, then C is isomorphic with the lattice of all subsets of A. For

x = x^ = x* whenever x C A. Our main application is given in the next section.
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A special result which we shall use later is the following,

THEOREM 5. If B has the property that

x n 2^xa = 2s (x n χa )

for any family \ xa\, and

Π c(s) = Π(S)

for any finite subset S of C, then

Π L (S) = Π(S) αn̂  Π i V L(S) = Π(S)

for any finite subset S of L and I\L respectively.

Proof. Let xl9 , xn be elements of L. Then

xi = α e /£ ya, i '

where the γ . are elements of (x^ ) . By [ 1, Theorem 14, p. 146]Γ we have

where / ranges over all functions such that / ( ΐ ) C / . . Since 7/( t \ t G C , it

follows that

II*,. =Σ,fyf,

where y, C C. Hence I I %. G L , since L is closed under Σ , and therefore

ΠLu.) = Π*..

If xt CΛ'L, then

**NLxi = *^LXi = *^Xi'

2. The normal completion of lattices of continuous functions. Hereafter B

will stand for the set of all real-valued functions on a topologic space X We

allow the functions in B to assume oo and — oc as values; B is then a complete

lattice in which

Σ ( S ) U ) = s u p f{x).
fes
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We define in B the o p e r a t i o n s f__y f~~, where

f_(x) = sup inf / ( y ) ?

A e N{x) y 6 A

f — ( x ) = i n f s u p f ( y ) 9

A β N(x) γ 6 A

Λ' (x) standing for the class of neighborhoods of x. It is well known that /"" and

/_ are closure and dual closure operations on B. In accordance with Theorem 1,

define

LS = L f ( f = {_), US = Ef(f= Γ )

These are the classes of lower and upper semicontinuous functions on X. We

also define the complete lattices

NLS = Ef{f = ( Γ U , Λ:M> = *γ(/ = ( L Γ ) ,

and call their members normal lower and upper semicontinuous. It is well known

that fCLS (fCVS) if and only if E(f> λ ) ( £ ( / < λ ) ) is open for each

finite λ . We now let C = LS n US, the c lass of continuous, real-valued functions

on λ . If A is a subset of Λ, then

Hence k^ is in C, LSy US, NLS, or NUS if and only if A is open and closed,

open, closed, regular open, or regular closed, respectively.

In terms of the present definitions of B and C, let us now define the opera-

tions /*, /* and the classes L, U, NLy and NU as in f 1. Theorem 4 specializes

to:

THEOREM 6. The normal completion of the class of continuous, real-valued

functions on an arbitrary topologic space X is isomorphic with the class of NL

(or NU) functions on X.

The lattice operations in the class NL are described in Theorem 3. It is

easily seen that the hypotheses of Theorem 5 are satisfied in the present case.

It follows that the greatest lower bound of a finite family of L functions is also

an L function, and that the same is true of NL.

We now investigate the relations between the classes LS, NLS, L, and NL.

We shall not state, but shall feel free to use, the duals of the next theorems.
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THEOREM 7. / / / C δ , then /* < /__. Hence L c LS.

Proof. If g £ Cs g < f, then g = g_ < /__. Hence

/* = Σ(/o)< /_.
COROLLARY. The relation

(/*)_= (D = f*

holds for every f €1 B.

Proof. We have

/ * < / _ < / — • / " * = ( / " * ) * < ( / _ ) * < / * ;

and applying the theorem to /* , we have

/* = ( / * ) * < ( / * ) _ < / * .

THEOREM 8. A necessary and sufficient condition that /* = /_ for every

f ζl B is that X be completely regular.

Proof. Suppose /* = /_ for every / C B. Let x be any point of X. Let A be

any neighborhood of x, and set / = kΛ. Then / C LS, and hence

/ = /_ = /*•

Therefore there is a continuous function g with g < /*, # ( * ) > 0. This es-

tablishes the complete regularity of X.

Conversely, if X is completely regular, suppose that for some f ζl B there

is an x with

/«.(*) < L U ) .

Then there is a neighborhood /I of Λ; with

inf f(y) > λ > / * ( * ) .
y e A

Let g C C with g(x) = 1, ^ ( y ) = 0 for y outside ;4, and 0 < g (z ) < 1 for all

z C l Define

A(y) = λ + l o g g ( y ) ,
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with the convention that log 0 = — oc. Then

h < f, hCC, and h(x) > fjx).

This contradiction completes the proof.

COROLLARY. If X is completely regular then C c? I\LS.

We now obtain two characterizations of the class NLS.

LEMMA. For any f £ B and any finite λ,

£ ( / _ > λ) = Γ\n£E(f > λ - l/n).

Proof. We have

/_(%)> λ <-» for every n, x £ d £ (/ > λ - l/n).

T H E O R E M 9. If f€.LS, then fCNLS if and only if E(f > λ ) is an inter-

section of regular open sets for each finite λ [ 2 ]

Proof If fCNLS, t h e n

£(/> λ) = £((/"L > λ) = M £ ( f > λ - 1/n),

by the Lemma. The result now follows from the fact that /"" £1 US.

