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Introduction

The existence of certain mathematical entities is sometimes proved without

providing any means to construct these entities. In some cases a constructive

proof is found later; there are other cases where not only has no constructive

proof been found, but, furthermore, it is generally suspected that no constructive

proof can be found. This is especially the case for several existence theorems

which are proved using the axiom of choice. For instance, all known proofs of

the existence of a nonmeasurable set use the axiom of choice, and most mathe-

maticians suspect that a constructive proof cannot be found.

There is a similar situation in Boolean algebra with regard to the existence

of certain maximal dual ideals. There are two types of maximal dual ideals,

the atomic ones and the nonatomic ones. While the existence of atomic maximal

dual ideals can be proved without the use of the axiom of choice, all known

proofs of the existence of nonatomic maximal dual ideals use the axiom of

choice or an equivalent axiom. This leads to the conjecture that the atomic

maximal dual ideals are in a certain sense constructive, while the nonatomic

ones are not. The nature of this conjecture is, however, not clear, since no

definition of a constructive dual ideal in a Boolean algebra is generally ac-

cepted.

We shall restrict our attention to two Boolean algebras whose elements are

sets of nonnegative integers. Our purpose is to propose two definitions for a

constructive dual ideal in these Boolean algebras based on the concept of a

recursive function, and to investigate the constructivity of the maximal dual

ideals in these Boolean algebras using each of these two definitions.

A collection of nonnegative integers is called a set, a collection of sets is
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called a class. Nonnegative integers and functions are denoted by small Latin

letters, sets by small Greek letters, and classes by capital Latin letters. The

Boolean operations are denoted by " + " for addition, " x " , "•"> or juxtaposi-

tion for multiplication, " ' " for complementation, and '* Q" for inclusion.

Proper inclusion between classes is denoted by " C " .

N O T A T I O N S :

V = the class of all sets,
df

\\ (n) — the c lass of all se t s not containing n,
df

L(n) — the class of all sets containing n,
df

f = the c lass of all recursively enumerable (r . e . ) s e t s ,
df

E - the class of all recursive sets.
df

In the following, B is a subclass of V which is a Boolean algebra relative to

+ and x .

DEFINITION. The nonempty subclass / of β is called an ideal in B if:

1) a, β C I —» a + β € /;

2) α C / , β CB—>a β C/.

DEFINITION. The nonempty subclass / of B is called a dual ideal in B if:

1) α , β €1 —>aβ € / ;

2) a£l, βCB—*a + βCl.

DEFINITION. The ideal or dual ideal / in β is called proper if / C β. A MI

(maximal ideal) in β is a proper ideal in B which is not properly included in a

proper ideal in β. Similarly we define a MDI (maximal dual ideal) in β.

It is readily verified (without the use of the axiom of choice) that W (n) B

is a MI in β and L (n) B a MDI in B for every value of n.

DEFINITION. The MI (or MDI) M in B is called atomic if there ex is t s an

n s u c h t h a t M = »(n). B ( r e s p . M= L(n)-B).

The Boolean algebras which we shall consider are [ V, +,x Ί j and [ £ , + , x ] .

DEFINITION. The subclass 5 of F is recursively enumerable ( r . e . ) if
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either S is empty, or S consists only of the empty set, or there exists a recursive

function f (m9 n) such that a nonempty set (X belongs to S if and only if there

exists an m such that Cί is the range of f ( m, n ).

DEFINITION. The dual ideal / in E (or V ) is constructive in the first sense

if / (resp. /• /' ) is r.e.

DEFINITION. The dual ideal / in E (or V) is constructive in the second

sense if t^ere exists a r.e. subclass 5 of E (resp. b ) such that / consists of

all sets in E (resp. I ) which include a set of S.

We now state the main results of this paper.

THEOREM A. According to each of the two definitions of a constructive

dual ideal in E or V the following is true: a MDI /!/ in E or V is constructive if

and only if it is atomic.

THEOREM 3. In the Boolean algebra E the two definitions are equivalent,

but in the Boolean algebra V cons true tivity in the second sense is stronger than

cons truetivity in the first sense.

I. Preliminaries

1. N O T A T I O N S :

0 = the empty set,
df

t = the set of all nonnegative integers,
df

{ n0, nl9 , rifo \ — the set consisting of nQ, nl9 9 n^,
df

[ ( X o > O ί p , Gί, ] = t h e c l a s s c o n s i s t i n g o f 0 ί 0 , G : 1 ? ••• , CC^,
df

0 = the empty class,
df

P - the class of all sets which have a finite or empty complement,
df

Q = the class of all sets which are finite or empty,
df

*.P.V.

D = E-R.
df
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2. The following statements are readily verified: P is a dual ideal in V, Q

is an ideal in V, and neither P nor Q is maximal in V; R is a subalgebra of V in

which ^ is a MDI and Q a MI. If / is any ideal in V, then 0 ζl I, and / is proper

if and only if e ψ. /. Dually, if / is any dual ideal in V, then e G /, and / is

proper if and only if 0 ζμ /.

DEFINITION. The subset K of the Boolean algebra B is called a product

system if K is closed under the product operation.

One of the important theorems in Boolean algebra is: if K is a product system

not containing the null element, then K is included in at least one MDI [ 4 , pp.

21, 22; this proof uses Zorn's lemma]. Vve shall refer to this theorem as "the

theorem of the product system." It can be proved that the ideal or dual ideal /

in B is maximal if and only if, for any CX C B, I contains exactly one of the two

sets Cί and Oί' The dual ideal / in B is therefore maximal if and only if B — /

(i.e., the complement of / relative to B) consists exactly of the complements

of the elements in /. Thus / is a MDI in B if and only if B - / is a MI in B.

The existence of MDI's follows from the existence of Mi's by the duality

principle. The existence of Mi's (often called prime ideals) is proved by Tarski

[ 7 ] , Stone [6] , and Frink [ 1 ]. These proofs are existence proofs; each of them

uses the axiom of choice in one of its forms.

A dual ideal / in V is called an extension of P in V if it includes P; I is

called a proper extension of P in V if / C V and a maximal extension of P in

V if it is a MDI. An ideal / in V is called an extension of Q in V if it includes

Q; I is called a proper extension of Q in V if / C V, and a maximal extension

of Q in V if it is a MI. The following theorem is well known: a MI in V is

nonatomic if and only if it is an extension of Q in V. Dually: a MDI in V is

nonatomic if and only if it is an extension of P in V, The expression "non-

atomic MDI in V" is therefore synonymous with the expression "maximal ex-

tension of P in F . " Atomic MDI's in V exist, since L(n) is a MDI for every n;

the existence of nonatomic MDI's in V follows from the fact that we can apply

the theorem of the product system to P9 since P is a product system not con-

taining 0. This proof of the existence of nonatomic MDI's in V is based on the

theorem of the product system, hence on Zorn's lemma. No proof of this fact is

known which does not use one of the forms of the axiom of choice.

