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Introduction

The existence of certain mathematical entities is sometimes proved without
providing any means to construct these entities. In some cases a constructive
proof is found later; there are other cases where not only has no constructive
proof been found, but, furthermore, it is generally suspected that no constructive
proof can be found. This is especially the case for several existence theorems
which are proved using the axiom of choice. For instance, all known proofs of
the existence of a nonmeasurable set use the axiom of choice, and most mathe-

maticians suspect that a constructive proof cannot be found.

There is a similar situation in Boolean algebra with regard to the existence
of certain maximal dual ideals. There are two types of maximal dual ideals,
the atomic ones and the nonatomic ones. While the existence of atomic maximal
dual ideals can be proved without the use of the axiom of choice, all known
proofs of the existence of nonatomic maximal dual ideals use the axiom of
choice or an equivalent axiom. This leads to the conjecture that the atomic
maximal dual ideals are in a certain sense constructive, while the nonatomic
ones are not. The nature of this conjecture is, however, not clear, since no
definition of a constructive dual ideal in a Boolean algebra is generally ac-

cepted.

We shall restrict our attention to two Boolean algebras whose elements are
sets of nonnegative integers. Qur purpose is to propose two definitions for a
constructive dual ideal in these Boolean algebras based on the concept of a
recursive function, and to investigate the constructivity of the maximal dual

ideals in these Boolean algebras using each of these two definitions.

A collection of nonnegative integers is called a set, a collection of sets is
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called a class. Nonnegative integers and functions are denoted by small Latin

letters, sets by small Greek letters, and classes by capital Latin letters. The

3 29 66 9y
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Boolean operations are denoted by ““+’’ for addition, *‘x , or juxtaposi-

tion for multiplication, ‘““’" for complementation, and ‘“C’’ for inclusion.

Proper inclusion between classes is denoted by “g”.

NOTATIONS:

12 d= the class of all sets,

W (n) d:f the class of all sets not containing n,

L(n) dzf the class of all sets containing n,

I3 = the class of all recursively enumerable (r.e.) sets,

E ;— the class of all recursive sets.

In the following, B is a subclass of V which is a oolean algebra relative to
+ and x.
DEFINITION. The nonempty subclass [ of B is called an ideal in B if:
1) o,BE€l >su+pEI
2) o €L BEB—DuBEL

DEFINITION. The nonempty subclass [ of B is called a dual ideal in B if:
D a,pEl —oupel;
2) u€LBEB—>u+pEL

DEFINITION. The ideal or dual ideal / in B is called proper if I < B. A MI
(maximal ideal) in B is a proper ideal in B which is not properly included in a

proper ideal in B. Similarly we define a MBI (maximal dual ideal) in B.

It is readily verified (without the use of the axiom of choice) that ¥ (n). B
isaMlin B and L(n)-B a MDI in B for every value of n.

DEFINITION. The MI (or MDI) M in B is called atomic if there exists an
n such that M = W (n). B (resp. M= L(n). B).

The Boolean algebras which we shall consider are [V, +,x] and [ £, +,x].

DEFINITION., The subclass S of F is recursively enumerable (r.e.) if
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either S is empty, or S consists only of the empty set, or there exists a recursive
function f(m, n) such that a nonempty set ¢ belongs to S if and only if there

exists an m such that & is the range of [(m, n).

DeriNiTION, The dnal ideal /in £ (or i) is constructive in the [irst sense

if I (resp. [+1) is r.e.

DueriNiTION., The dual ideal [ in £ (or V) is constructive in the second
sense if there exists a r.e. subclass S of /2 (resp. /) such that / consists of

all sets in / (resp. 1) which include a set of 5.
We now state tlie main results of this paper.

THEOREM A. According to each of the two definitions of a constructive
dual ideal in E or V the following is true: a VDI M in I or V' is constructive if

and only if it is atomic.