Conversely, if f ζlLS, and E' (/ > λ) is an intersection of regular open sets

for each finite λ, we have

/ = /_<(/-)_•

Suppose

fix) < λ < (D_(x)

for some x Then for some neighborhood A of x we have

inf f~(γ) > λ.
y β A

But £ ( / < λ) is a union of regular closed sets. Hence there is an open set B

with x C C B and f(y) < λ for each y C C β , Thus /~(y) < λ for y C β. But

B nΛ j4 0, since % C C 5. This contradiction completes the proof.
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T H E O R E M 1 0 . // fCLS, then f c NES if and only if & E ( f > λ ) is a

regular open set for each finite λ.

Proof. If / C NLS, then, by Theorem 8, E{f > λ ) is an intersection of

regular open s e t s , and hence its interior i s regular open. Conversely, suppose

&E(f > λ ) is regular open for each finite λ . We have

E ( f > μ ) C & E ( f > μ ) C E ( f > μ )

for each finite μ Hence

£(/•> λ) = n μ < λ £ ( / > μ ) = nβ<\E{f> μ) = n μ < λ ^ £ ( / > μ ) ,

and the last is an intersection of regular open sets.

Other characterizations of NES are given in [2, Theorem 3.1], and in Theo-

rem 14 below.

We now define C t as the class of finite real-valued continuous functions on

X, and C2 as the class of bounded real-valued continuous functions on X, and

investigate the normal completions of these lattices. We shall use oc to denote

the function which is identically oc, and similarly for — oc

THEOREM 11. Eet M be the lattice consisting of all NES functions which

are bounded above and below by members of C t together with the functions

00, - oc. If X is completely regular, then Ct ^ M.

Proof. We shall say that a function is dominated above or below if it is

bounded above or below by a member of C 1 # Let / , /* be defined as in v 1,

where C\ is used instead of C. We first note that if / is dominated above, then

f* = f~~ and both are dominated above. Indeed, if / < h ζl Cl9 then

g>f,gecS= Γ>

by the dual of Theorem 8. On the other hand, if f° = 0, then /* = oc.

Now the normal completion of Cι is isomorphic with

NLί = Ef(f = ( / * ) * ) .

If / is a finite-valued member of ill, then f* - f~~ is dominated above and below.
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Hence

(/*)* = (/*)* = (Γ>_ = /,

and / £ NLι. Conversely, if / £ NLt and / Φ- oo, f Φ - oc, then / must be domi-

nated above. For otherwise /* = oo, and therefore

( / * ) „ = / = oo.

Hence /* = /"", and / * is dominated above. Also /"" is dominated below, for

otherwise

/ = ( / - ) , = - c c .

Therefore

and / C Λ/.

In a similar manner we can prove:

THEOREM 12. / / Z is completely regular, then C2 is isomorphic with the

lattice consisting of all bounded NLS functions together with the functions

oc, - oo [ 2 ] .

We now p r o v e a theorem of Stone [ 5 ] a n d N a k a n o [ 4 ] .

THEOREM 13. If X is extremally disconnected, then C is complete. If C is

complete and X is completely regular, then X is extremally disconnected.

Proof. Suppose X is extremally disconnected. Then by the lemma preceeding

Theorem 9,

fCus-^f__Cus -+LCC

F o r any / C δ , we h a v e f * C ϋ C US. T h e r e f o r e ( / * ) _ £ C. C o n s e q u e n t l y ,

for any / in NL,

by the corollary of Theorem 9. Thus NL = C, and C is complete.

Conversely, let A be any regular open set. Then by Theorem 8,
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k. € NLS = NL = C.

Therefore A is closed.

3. Regular open sets and NLS functions. Let R{X)9 or simply R, denote

the lattice of regular open sets of X. According to Theorem 3, R is a complete

lattice in which

ΓίR(S) = Aπ

It is well known that RΛs in fact a complete Boolean algebra. By Stone's Theo-

rem, R is isomorphic with the open and closed sets of an extremally discon-

nected, zero-dimensional, compact Hausdorff space, which we shall call the

representation space of R.

THEOREM 14. A necessary and sufficient condition that f be normal lower

semi continuous is the existence of a family { X\ S, — oc < λ < cc, of regular

open sets with the properties

i) x \ C x for λ > μ,

ii) /(p ) = sup Eχ{p C xχ).

In this case we have

i i i ) < * £ ( / > λ ) = Π Λ f μ < λ V

/ / / C.NLS, we may choose Xχ = &E (f > λ ) .

Proof Suppose / G NLS. Let

x χ = &E(f> λ ) .

Theorem 10 shows that Xχ G R, and the proof of that theorem shows that iii)

holds. Since i) is obvious, it remains to prove ii). Suppose λ < / ( p ) Then

p CE(f > λ) C xχ.

Hence

sup Eχ (p G xA ) > /(p ) .