A proper extension of P in V cannot contain a finite set, because P contains

the complement of every finite set. Since every atomic MDI in V contains finite

sets, we see that a MDI in V is nonatomic if and only if it contains only infinite

l rΓhis is an immediate consequence of a theorem proved by Tarski [8, p. 57, Satz 3.6J.
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sets.

3. We suppose the reader familiar with the following concepts: an effective

(or effectively computable) function [3] , a recursive function [ 2 ] , a recursively

enumerable (r.e) set, and a recursive set L 31 We shall assume that a function

is effective if and only if it is recursive. Ίhe following six theorems can be

found in Post [ 3, pp. 290- 292]:

l ) Every recursive set is r.e. 2) There exist r.e. sets which are not recursive*

3 ) 4 set is recursive if and only if it and its complement are r.e. 4) Ίhe sum

or product of two r.e. sets is r.e. 5) Every set which is finite or empty or

whose complement is finite or empty is recursive, 6) Every infinite r.e. set has

an infinite recursive subset.

The following statements follow immediately from these six theorems. An in-

finite r.e. set is recursive if and only if it is the range of a strictly increasing

recursive function; a nonempty r.e. set is recursive if and only if it is the range

of a monotone increasing recursive function; E C F; E and F are closed under

addition and multiplication; E is closed under complementation, but F not; RCE,

and, since the set of all even nonnegative integers belongs to £ — R, we see that

R C £; £ is a subalgebra of V but F is not; E is, however, a distributive lattice

with a null element (namely o) and a one element (namely ε); E and F are clear-

ly denumerable, since they are both infinite and there are only denumerably many

recursive functions. Section 1.2 remains valid if we replace " F " by " £ " and

"L(n)" by "L(n) . E".

4. The definitions of a primitive recursive and of a partial recursive function

can be found in Kleene [2, pp.42, 50, 51].

DEFINITION. Let π(y) stand for: y has the property π. Then:

M i n y[π{y)], i n c a s e (Ey)[π(y)],

μy\ π(y)\ =
df

u n d e f i n e d , in c a s e ~-(Ey)[π(γ)].

K l e e n e p r o v e d [ 2 , p . 5 3 ] t h a t any partial recursive function f (xl9 ••• 9 xn)

can be expressed in normal form, i . e . , in the form

f(xί9 , xn ) = l[μy\ h(xί9 , xn, y) = 0 } ] ,

where l(x) and h{xl9 ••• , xn + ι) are primitive recursive. F r o m n o w o n w e c o n -

sider a partial recursive function as given if it is given in normal form.
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DEFINITION. Let

fix) = l[μy\h(x,y) = O Π ,

where / ( * ) and h(x9 y) are primitive recursive. The steps in the computation

of / ( k) are now defined as follows:

step 0 = computation of h(k, 0 ) ,
df

step 1 = computation of h ( k9 1 ),
: df

ad infinitum in c a s e ~-(Eγ)[h{k9 y) = 0 ] .

If ( Λ y ) l A ( A , y ) = 0 1 and m = μy{h(k, y ) = 0 j , t h e n :

s t e p m ( l a s t s t e p ) = computat ion oί h(k9 m) and of / ( k ) = I ( m ).

N O T A T I O N . / <&; rc> = s t e p rc in the computat ion of / ί/f), p r o v i d e d t h i s

s t e p e x i s t s .

D E F I N I T I O N . L e t fix) be a p a r t i a l r e c u r s i v e function def ined at x = 0,

let sn be one l e s s than the number of s t e p s required for the computat ion of

f (n), in c a s e f(x) i s defined for x < n. L e t Σ be the s e q u e n c e

/ < 0 ; 0 > , . . . , / < 0 ; 5 0 > , / < 1,0 > , . . . , / < l , 5 ι > , / < 2 , 0 >, . . .

where it is u n d e r s t o o d t h a t " / < r, 0 > , / < r, 1 > " i s only followed by t h r e e

p o i n t s , in c a s e f(x) i s not r e c u r s i v e and r i s the s m a l l e s t v a l u e a t which f{x)

i s not de f ined. Ί h e s e q u e n c e i- i s def ined in terms of Σ a s fo l lows:

r e p l a c e " / < 0 ; 0 > , " . . . , " / < 1 , ^ - 1 > " by / ( 0 ) ,

r e p l a c e " / < 1; s, > , " . . . , " / < 2, s2 - 1 > " by / ( 1 ) ,

r e p l a c e " / < 2; s 2 > , " . . , "f < 3, s3 - 1 > " by / ( 2 ) , e t c .

T h e n H n ) = t l i e ( r a + ] ) s t e l e m e n t of Σ .

df

REMARK. The bar operation maps every partial recursive function which

is defined at x = 0 on a recursive function in such a way that the range of f (x)

equals the range of f{x), in case f(x) is recursive, while the range of f(x)

is finite, in case fix) is not recursive.

D E F I N I T I O N . L e t f (x) be a r e c u r s i v e funct ion. T h e n

/•*(/») if / U + l ) < / * ( ! , ) ,
/ * ( 0 ) = f { O ) , f * ( n

df f ( n + l ) i f / ( « + ! ) > f * ( n ) .



CONSTRUCTIVITY OF MAXIMAL DUAL IDEALS IN BOOLEAN ALGEBRAS 79

REMARK. The star operation maps every recursive junction on a monotone

increasing recursive (unction and every monotone increasing recursive junction

on itself.

T 1.1. 1) There exists a recursive function f (x) of n and x such that

every nonempty, r.e. set is the range of at least one recursive junction occurring

in\fn(x)\.

2) There exists a recursive function en(x) of n and x which is

monotone increasing for every n, such that every nonempty, recursive set is the

range oj at least one recursive junction occurring in \ en(x) i.

Proof, 1) Kleene proved L 2, p. 58] the existence of a partial recursive

function of two variables, say g (x), such that every partial recursive function

of one variable occurs at least once in { g {x)\ There clearly exists a recur-

sive function a(n) such that {g (n\(χ)\ contains all functions in \gn(x)\

which are defined at x = 0. Let

/„<*>;, W * > '

then f (x) satisfies the requirements.

2) Let

en(x) = f*{x),

df

where fn(x) is the function described in part 1) ; then \en(x)\ is a sequence

of monotone increasing recursive functions. If η is a nonempty recursive set

there exis t s a monotone increasing recursive function, say e(x), ranging over

η; it follows that e(x) occurs in {/ (x)\9 hence e*(%), i .e. e{x), occurs in

\en(x)\. Since the range of e~{x) is η, en(x) sat is f ies the requirements.

5. The diagonal procedure used in the proof of the following theorem is our

main tool in the investigation of the constructivity of MDFs in E and V.

T 1.2. Let S be a nonempty, finite or denumerable class of infinite sets.

Then there exist nondenumerably many sets γ such that both γ and y' are in-

finite and neither γ nor γ' includes any set of S.