THEOREM B. In the Boolean algebra L the two definitions are equivalent,
but in the Boolean algebra V' constructivity in the second sense is stronger than

constructivity in the first sense.

I. Preliminaries
1. NOTATIONS:

0 = the empty set
df ’
¢ = the set of all nonnegative integers,
df
{no, Nyy soe, nk} d: the set consisting of Mg, Mys s** nk,
[0lgy Clys ooe s O‘k] ; the class consisting of %g, Oy «v+ 5 0y,
O = the empty class
df ’
P dzf the class of all sets which have a finite or empty complement,

G ;} the class of all sets which are finite or empty,

R=P+Q9
df
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2. The following statements are readily verified: P is a dual ideal in V,
is an ideal in V, and neither P nor (J is maximal in V; R is a subalgebra of V in
which P is a MDI and ¢ a MI. If / is any ideal in ¥, then 0 € [, and I is proper
if and only if € ¢ I. Dually, if I is any dual ideal in V, then € € I, and  is
proper if and only if © ¢ I8

BEFINITION. The subset K of the Boolean algebra B is called a product

system if K is closed under the product operation.

One of the important theorems in Boolean algebra is: if K is a product system
not containing the null element, then K is included in at least one MDI [ 4, pp.
21, 22; this proof uses Zorn’s lemma]. We shall refer to this theorem as “‘the
theorem of the product system.”” It can be proved that the ideal or dual ideal /
in B is maximal if and only if, for any o € B, I contains exactly one of the two
sets 00 and &’ The dual ideal / in B is therefore maximal if and only if B -/
(i.e., the complement of / relative to B) consists exactly of the complements
of the elements in /. Thus / is a MDI in B if and only if B —/is a Ml in AB.

The existence of MDI’s follows from the existence of MI’s by the duality
principle. The existence of MI’s (often called prime ideals) is proved by Tarski
[71, Stone (6], and Frink [1]. These proofs are existence proofs; each of them

uses the axiom of choice in one of its forms.

A dual ideal / in V is called an extension of P in V if it includes P; [ is
called a proper extension of P in V if [ ¢ V and a maximal extension of P in
V if it is a MDI. An ideal / in V is called an extension of ¢ in V if it includes
(; I is called a proper extension of ) in V if | < V, and a maximal extension
of Q in V if it is a M. The following theorem is well known: a Ml in V is
nonatomic if and only if it is an extension of ¢ in V. Dually: @ MDI in V is
nonatomic if and only if it is an extension of P in V. The expression ‘‘non-
atomic MDI in V’? is therefore synonymous with the expression ‘‘maximal ex-
tension of P in V.”” Atomic MDI’s in V exist, since L (n) is a MDI for every n;
the existence of nonatomic MDI’s in V follows from the fact that we can apply
the theorem of the product system to P, since P is a product system not con-
taining O. This proof of the existence of nonatomic MDI’s in V is based on the
theorem of the product system, hence on Zorn’s lemma. No proof of this fact is

known which does not use one of the forms of the axiom of choice.

A proper extension of P in V cannot contain a figite set, because P contains
the complement of every finite set. Since every atomic MDI in V' contains finite

sets, we see that a MDI in V is nonatomic if and only if it contains only infinite

1This is an immediate consequence of a theorem proved by Tarski [8, p. 57, Satz 3.6].
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sets.

3. We suppose the reader familiar with the following concepts: an effective
(or effectively computable) function [ 3], arecursive function [2], a recursively
enumerable (r.e) set, and a recursive set [ 3]. We shall assume that a function
is effective if and onmly if it is recursive. The following six theorems can be
found in Post [ 3, pp. 290-292]:

1) Every recursive set is r.e. 2) There exist r.e. sets which are not recursive.
3) A set is recursive if and only if it and its complement are r.e. 4) The sum
or product of two r.e. sets is r.e. 5) Every set which is finite or empty or
whose complement is finite or empty is recursive. 6) FKvery infinite r.e. set has

an infinite recursive subset.