On the other hand, if λ > / ( p ) , then
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( / > λ ) D * λ .

Therefore

SUp Eχ(p £ Xχ) < /( p ) .

Now suppose \x\\ is a family of regular open sets satisfying i ) , and let

/ be defined by ii) . I f / (p) > λ, then p £ x for some μ > λ. But

/ ( q ) > μ > λ f or q C * .

Therefore E (/ > λ) is open and / £ LS. Also

which implies ii i). Theorem 10 now shows that / €1 NLS.

T H E O R E M 15 . If X and Y are any topoίogic spaces> then i\'LS(X) or I\LS(Y)

if and only if R(X) ^ R(Y). In particular ( [ 2 ] when X is completely regular),

if Z is the representation space of R(X)9 then NLS (X) Ξ: C ( Z )•

Proof. S u p p o s e R{ X) ~R{Y). L e t φ be a funct ion on Λ ( λ 7 ) to R ( Y ) w h i c h

e s t a b l i s h e s t h i s i s o m o r p h i s m . I f / C.NLS (X), l e t

* λ = < & £ ( / > λ ) ,

Define Tf to be the function on Y defined by

Tf(p) = sup Eλ(pCφ(xλ)).

By Theorem 14, Tf €1 NLS (Y). We now show that T is an isomorphic mapping

oϊNLS(X) onto yVL5(Y). If/, g €NLS(X), let

x λ = c 5 £ ( / > λ), y λ = &E{g> λ ) .

Clearly,

/ > g _ ^ Xχ j y λ _ > ̂ ( % χ ) D φ ( y λ )

for every λ, and therefore Tf > Tg, Using Theorem 14, iii) twice, we have

xλ ~ * *R(X),μ<λ xμ '

which implies
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From this it follows that

T{> Tg—>&E(Tf> λ) D &E(Tg > \)—>φ(χλ) J φ(γχ) -^χχ D yχ

for e v e r y λ . T h i s i m p l i e s / >_ g by T h e o r e m 14, i i ) . F i n a l l y , if F £. NLS (Y),

c h o o s e X\ £ R (X) s o t h a t

φ ( χ λ ) = &E(F > λ ) ,

a n d d e f i n e / a s i n T h e o r e m 1 4 , i i ) . T h e n f ζl N L S ( X ) a n d

and this last is χ\ because

φ(xλ) = Π R ( y ) i μ < λ φ(Xμ).

This shows that 7/= F.

If Z is the representation space of R(X), then NLS (Z) = C(Z) by Theorem

13 and the corollary to Theorem 8.

Now suppose NLS(X) 2i NLS (Y). Let Zγ and Z 2 be the representation

spaces of R (X ) and R ( Y ), respectively. Then

A theorem of Kaplansky [3] shows that Zι is homeomorphic with Z 2 . This

implies that

and the proof is complete.

In Theorem 14, it is easily seen that / is bounded if and only if X\ = 0 for

all λ outside some finite interval. It follows from the proof of Theorem 15 that

the bounded NLS functions on λ are isomorphic with those on Y if and only if

NLS{X) - NLS(Y).

The same is not true of the finite valued NLS functions. If

R(X) ~ R(Y),
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all we can say is that the classes of NLS functions / on X and Y, respectively,

which are such that £ ( | / | = oc) is nowhere dense, are isomorphic. This follows

from the fact that E (f = oo) is nowhere dense if and only if

and E (f = - cc) is nowhere dense if and only if

Σ,Rxλ = X or Y.

The following theorem gives a corresponding result for the lattices of con-

tinuous functions. We recall that C2(X) denotes the lattice of bounded real-

valued continuous functions on X.

THEOREM 16. If X and Y are any topologic spaces, then

C2(X) ~ C2(Y)

if and only if

C(X) ~ C(Y).

Proof. There exist completely regular Hausdorff spaces X'9 Y' such that

C2(X) ~ C2(X'), C2(Y) S C2(Y'), C(X) g: C(X'), a n d C (Y) ~ C(Y')

( o n e m o d i f i e s D i l w o r t h ' s proof [ 2 , § 2 ] by d e f i n i n g x ~ y if f{x)~ f{y) for a l l

fCC(X)). Now l e t βX', βY' be t h e S t o n e - C e c h c o m p a c t i f i c a t i o n s of X\ Y\

T h e n

C2(βX') ? C2(X')

Now the mapping

φ(f) = f / ( l + \ f \ )

carrier C(X') into C2 {X'). We use this to extend members of C(X'). Thus

C(βX') ~ C(X').

Combining these facts, we have

C(X) g: C(Y) «-» C(X') g, C(Y') «-»• C(βX') ~ C(βY')

+^> βX' is homeomorphic with βY'
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( b y K a p l a n s k y ' s T h e o r e m [ 3 ] ) ? «-»

C2(βX') gf C2{βY') (again by [ 3 ] ) <-* C2(X') ^ C2{Y') •-> C 2 ( ^ ) - C2(Y).

It would be of interest to give a more elementary proof of this theorem.
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