Proof. We order the sets of S in an infinite sequence d0, Cί 1 ? . If S is

finite this can be done by repeating one of its sets infinitely many times in the

sequence. Let o^ , α^ , ••• be an enumeration without repetitions of Cί̂ ; this
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sequence is called row k for purposes of presentation we shall call the set

y a /3-set if both y and y ' are infinite, while neither y nor y ' includes any set

of S. Let

co ~ αoo >
df

dι If a°1'
c t = the first element in row 1 which is > Max ( c 0 , d0 ) ,

df

dx = the second such element in row 1,
df

c 2 = t h e f i r s t e l e m e n t i n r o w 2 w h i c h i s > M a x ( c 0 , d Q , c l 9 d ι ) 9

df

d2 — the second such element in row 2, etc.

Suppose

y = { c0, cl9 !, 8 = ί d0, dl9

df df

then we observe: both y and 8 are infinite, y and 8 are disjoint, both y and

8 have at least one element in common with every row. Thus y ' is infinite,

since y ' D 8 and δ infinite; moreover each of the two statements y D α^,

y ' 3 &n is false for every n. We conclude that y is a /3-set. If y , •••,)/, are

/3-sets we can prove the existence of a /3-set y?-+. different from y for i =

0, , k by applying the same diagonal procedure to yQ, , ŷ ., CίQ, 0^, .

It follows that the number of /3-sets is not finite. If there were only denumerably

many β-sets, they could be ordered in a sequence, say { 8n !; by applying our

diagonal procedure to dQ, 8Q, C^, δ t , we would obtain a /3-set 8 such that

8 ^ 8n for every rc. The number of /3-sets is therefore nondenumerable.

6, The following theorem, which deals with the relation between dual ideals

in V and dual ideals in E, can easily be verified by the reader.

T 1.3. 1) Any dual ideal in V intersects E in a dual ideal in E.

2) Any MDI in V intersects E in a MDI in E.

3) If M is a MDI in V, then the MDI M E in E is atomic if and only

if M is atomic.

7. SUMMARY. Though our paper is primarily concerned with the constructi-

vity of dual ideals in E and V, we have included some theorems about dual
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ideals in E and V which may be interesting for their own sake. In $ II we shall

discuss whether several important subclasses of F are r e. and prove Theorem A

in so far as it deals with constructivity in the first sense. An extension / of P

in E (or V) is called simple if there exists a set Gt in E (resp. in V) such that

/ is the intersection of all extensions of P in E (resp. in F) which contain (X.

In > III simple extensions of P in E and V are studied, and a second proof is

given of the fact that a nonatomic MDI in E (or V ) is not constructive in the

first sense. An extension of P in E (or V) is called semisimple if it can be

expressed as a finite or denumerable sum of simple extensions of P in E (resp.

V). In § IV semisimple extensions of P in E and V are discussed, Theorem A

is proved in so far as it deals with constructivity in the second sense, and the

relation between the two types of constructivity is investigated (Theorem B).

II. Recursively enumerable classes

1. Both the following definitions for a "constructive set" seem reasonable:

1) "The set Cί is constructive, if there exists an effective method which

enables us to decide in a finite number of steps for any given nonnegative in-

teger n whether or not n belongs to Cί." This is in the spirit of Kronecker who

required of a definition that it should include an effective criterion which per-

mits us to determine for any given object whether or not it satisfies the condi-

tions specified in the definition.

2) "The set Qί is constructive if α is either empty, or finite, or an infinite

set which can be effectively generated in a sequence \ an \ of different ele-

ments."

The first definition amounts to "cc is constructive if Cί is recursive" and

the second one to "(X is constructive if Cί is r .e . " Since E C F, we see that

the second definition is weaker than the first. If we use either "Cί £. E" or

"Cί C! F" as a definition for "(X is constructive," it seems natural to define

the constructivity of a (possibly nondenumerable) class S of sets by some

suitable property of S E (resp. S F). In this way we are led to the problem

of finding properties of a constructive character for subclasses of E and sub-

classes of F.

2. DEFINITION. The characteristic function charα (n) of a sel Cί is de-

fined by

1 for n C Cί,
charα (n) = ,

df 0 for n ψ Cί.
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DEFINITION. The class K is called characteristically recursively enumer-

able (ch.r.e.) if it is a subclass of E which either is empty or has the property

that there exists a recursive function k(m, n) such that the set Ci belongs to

K if and only if there exists an m such that charα (n) = k(m, n).

N O T A T I O N . K = Char k(m9 n).

For the definition of a r.e. subclass of F we refer to the introduction. If

o ζμ S and / {m, n) is related to S as described in this definition, we say that

f (m, n) recursively enumerates S.

N O T A T I O N . S = Enum f(m, n).

DEFINITION. S' is the class over which CX' ranges if Cί ranges over S.

DEFINITION. The sequence {Ŝ  } of nonempty r.e. classes which do not

contain o is called r.e., if there exists a recursive function / (/, m, n) such that

Sj = Enum / ( /, 77?, n)

for every Z

The following theorem can easily be verified.

T 2.1. 1) The sum of a finite number of ch.r.e. classes is ch.r.e.

2) The subclass K of E is ch.r.e. if and only if K' is ch.r.e.

3) Every ch.r.e. class is r.e.

4) The sum of a finite number of r.e, classes is r.e.

5) The sum of a r.e. sequence of r.e. classes is r.e.

3. T2.2. 1) The classes P and Q are both ch.r.e. and r.e.

2) The class F is r.e.

3) The class E is r.e., but not ch.r.e.

Proof, 1) We shall first prove that Q is ch.r.e. Let n be any nonnegative

integer, and suppose sn0, snί, ••• , snr is the finite sequence of zeros and

ones such that

n = sn0 2 ° + s n i 2ι + . . . + s n r n . 2 Γ " .

T h i s m e a n s that n i s written a s snΓn snΓn_ι ••• snQ in t h e d u a l number s y s t e m .



CONSTRUCTIVITY OF MAXIMAL DUAL IDEALS IN BOOLEAN ALGEBRAS 3 3

Observe that n uniquely determines this finite sequence, and that snTn = 0 for

n = 0, while snΓn - 1 for n > 0. Let

Φ^ = the infinite sequence s^ s^ s^r 000 ,
df k

and suppose q(k, n) is the (n + 1 ) s t element in Φ^; q(k, n) is clearly a re-

cursive function, and Q — Char q{k, n). It follows that Q is ch.r.e. Then P is

ch.r.e., since P = Q'm It is easy to see that

Q _ [ o ] = Char q* (k, n),

where

q*(k, n) = ςr ( Λ: + 1, n ) ;

thus (? — [ o] is ch.r.e., and both Q — [ o ] and ζ> are r.e. The class P is r.e.,

because it is ch.r.e.

2) Let fn(x) be the recursive function mentioned in T 1.1.1. Then

F - [ o] = Enum fn(x)j

and both F - [ o ] and i7 are r.e.