The following statements follow immediately from these six theorems. An in-
finite r.e. set is recursive if and only if it is the range of a strictly increasing
recursive function; a nonempty r.e. set is recursive if and only if it is the range
of a monotone increasing recursive function; £ < F; E and F are closed under
addition and multiplication; £ is closed under complementation, but / not; RCE,
and, since the set of all even nonnegative integers belongs to £ ~ R, we see that
R C+ E; E is a subalgebra of V but F is not; I is, however, a distributive lattice
with a null element (namely o) and a one element (namely ¢); £ and F are clear-
ly denumerable, since they are both infinite and there are only denumerably many

€€ 199

recursive functions. Section 1.2 remains valid if we replace ‘¥’’’ by and

“L(n)” by “L(n) . E”.

4. The definitions of a primitive recursive and of a partial recursive function

can be found in Kleene [ 2, pp. 42, 50, 51].

DEFINITION. Let 7(y) stand for: y has the property m. Then:

Min y[7(y)], in case (Ey)[#(y)],
pytaly)} =
undefined, in case ~(Ey)[7(y) L

Kleene proved [2, p.53] that any partial recursive function f(x;, +++, x,)

can be expressed in normal form,i.e., in the form
flopsoeeyny) = Llpyth(xg, ooy %y, y) = 031,

where 1(x) and h(x, «++, x,4,) are primitive recursive. From now on we con-

sider a partial recursive function as given if it is given in normal form.
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DEFINITION. Let
f(x) =llpyth(x, y) =011,

where {(x) and A(x, y) are primitive recursive. The steps in the computation

of { (k) are now defined as follows:

step 0 = computation of £ (%, 0),
step 1 = computation of A(k, 1),
. f

ad infinitum in case ~(Ey)LAh(E y) = 01

I (Ey)h(k, y)=0] and m = pyt h(k, y) =0}, then:
step m (last step) = computation of A (%, m) and of f (k)= 1(m).
MOTATION. [ {k;yn) = step n in the computation of f (%), provided this

step exists.

DEFINITION. liet f(x) be a partial recursive function defined at x =0,
let s, be one less than the number of steps required for the computation of

f(n), in case f(x) is defined for x < n. Let X be the sequence
[C0;0, ooy [€0;5 502, fCL,0), eeny [, 52, f€2,0), .-

where it is understood that “‘f {r,0)>, f<r,1)>” is only followed by three
points, in case f(x) is not recursive and r is the smallest value at which f(x)

is not defined. The sequence = is defined in terms of X as follows:

replace “f€0;02,” «.o, “f (1, s, =1>" by f(0),

replace ““f (lys; 2,7 «oe, “f(2,5,-1)"" by f(1),

replace ““f(2;55,2,7 «ev, “f 43,5, =127 by f(2), etc.
Then [ (n) ;f the (n + 1)°' element of 2.

REMARK. The bar operation maps every partial recursive function which
is defined at x = 0 on a recursive function in such a way that the range of f (x)
equals the range of {(x), in case {(x) is recursive, while the range of f(x)

is finite, in case f(x) is not recursive.

DEFINITION. Let f (x) be a recursive function. Then

. f¥(n) if f(n+1) < f(n),
f¥(0) = f£(0), [f(n+1) =
df df lf(n+1) if f(n+1)> f*(n).
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REMARK. The star operation maps every recursive function on a monotone
increasing recursive function and every monotone increasing recursive function

on itself.

T 1.1. 1) There exists a recursive function f (x) of n and x such that

every nonempty, r.e. set is the range of at least one recursive function occurring
intf (%)}

2) There exists a recursive function en(x) of n and x which is
monetone increasing for every n, such that every nonempty, recursive set is the

range of at least one recursive function occurring in { e,(x)}.