3) Let en(x) be the recursive function mentioned in T 1.1.2. Then

£ — [ o] = Enum e^(x),

and both L — [ o] and is are r.e. To prove that E is not ch.r.e., suppose c{m, n)

is a recursive function such that E = Char c(m, rc), and suppose γm is the set

with c (m, rc) as its characteristic function. Let

0 for c (n, n) = 1,

1 for c(τι, w) = 0,

and let 8 be the set with d(n) as its characteristic function. Then δ C £, since

ί/(rc) is recursive and 3 φ. γm for every m, because m ζ. γm'δ + γmd'. The

assumption that E is ch.r.e. leads therefore, to a contradiction.

T 2.3. Let S be a nonempty, finite or denumerable, r.e. subclass of F — (Λ

If a recursive function s{m, n) is given which enumerates S, we can construct

a set η £ D such that neither η nor η' includes any set of S.
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Proof. If σm is the range of s(m, n), S consists exactly of all sets occur-

ring at least once in the sequence σQ9 σi9 • •• . For every m we can effectively

find a recursive enumeration without repetitions of σm. The diagonal procedure

used in the proof of T 1.2 becomes effective when applied to the sequence
σo> σι> ' ' ' » s i n c e s (m, n) is recursive.

C O R O L L A R Y 1. If D c S c F - Q, S is not r.e.

C O R O L L A R Y 2. The classes D, D + P, F - R, F - Q are not r.e.

4. Consider the following question: "If M is a MDI in E (or V), what do we

know about: 1) the characteristic recursive enumerability of M (resp M E)?

2) the recursive enumerability of M (resp. M T7)?"

T 2.4. If M is a MDI in E (or V), then M (resp. M E) is not ch.r.e.

Proof. Note that every MDI in V intersects E in a MDI in E; it therefore

suffices to prove that a MDI in E is not ch.r.e. Let M be a MDI in E. Suppose

M were ch.r.e.; then M = E — M would also be ch.r.e., by T 2.1.2. This would

imply that E = M + (E - M) is ch.r.e., by T 2.1.1; this is, however, false by

T 2.2.3. Thus M is not ch.r.e.

T 2 . 5 IfM is any MDI in E (orV) them

a ) ifM is atomic, then M (resp. M F) is r.e.;

b) if M is nonatomic, then M (resp. M F) is notr.e.

Proof, a ) L e t M be an atomic MDI in E, s a y M - E(k) E. S u p p o s e e (m, n)

i s a r e c u r s i v e e n u m e r a t i o n oί E — [ o]. We define

e ( m, n — 1) for n > 0 ,

a (m, n) =

k for n = 0 .dϊ

It is now easy to verify that a(m, n) is a recursive enumeration of L(k) E.

Using a recursive enumeration of F — [ o ] , we can similarly prove that an atomic

MDI in V intersects F in a r .e . c l a s s .

b) Let M be a nonatomic MDI in V. This implies that M C V-Q a s we

observed at the end of § 1.2. Thus M F C F; - Q. Clearly M F is nonempty.

If M F were r .e. there would by T 2.3 exist a set η C D such that η, r\' ηLM F\

this would imply that η, τ\' ζ t M9 s ince 77, 77' G Z7. This i s , however, impossible

because a MDI contains exactly one of any two complementary s e t s . It follows



CONSTRUCTIVITY OF MAXIMAL DUAL ID GALS IN BOOLEAN ALGEBRAS 8 5

that M . F is not r.e. If M is a nonatomic MDI in E we know M == M . E C £ - (? C

F — Q, and we can give a similar proof of the fact that M is not r.e.

Let / be a dual ideal in E (or V). Then we see from T 2.4 and T 2.5 that

the d e f i n i t i o n "I is constructive if I (resp. I E) is ch.r.e." i s l e s s s a t i s f a c t o r y

t h a n " / is constructive if 1 (resp. I F) is r.e." F o r a n y MDI in E or V ( a t o m i c

or nonatomic) would be nonconstructive according to the former definition, while

according to the latter definition a MDI would be constructive if and only if it

is atomic. A dual ideal in E (or V) is called constructive in the first sense if

/ (resp. I F) is r.e. Theorem T 2.5 is therefore identical to the part of Theorem

A which deals with constructivity in the first sense.

III. Simple extensions of P

1. The only proper extensions of P in V, of which we have discussed whether

they intersect f in a r.e. class, are P itself and maximal extensions of P in

V\ P intersects £ in a r.e. class, namely in P itself, and any maximal extension

of P in V intersects F in a class which is not r.e. A solution of the problem:

"Which extensions of P in V intersect F in a r.e. c lass?" might increase our

understanding of maximal extensions of P in V, If it would turn out that no

proper extension of P in V which properly includes P intersects F in a r.e.

class, the fact that maximal extensions of P in V do not intersect F in a r.e.

class would not reveal much about their nature. If the collection of proper ex-

tensions of P in V which properly include P, would, however, consist of two

nonempty subcollections: those which do intersect F in a r.e. class and those

which do not, we might get a better insight into the nonconstructive character

of maximal extensions of P in V by studying these two subcollections. The

> > III and IV are an attempt to determine which proper extensions of P in V

properly including P intersect F in a r.e. class. The analogous problem for

extensions of P in E is also considered.

2. D E F I N I T I O N , α = β = ( a β ' + α ' β G Q\ i.e., a = β if α and β

differ by at most a finite number of elements. We shall read this: " α and β

are congruent."

DEFINITION. <α> is the c lass of all s e t s congruent to Cί.

D E F I N I T I O N . <α> + < β > = <α + / 3 > , <α> x <β> = < α β > ,
df df

< α > ' = < α ' > .
df

It is easy to see that these definitions are unique and that the equivalence
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classes defined by the congruence relation in V form a Boolean algebra with

respect to +, x, ' , which has Q as its null element and P as its one element

D E F I N I T I O N . v{n) = \ 0, 1, . , n i.

df

DEFINITION, β almost includes Cί (or CX is almost included in β), ab-

breviated β alin Cί, if 0\β' ζLQ9 i.e., if β contains all but at most a finite

number of elements of Cί.2

DEFINITION. Alin S is the class of all sets which almost include a set

of S.

Obviously, /3alin Cί <-> (X -f β = β «-> there exists an n such that β 3 α - v(n)

<-» there exists a set δ £- Q such that δ C Cί and β D Cί - δ. Also,

(X = β <-» { a alin β and β alin Cί I.

The alin relation is clearly a generalization of the inclusion relation. It is

reflexive and transitive; it is, however, not a partial ordering relation, since it

is not antisymmetric. For if

Cί = 1 0, 2, 3, 4, } and β = {1, 2, 3, 4, ...}

then α alin β and β alin α, while a Φ β. If β alin aγ and β alin α 2, then

j8 + β 2 alin α t + α2 and β j8 alin ^ α2 Also β alin α if and only if α'alin

)S'. Any set /3 almost includes any finite or empty set; a finite or empty set

β almost includes a set Cί if and only if Cί is finite or empty. Alin S = V when-

ever S contains a finite set, and Alin / = / for any extension / of P in V. If S

consists of a finite number of sets, say Cί , , 0C , we shall denote Alin S by

Alin ( α0, . . . , an).

3. Let / be a dual ideal in the Boolean algebra B. Any dual ideal in B which

includes / is called an extension of 1 in B. If S C B, we shall denote the inter-

section of all extensions of / in B which include S by Iβ(S). In case 5 consists

of a finite number of elements, say αQ, ••• , Cί̂ , we shall denote ^ β (S) by

^D( Cί , , Cί ). / D (S) is obviously the smallest extension of I in B which
£3 0 71 D J

includes S. Also

/β(Cί) = [pa + y ] ,

where p ranges over / and γ over B,

2 T h i s relation was studied by Sierpinski L5]
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DEFINITION. The extension /1 of the dual ideal / in B is called a simple

extension of / in B, if there exis ts an element α G δ such that /1 = lβ ((X).

Evidently Py{ d) = Alin Cί for any 0, C V, and PE( Cλ) = E . Alin α for any

OC £ . A, Let / be a simple extension of P in F; every set CX €1 I such that

/ = Py(a) is called a generator of / . A necessary and sufficient condition that

CX and β are generators of the same simple extension of P in \ is CX = β This

means that a simple extension of P in V uniquely determines its generator

modulo Q. The following statements are easi ly verified: Py(&) = P if and only

if α C P ; PV(OL)=V if and only iί a CQ; P C Py (a) C V if and only if

aψR.

T 3.1. 1) Every proper extension of P in V is included in at least one

maximal extension of P in V,

2) If β does not almost include CX, there exists a simple extension

I of P in V such that CX £ /, β ζL /, and a maximal extension M of P in V such

that a C M, β <jί M. 3

3) // α alin β, then Py(a) C Py(β); if a alin β is true, but β

alin Cί false, thenPy(a) C Py(β).

4) i4 simple extension of P in V cannot be a maximal extension of

P in V.

Proof, 1) Every proper extension of P in V is a product system not contain-

ing o; we can therefore apply the theorem of the product system.

2) OLβ'f^Q, since β alin OC is false. Let I=PV(θLβ'); then 7 C V;

furthermore Ot, β ' C /, because α j S ' C / . It follows that β (£ /, since / C V

and /3' €1 /• Thus / is a simple extension of P in F satisfying the requirements.

In view of 1), / is included in a maximal extension of P in F, say M. Conse-

quently α, β ' CiM, hence β ψ M.

3) Any set which almost includes a set of / belongs itself to /, since indeed

Alin / = /. If a alin β then CίCPj/ (β ), hence

Py(a) = Alin α c P F ( β ) .

Now P κ ( α ) = Py(β) would imply a = β, hence jS alin α. It follows that

Py(Ci) C Py(β)9 whenever Gί alin β is true and β alin OC false.

3 The second part of T 3.12 was suggested by a result of Stone [6, p. 105, Theo-
rem 64],
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4 ) Let / = Py ( Gί); we may assume (X G β, the theorem being trivial in

case Oί £ R We observe that there exists an infinite set β such that β C (X and

(X - β ζf- Q, because (X is infinite. But this implies that (X alin β is true and

jβ alin α false. Moreover, Py{β) C V, s ince β ^ Q. Thus *V (<X) C Py (jβ) CV;

this implies that Pj/ ((X) is not a maximal extension of P in V.

REMARK. All four parts of this theorem remain valid, if we replace 6ίV"

by "E" and assume (X, β £ E. In the proof of the third part we have to take a

recursive subset of (X for β. If a{n) is a strictly increasing recursive function

ranging over (X, we can take β as the range of a ( 2 n ) .

4. Let / be a dual ideal in B, and suppose CXQ, (X 9 , (X £ β. It is easy

to verify that

This means that adjunction of any finite number of elements of B to I leads to

the same result as adjunction of a certain single element of B to /. Clearly

Pv(a,β) = Py(aβ).

Hence

PV(OL, β) = Pv(OL)

if and only if β alin Cί, and Py((X) C Py ((X, β) if and only if /3 does not almost

include (X. Similarly for PE(θ.) and PE(a9 β) under the restriction (X, β £ £.

DEFINITION, α alin"1 β = β alin α.

DEFINITION. Alin"1 S is the class of all sets which are almost included

in a set of S.

Clearly

Alin"1 S = (Alin S')'9 Alin S = (Alin"1 S'Y,

QV(OL) = Alin"1 a,Qv(a) = ( P κ ( α ' ) ) ' , P κ ( α ) = ((> κ (α ')) κ .

By means of these relations the theory of simple extensions of a dual ideal in

a Boolean algebra can easily be dualized to a theory of simple extensions of an

ideal in a Boolean algebra. If, for example, / is an ideal in B and αQ, •••, α^ £ B,
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then

V < V •••'<*„> = 7

β

( α o + + α J

From the fact that Cί = β if and only if <X alin β and β alin α follows:

< α > = Pv(a).Qv(a).

5. \\e shall now discuss some theorems dealing with the relation between

simple extensions of P in E or V and r e. classes.

DEFINITION. L ( α ) is the class of all sets which include α (note that

L ( α ) is a dual ideal for every Cί). The dual ideal / in E (or V) is called

principal if there exists an α C £ (resp. C t C Π such that I=E L ( α )

(resp. / = L ( a )); α is called the generator of /.

The principal dual ideals in V can be classified according to the nature of

their generators; we shall therefore discuss a classification of sets in V which

is relevant to the character of the class L ((X ) F.

DEFINITION, β is a superset of CX if CX is a subset of β.

DEFINITION. CX is called immune if it is infinite and has no subset in

F - (J; α is called contraimmune if of is infinite and α has no superset in

F - P .

DEFINITION. Ot is called normal if it is r.e ; (X is called subnormal if it

is not r.e. but has a superset in F — P.

Every set clearly belongs to exactly one of the three categories: normal,

subnormal, contraimmune. Obviously CX y. R whenever CX is immune or contra-

immune.

We shall use the letter c to denote the cardinal number of the continuum.

T 3.2. 1) There exist exactly c immune sets.

2) There exist exactly denumerably many normal sets, c subnormal

sets, and c contraimmune sets.

Proof. To prove that there are c sets of a certain kind it suffices to show

that there are at least c sets of that kind, since there are only c sets in V.

1) The existence of an immune set follows from the application of T 1.2 to
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the class F - Q. An immune set clearly has c infinite subsets, each of which

is again immune. Thus there are at least c immune sets.