Proof. 1) XKleene proved [2, p.58] the existence of a partial recursive
function of two variables, say g (x), such that every partial recursive function
of one variable occurs at least once in {g (x)}. There clearly exists a recur-
sive function a(n) such that {ga(n)(x)} contains all functions in {g (%)}

which are defined at x = 0. Let

f, (x) dzf ga(n)(x);

then f (x) satisfies the requirements.
2) Let

en(x) 7 fr(x),

where f (x) is the function described in part 1); then {e,(x)} is a sequence
of monotone increasing recursive functions. If 7 is a nonempty recursive set
there exists a monotone increasing recursive function, say e(x), ranging over
n; it follows that ‘e (%) occurs in {f (x)}, hence e*(x), i.e. e(x), occurs in

{ e,(x) 1. Since the range of €(x) is 7, e,(x) satisfies the requirements.

5. The diagonal procedure used in the proof of the following theorem is our

main tool in the investigation of the constructivity of MDI’s in £ and V.

T 1.2. Let S be a nonempty, finite or denumerable class of infinite sets.
Then there exist nondenumerably many sets y such that both y and y” are in-

finite and neither y nor y* includes any set of S.

Proof. We order the sets of S in an infinite sequence 0g, Gy, ==+ . If Sis
finite this can be done by repeating one of its sets infinitely many times in the

sequence. et Qs Qs oo be an enumeration without repetitions of s this
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sequence is called row & for purposes of presentation we shall call the set

y a B-set if both y and y” are infinite, while neither y nor y’ includes any set

of S. Let
Co = Qgo,
0 o 00

dy = agy,

af

cy = the first element in row 1 which is > Max (¢q, d),
d, = the second such element in row 1,
d
2 z the first element in row 2 which is > Max (¢,, dy, ¢y, d,),

d, = the second such element in row 2, etc.
d

Suppose

Y =f {CO’ Cpy **° }a 6 = {d(), dl’ e };

then we observe: both y and & are infinite, y and & are disjoint, both y and
5 have at least one element in common with every row. Thus y’ is infinite,
since y”D & and & infinite; moreover each of the two statements y D %5
y" 2 &, is false for every n. We conclude that y is a B-set. If y, «++, y, are
[-sets we can prove the existence of a fB-set y, , different from y, for i=
0, --+, k by applying the same diagonal procedure to y , <+« ¥, Gy, 05 =2-
It follows that the number of B-sets is not finite. If there were only denumerably
many (3-sets, they could be ordered in a sequence, say {8, }; by applying our
diagonal procedure to 7 30, o, 51, .+« we would obtain a B-set § such that

S # 5n for every n. The number of 8-sets is therefore nondenumerable.

6. The following theorem, which deals with the relation between dual ideals

in V and dual ideals in k£, can easily be verified by the reader.
T 1.3. 1) Any dual ideal in V intersects E in a dual ideal in E.

2) Any MDI in V intersects E in a MDI in E.
3) IfMis aMDIin V, then the MDI M « E in E is atomic if and only

if M is atomic.

7. SUMMARY. Though our paper is primarily concerned with the constructi-

vity of dual ideals in £ and V, we have included some theorems about dual
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ideals in £ and ¥ which may be interesting for their own sake. In < II we shall
discuss whether several important subclasses of F are r.e. and prove Theorem A
in so far as it deals with constructivity in the first sense. An extension / of P
in £ (or V) is called simple if there exists a set & in £ (resp. in V) such that
I is the intersection of all extensions of P in £ (resp. in V') which contain o.
In $ I simple extensions of P in £ and V are studied, and a second proof is
given of the fact that a nonatomic MDI in £ (or V) is not constructive in the
first sense. An extension of P in £ (or V) is called semisimple if it can be
expressed as a finite or denumerable sum of simple extensions of P in £ (resp.
V). In $IV semisimple extensions of P in £ and V are discussed, Theorem A
is proved in so far as it deals with constructivity in the second sense, and the

relation between the two types of constructivity is investigated (Theorem B).