2) There exist exactly denumerably many normal sets, since F is denumer-

able. When we apply T 1.2 to the class F' — Q we see that there exists a set

γ ζj- R such that y ' does not include any set of F' — (v; thus y is not included

in any set of h — P, i.e., y is contraimmune. Since y ' is infinite, there exist

disjoint infinite sets p and p such that y ' = p + p . If T C p , then y + T^L/V,

and y + T has no superset in F - P; it follows that y + T is contraimmune. There

exist at least c contraimmune sets because T can be chosen in c different

ways, while different choices of T yield different sets y + T. To prove that

there exist exactly c subnormal sets, let Cί and β be two sets in F - R such

that α C β and β- a (f.Q. None of the c sets y such that 0C C y C β is

contraimmune, as each is included in β; but only denumerably many of these

sets y can be normal. We conclude that there exist at least c subnormal sets,

DEFINITION. The principal dual ideal L(d) is called normal (subnormal,

contraimmune) if Gt is normal (resp. subnormal, contraimmune).

Every principal dual ideal belongs to exactly one of these three categories

because it uniquely determines its generator. Every set which is congruent to

a normal (subnormal, contraimmune) set is also normal (resp. subnormal,

contraimmune ), since two congruent sets differ in at most finitely many ele-

ments. It follows that all generators of some simple extension of P in V belong

to exactly one of the three categories: normal, subnormal, contraimmune.

DEFINITION. A simple extension of P in V is called normal {subnormal,

contraimmune) if its generators are normal (resp. subnormal, contraimmune).

T 3.3. 1) Every principal dual ideal in E is r.e. Every normal principal

dual ideal in V intersects F in a r.e. class.

2) Every simple extension of P in E is r.e. Every normal simple ex-

tension of P in V intersects F in a r.e. class.

Proof. The proofs of the two statements dealing with E are similar to the

proofs of the two statements dealing with F; we therefore restrict our attention

to the latter.

1) We assume (X ^ o, the theorem being trivial in case (X = o Let f(m, n)

be a recursive enumeration of F - [ o ] , and a(n) a recursive function ranging

over (X; suppose α is the range of /(m, n), when we consider f(m, n) as a
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function of n. We can now effectively find from / ( m , n) and a(n) a recursive

function gm(n) ranging over Cί + Cίm Then

L ( α ) F = Enum gm{n),

and L( Cί) F is r .e.

2 ) We have

and therefore

ft=oo

/ V ( o O F = Σ L ( α - * ( « ) ) • F

ft=O

But L ( α - i / ( r c ) ) F i s r . e . for e v e r y n by 1 ) and t h e f a c t t h a t (X - v{n) i s

normal for e v e r y n. T h u s P y ((X) F i s r . e . by T 2 . 1 . 5 .

T 3.4. // α ψ R, then:

1 ) L (CX ) F C P <—> CX is contraimmune;

2 ) Py ( (X ) F — P <r~^ CL is contraimmune.

Proof. 1) L ( c . ) F C P —» α has no superset in F - P —» OC is con-

traimmune. Now suppose CX is contraimmune. Then L (CX ) F C P; but if a €1 CX,

€ - ί a \ is a set of P which does not include CX; hence L (CX ) . F C P.

2) Sufficiency. Suppose / = Py (CX), where OC is contraimmune. Then

/ F C P, by

n — oo

I . F = Σ L^a - v ( n ) ) . F
n =0

and 1 ) . Let π €1 P and suppose m is the maximum of π'. Then

77 C L ( α - ι/(m)) ί .

Thus / F = P. Necessity. Let I = Py(a) and suppose I F = P. Clearly

L ( CX) F C P because L ( Cί) F C / F. Then CX is contraimmune by 1 ) .

Our discussion of the nature of the c lass Py ( a ) F is incomplete, since

we have considered only the case that OC is normal or contraimmune, but not

the case that CX is subnormal.
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6. DEFINITION. Let S £ 0. Every set y such that S C Alin y is called a

kernel set of S. The class of all kernel sets of S will be denoted by Ker S.

Using the properties of the alin relation it is easy to show that Ker 5 is an

extension of Q in V for every nonempty class S.

T 3.5. 1) // 0 C S C T C V - Q, where S is at most denumerable and T a

product system, then Ker S contains a set of V — R.

2) If, moreover, S is r.e. we can effectively find a set δ C ΰ Ker S.

Proof. 1) Since S is nonempty and at most denumerable, we can order the

sets of S in an infinite sequence αQ, Cί̂  ••• . Let βn be the product of the sets

CίQ, . . . , αΛ in this sequence; then βn £ V - Q for every n, since βn C T for

every n and Γ C V — Q. There exists an enumeration without repetitions of

βn for every ri. Let b, , b, , be such an enumeration of β,. Suppose

o oo 9

df

cx = first element in { bln \ which is greater than c 0 ,
df

c2 = f i r s t e l e m e n t in { b2n \ w h i c h i s g r e a t e r t h a n cί9 e t c .
df

Let

y = \c0, cl9 . . . }
cf/

then y C F - ^. We shall show that Cίn alin y for every n Clearly

k > 0, since c^+/c C βn+k C j8Λ Consequently { c^, c^ + 1 , . . . } C β n , hence

)8n alin y. Then α^ alin y as α β D βn. We know that γ €. V - Q. Let

y0 = ^co?
 C2^ C4> ••• h

then S c P κ ( y o ) and yQ G K- Λ.

2) Let s(n, x) be a recursive enumeration of S, and α^ the range of s(n, x)

when we consider s(n, x) as a function of x. Then we can effectively find a

recursive enumeration without repetitions of the set βn mentioned in 1). Thus

we can effectively find c^ and

y 0 G (V-R). E = D.

COROLLARY. If I is a proper dual ideal in V not containing any finite
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set, then I F is included in a simple extension of P in V, If, moreover, I F is

r.e , I F is included in a normal simple extension of P in V with a generator

in D.

Proof. Take S = T = / . F and observe that 0 C I . F C V - Q, where / . F

is a product system.

We can now give a second proof of part b) of T 2.5, i.e., of the statement:

if M is a maximal extension of P in E (or V), then M (resp. M F) is not r.e.

For if M were a maximal extension of P in V such that M F is r.e., there would

exist a set δ G D such that M F C Py(δ) hy the corollary. Then

M-E C /V(δ) E = PE(δ) C £ - 0 ;

thus /W E would be equal to the simple extension P β ί δ ) of P in £ because

Λί E is a maximal extension in £ . This would contradict the fact that T 3.1.4

also holds if we replace "V" by " E " . Thus M F is not r.e. Now suppose M is

a maximal extension of P in E which is r.e.; then we could prove by a similar

reasoning that M is a simple extension of P in E; since this is impossible, M

cannot be r.e.

IV. Semisimple extensions of P

1. We have seen in the previous section that every extension of P in V which

is obtained by adjoining a finite number of sets to P is a simple extension of

P in V. We shall now discuss extensions of P in V which are obtained by ad-

joining denumerably many sets to P.

DEFINITION. The extension / of P in V is called a semisimple extension

of P in V if there exists a sequence \ Cί̂ i of sets in V such that

/= Σ Pv(an).
rc = O

Any such sequence { Cί \ is called a P-basis of /.

N O T A T I O N . I = Pv\an\.

We do not exclude the case that all elements of the P-basis {0.̂  \ of / are

equal. It follows that every simple extension of P in V is also a semisimple

extension of P in V. The sequence ί (λn \ is called an α-sequence if for every

pair (m9 n) of nonnegative integers there exists a k such that α^α^ alin OĈ  It

is readily proved that { Ot \ is the P-basis of a semisimple extension of P in V if
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and only if it is an α-sequence. The following theorem can easily be verified.

T 4.1. // / = Py\ an\ then:

1) I = P if and only if Un €1 P for all n;

I = V if and only if 0m £- Q for at least one n;

P C / C V if and only if C/m φ. P for at least one n and Cln (jL Q for all n.

2) I is a simple extension of P in V if and only if there exists a k such that

Cin alin Cί/f for all n.

3) I is a maximal extension of P in V if and only if I C V and for every

β €_ V there either exists an n such that β alin 0m or an n such that β' alin

If 0,n D dn + ι for all n, \(λn\ is called a descending chain with 11 _ Cin as

inner limit; if (Xn C 0>n+ι for all n, {ttn\ is called an ascending chain with

2^ (Xn as outer limit. If we replace "CLn" by "Sn" in these definitions, we

obtain definitions of a descending chain of classes and its inner limit, and an

ascending chain of classes and its outer limit.

T 4.2. 1) There exists an extension of P in V which is semisimple but not

simple.

2) Every semisimple extension I of P in V has a descending P-basis

{θm\ such that I is the outer limit of the ascending chain { Py (ttn)\ of simple

extensions of P in V.

Proof. 1 ) Let

df

then ίίX l̂ is an Cί-sequence, since O.m Cίn= Oί̂ , where k = Max (m, n). Let

/ = Py{(Xn\; then / is a semisimple extension of P in V Now P C / C F, since

(λn ζZ Q for all n and <χn $1 P for n > 1. If / were a simple extension of P in F

there would exist a nonnegative integer r such that Cί̂  alin CCΓ for all n, in par-

ticular αΓ + 1 alin α r ; i.e., α r - α Γ + 1 C Q. This contradicts

= ί 2 r , 3 2 Γ , 5 2 Γ , . . .

I i s , t h e r e f o r e , not a s i m p l e e x t e n s i o n of P in V.

2 ) L e t / = Py\ βn], and l e t (X^ be the p r o d u c t of βQ9 ••• , βn; then \an\
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is a descending P-basis of / such that / is the outer limit of the ascending

c h a i n \Py(an)\.

It is possible to strengthen the second part of the theorem by replacing the

words " a descending P-basis ίct^ί" by " a descending P-basis ! an \ with inner

limit o " . Suppose, namely, that { CLn } is a descending P-basis of /, and γn =

Cίn — v(n); then \γ I is a descending P-basis of / with inner limit o. Since

there exist semisimple extensions / of P in V such that P C / C V we see that

in general

Π κ»

Semisimple extensions of P in E can be defined in an obvious manner.

Theorems T 4.1 and T 4.2 and their proofs remain valid if we replace V by E.

Theorems about semisimple extensions of P in V can be dualized to theorems

about semisimple extensions of Q in V by means of the relation

2. DEFINITION. The dual ideal / in V is called pseudopri/icipal (p.pr.)

if there exists a sequence j <Xn \ of sets in V such that

π = 0

Each such sequence is called a basis of /.

Any principal dual ideal in F is p.pr.; the converse is false, for

P = £ LU-i/U))
rc=0

is p.pr. but not principal. A necessary and sufficient condition that the se-

quence \dn\ be a basis of a p.pr. dual ideal a V is that for every pair {m9 n)

of nonnegative integers there exists a k such that Clm (λn D CX/̂. We sΊould dis-

tinguish between bases of / and P-bases of /, in case / is both a p.πr. dual

ideal in V and a simple extension of P in V. Principal and p.pr. dual ideals
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in E and principal and p.pr. ideals in V and E can be defined in an obvious

manner.

DEFINITION, The sequence { (Xm I of nonempty sets is r.e. if there exists

a recursive function f(τny n) such that for every m, /(m, n), considered as a

function of n, ranges over am.

T 4.3. 1) An extension of P in E {or V ) is a semisimple extension of P in

E {resp. V) if and only if it is a p.pr. dual ideal in E (resp. V)

2) Let I be a semisimple extension of P in E (or V). Then every

basis of I is a P-basis of I. Moreover I has a r.e. basis if and only if I has a r.e.

P-basis.

Proof. We shall restrict our attention to extensions in P in V. The proofs

for extensions of P in E are similar.

1) Let ί dn \ be a P-basis of the semisimple extension / of P in V. Then /

is a p. pr. dual ideal in F with Cί0 — ẑ ( 0), 0Co — v (1 ), Cί1—ι^(0), ••• as basis.

Conversely, suppose / is an extension of P in V which is a p.pr. dual ideal in

V with { Cλn \ as basis. Since Alin / = /> we see that

anC I —> Pv ( a n ) = Alin an c /.

Hence / is a semisimple extension of P in V with { (λn \ as P-basis.

2) Let / be a semisimple extension of P in V Then every basis of / is a

P-basis of / [ see the second part of the proof of 1 ) ] . It follows that a r .e.

basis of / is also a r.e. P-basis of /. If / has a r.e. P-basis, say \ an\, I has

also a r.e. basis, namely ( X 0 - ^ ( 0 ) , C ί o - y ( l ) , α t — v(0), .

T 4.4. 1) A maximal extension of P in V cannot be a p. pr. dual ideal in V.

2) A maximal extension of P in E cannot be a p. pr. dual ideal in E

with a r.e. basis.

Proof. 1) Suppose ί QLn 1 is a basis of the p.pr. dual ideal / in V. If <Xn £ Q

for some n, J cannot be a maximal extension of P in V; we therefore assume

that dnψ. Q for all n. The class S over which dn ranges, if n ranges over 6,

is at most denumerable, and consists of infinite sets. It follows by T 1.2 that

there exists a set y such that neither γ nor y ' belongs to /; thus / is not maxi-

mal.

2) Supi ose { Gift ! is a r.e. basis in E of the p.pr. dual ideal / in E . We
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can again restrict our attention to the case <Xn yi Q for all n The sequence

! Cί̂ } recursively enumerates a nonempty subclass of E - Q; it follows by T 2.3

that there exists a set η €1 D such that neither 77 nor 77' includes any set of

the sequence ί Cλn\; thus / is not maximal.

We shall now discuss the question whether maximal extensions of P in E

(or V) can be semisimple, and if so, whether they can have a r.e. basis in E

(resp. F).

T 4.5. 1) Every extension {in particular every maximal extension) of P in

E is a semisimple extension of P in E.

2) A maximal extension of P in E cannot have a r.e. basis in E.