II. Recursively enumerable classes

1. Both the following definitions for a ‘‘constructive set’’ seem reasonable:

1) ““The set « is constructive, if there exists an effective method which
enables us to decide in a finite number of steps for any given nonnegative in-
teger n whether or not n belongs to o.”” This is in the spirit of Kronecker who
required of a definition that it should include an effective criterion which per-
mits us to determine for any given object whether or not it satisfies the condi-

tions specified in the definition.

2) ““The set & is constructive if ¢ is either empty, or finite, or an infinite
set which can be effectively generated in a sequence {a,} of different ele-

ments.”’

’

The first definition amounts to ‘“¢. is constructive if 0. is recursive’’ and

““0 is constructive if & is r.e.’” Since £ C F, we see that

the second one to
the second definition is weaker than the first. If we use either “‘o € £’ or
“o € F’" as a definition for ‘¢ is constructive,’” it seems natural to define
the constructivity of a (possibly nondenumerable) class S of sets by some
suitable property of S+ E (resp. S F). In this way we are led to the problem
of finding properties of a constructive character for subclasses of £ and sub-

classes of F.

2. DEFINITION. The characteristic function char, (n) of a set & is de-
fined by

1 for n € «,
0 for nﬁza.

chary (n) =
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DEFINITION. The class K is called characteristically recursively enumer-
able (ch.r.e.) if it is a subclass of £ which either is empty or has the property
that there exists a recursive function k(m, n) such that the set & belongs to

K if and only if there exists an m such that chary (n) = k(m, n).
NoTATION. K = Char k(m, n).

For the definition of a r.e. subclass of F we refer to the introduction. If
o ¢ S and f(m, n) is related to S as described in this definition, we say that

f (m, n) recursively enumerates S.
NoTATION. S = Enum f(m, n).
DEFINITION. S’ is the class over which o’ ranges if o ranges over S.

DEFINITION. The sequence {S;} of nonempty r.e. classes which do not

contain o is called r.e., if there exists a recursive function f (I, m, n) such that
Sl = Enum (I, m, n)
for every [.
The following theorem can easily be verified.

T 2.1. 1) The sum of a finite number of ch.r.e. classes is ch.r.e.
2) The subclass K of E is ch.r.e. if and only if K” is ch.r.e.
3) Every chur.e. class is r.e.
4) The sum of a finite number of r.e. classes is r.e.

5) The sum of a r.e. sequence of r.e. classes is r.e.

3. T2.2. 1) The classes P and Q are both ch.r.e. and r.e.
2) The class F is r.e.

3) The class E is r.e., but not ch.r.e.

Proof. 1) We shall first prove that ( is ch.r.e. Let n be any nonnegative
integer, and suppose S;q, Spys *+++ 5 Spr, is the finite sequence of zeros and
ones such that

-
no=spy+ 2% + spq - 21+---+smn . 2",

This means that n is written as s, s,; . <+« s, in the dual number system.
n n-1
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Observe that n uniquely determines this finite sequence, and that Snr, =0 for
n =0, while sp; =1 forn > 0. Let

o, d=f the infinite sequence Sio Sy skrk 000 ...,

and suppose ¢(k, n) is the (n +1)%' element in ®,5 q(k, n) is clearly a re-
cursive function, and ¢ = Char ¢ (%, n). It follows that () is ch.r.e. Then P is

ch.r.e., since P = (J’, Tt is easy to see that
¢ - [o]l = Char g*(k, n),
where

*(k, = k+1,n);
g*( n)dfq(+ n)

thus Q¢ —[ o] is ch.r.e., and both ¢ —={ o] and ¢ are r.e. The class P is r.e.,

because it is ch.r.e.
2) Let f (x) be the recursive function mentioned in T 1.1.1. Then