3) There exist semisimple extensions of P in E which are neither

simple nor maximal,

4) No maximal extension of P in V is a semisimple extension of

P in V.

Proof. 1) Let / be an extension of P in E; then / is denumerable, since P

and E are denumerable. Let

/ = [ α 0 , otp . . . ] ;

then

/ =

Hence / is a p. pr dual ideal in E and a semisimple extension of P in E.

2) Suppose M is a maximal extension of P in E. Then M is both a p.pr.

dual ideal and a semisimple extension of P in E. If M would have a r.e. P-basis,

it would be a p.pr. dual ideal in E with a r.e. basis, by T 4.3.2; this is, how-

ever, impossible in view of T 4.4.2.

3) Let I = PE{ an\, where \θ,n\ is the sequence of sets used in the proof

of T 4.2.1. Then we can easily show that P C / C E and that / is not a simple

extension of P in E. Now' / has a r.e. basis, because it has the r.e. P-basis

ί CLn }; thus / is not a maximal extension of P in V.

4) Every semisimple extension of P in V is a p.pr. dual ideal in V by

T 4.3.1. But a MDI in V cannot be p.pr., by T 4.4.1.
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We see, therefore, that the relation between semisimple extensions of P and

maximal extensions of P is very different in E and \'. This is obviously related

to the fact that E is denumerable and V nondenumerable.

3, While we have been able to solve the problem "Which semisimple exten-

sions of P intersect F in a r.e. c lass?" for the Boolean algebra E, we have

solved only some special cases of this problem for the Boolean algebra V*

T 4.6. 1) A dual ideal in E is r.e. if and only if it has a r.e. basis in E.

2) A semisimple extension of P in E is r.e. if and only if it has a

r.e. P-basis in E.

Proof. 1) Suppose i an \ is a r.e. basis in E of the p.pr. dual ideal / in /,'.

Then

hence / is r e., by T 2.5 and T 3 3 1. If the dual idea] / in /: is r.e., its elements

can be written in a r.e. sequence \ (λn !; this r.e. sequence I (λn \ is one of the

bases of /.

2) This follows from 1) and T 4.3.

COROLLARY. There exist semisir-^le extensions of P in E which are not

r.e.

Proof. A maximal extcns )r of P in E is semisimple; it is not r.e , by

T 4.6.1 and T 4.5.2.

DEFINITION. A p.pr. dual ideal in V is called normal {subnormal, con-

traimmune), if it has a basis consisting entirely o^ normal (resp. subnormal,

contraimmune) sets.

DEFINITION. A semisimple extension of P in V is called normal (sub-

normal, contraimmune), if it has a P-basis consisting entirely of r rmai Uesp.

subnormal, contraimmune) sets.

It is easily verified that a semisimple extensic r oί P in V is a normal (sub-

normal, contraimmune) semisimple extension of } in F if and only if it is a

normal (resp subnormal, contraimmune) p pr. dual ideal in V.
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T 4.7. 1 ) A normal p. pr. dual ideal (or semisimple extension of P) in V

intersects F in a r.e. class if and only if it has a r.e. basis (resp. r.e. P-basis )

in F.

2) A contraimmune semisimple extension of P in V intersects F in

P.

Proof. 1) The proofs are sin.ilar to those of the two parts of T 4.6.

2) This follows from T 3.1.2.

4. Ί 4.8. Suppose I does not contain any finite set.

1) Every dual ideal I in E (or every p. pr. dual ideal I in V) is included

in a proper simple extension of P in V.

2) Every dual ideal I in E with a r.e. basis in E (or every p. pr. dual ideal I

in V with a r.e. basis in f ) is included in a simple extension of P in E (resp. V)

with a generator in D.

Proof. 1) By applying the diagonal procedure used in the proof of T 3,5

to a basis { <Xn \ of / we can prove the existence of a set γ €- V — R such that

/ C Pv(γ).

2) If ί an 1 is r.e., the diagonal procedure becomes effective and γ £ D.

COROLLARY. 1) Every proper semisimple extension of P in V is included

in a proper simple extension of P in V. 2) Every proper semisimple extension

of P in E (or V) with a r e. basis in E (resp. F) is included in a simple ex-

tension of P in E (resp. V) with a generator in I).

5. We refer to the introduction for the definition of a dual ideal in E (or

V) which is constructive in the second sense.

REMARK. A dual ideal in E is constructive in the second sense if and only

if it has a r.e. basis in E. A dual ideal in V is constructive in the second sense

if and only if it is a p. pr. dual ideal in V with a r.e. basis in F.

T 4.9. A MD1 in E (or V) is constructive in the second sense if and only

if it is atomic.

Proof. We shall denote the class of all sets which include a set of 5 by

s.

a ) Let M be an atomic MDI in V, say .1/ = L (k). Then M = S, where S = [ ί k \ ];

moreover, S is r e., s ince S = Enum f(m> n), where f(m> n) = k for every m and
df
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n. The proof that an atomic MDI in E is constructive in the second sense can

be obtained by replacing " F " , "L(k)"9 "S" respectively by "E","L(k) E",

"S £ " .

b) Let M be a maximal extension of P in V. Then M is not a p. pr. dual

ideal in V, by T 4.4.1; thus M is not constructive in the second sense. If, how-

ever, M is a maximal extension of P in E, M is a p.pr. dual ideal in E, by

Ί 4.5.1; but M has no r.e. basis in E by T 4.5.2; thus M is not constructive in

the second sense.

6. We have seen that a MDI in E (or V) is constructive if and only if it is

atomic according to each of the two definitions for a constructive dual ideal

which we discussed. The question now arises whether these two definitions are

equivalent.

T 4.10. 1) The two definitions are equivalent in the Boolean algebra E.

2) The two definitions are equivalent for p. pr. dual ideals in the

Boolean algebra V.

3) Every dual ideal in V which is constructive in the second sense

is also constructive in the first sense; the converse however, is false.

Proof. 1) All dual ideals in E are p.pr., since E is denumerable. A p.pr.

dual ideal in E is constructive in the first sense if and only if it has a r.e. basis

in E, by T 4.6.1; and a p.pr. dual ideal in E is constructive in the second sense

if and only if it has a r.e. basis in E.

2) The only dual ideals in V which can be constructive in the second sense

are the normal p.pr. ones; and for these the two definitions agree, by T 4.7.1.

3) If a dual ideal in V is constructive in the second sense, it is p.pr.;

hence it is also constructive in the first sense, by part 2). Let / be a con-

traimmune semisimple extension of P in V Then / F — P, where P is r.e.;

hence / is constructive in the first sense. To prove that / is not constructive

in the second sense it suffices to show that / is not a normal semisimple ex-

tension of P in V. Suppose / = Py\ an \, where an C F for every n; then an G P

for every n, since / F = P. Consequently / = P; this however, is false, for the

fact that / contains a contraimmune set implies P C /. The assumption that / is

a normal semisimple extension of P in V leads, therefore, to a contradiction.
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