F—1[o]=FEnumf (x),

and both F = [ o] and F are r.e.
3) l.et e,(x) be the recursive function mentioned in T 1.1.2. Tken

r

E —1o0] =Enume,(x),

and both & — [ 0] and £ are r.e. To prove that £ is not ch.r.e., suppose c(m, n)
is a recursive function such that £ = Char ¢ (m, n), and suppose y, is the set

with ¢(m, n) as its characteristic function. Let

0 for c(n,n)=1,
d(n) =
411 for c(n, n)=0,

and let & be the set with d(n) as its characteristic function. Then 8 € E, since
d(n) is recursive and & # Y for every m, because m Cym '5+ym5'. The

assumption that £ is ch.r.e. leads therefore, to a contradiction.

T 2.3. Let S be a nonempty, finite or denumerable, r.e. subclass of F ~ (.
If a recursive function s(m, n) is given which enumerates S, we can construct

a set n € D such that neither y nor n° includes any set of S.
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Proof. If op, is the range of s(m, n), S consists exactly of all sets occur-
ring at least once in the sequence oy, 0y, +++ . For every m we can effectively
find a recursive enumeration without repetitions of o,,. The diagonal procedure
used in the proof of T 1.2 becomes effective when applied to the sequence

Ogs Oys +++ 5 since s(m, n) is recursive.
CoroLLARY 1. IfD C S C F~{, Sis not r.e.
COROLLARY 2. The classes U, D+ P, F — R, F — (J are not r.e.

4, Consider the following question: *‘If # is a MDI in £ (or V'), what do we
know about: 1) the characteristic recursive enumerability of ¥ (resp. M . £)?

2) the recursive enumerability of ¥ (resp. M - F)?”’
T 24. If ¥ is aMDl in E (or V), then M (resp. M « I') is not ch.r.e.

Proof. Note that every MDI in V intersects £ in a MDI in E; it therefore
suffices to prove that a MDI in £ is not ch.r.e. et ¥ be a MDI in £. Suppose
M were ch.r.e.; then M = E — M would also be ch.rie., by T 2.1.2. This would
imply that £ =M+ (£~ M) is ch.ur.e., by T 2.1.1; this is, however, false by
T 2.2.3. Thus M is not ch.r.e.

T 2.5 IfMis any MDL in £ (or V') then:
a) if M is atomic, then M (resp. M « F) is r.e.;

b) if M is nonatomic, then M (resp. M « F) is notr.e.

Proof. a) l.et M be an atomic MDI in k£, say M = L (k) - E. Suppose e(m, n)

is a recursive enumeration of £ — [ o]. We define

e(myn—1) for n > 0,
a(m, n) =
Ak for n=0.

It is now easy to verify that a(m, n) is a recursive enumeration of L (k). L.
Using a recursive enumeration of ' — [ o], we can similarly prove that an atomic

MDI in V intersects F in ar.e. class.

b) Let M be a nonatomic MDI in V. This implies that M C V — ¢ as we
observed at the end of $1.2. Thus M. F C F — (. Clearly M. F is nonempty.
If M. F were r.e. there would by T 2.3 exist a set n € D such that 7, n° ¢ M. F;
this would imply that 7, n* ¢ M, since n, n° € F. This is, however, impossible

because a MDI contains exactly one of any two complementary sets. It follows
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that ¥ . F is not r.e. If M is a nonatomic MDI in £ we know ¥ =M.E C £-Q C

F — @, and we can give a similar proof of the fact that M is not r.e.

Let I be a dual ideal in £ (or V). Then we see from T 2.4 and T 2.5 that

the definition “‘/ is constructive if I (resp. I+ £) is ch.r.e.”’

is less satisfactory
than ““I is constructive if I (resp. I+ F) is r.e.”” For any MDI in E or V (atomic
or nonatomic ) would be nonconstructive according to the former definition, while
according to the latter definition a MDI would be constructive if and only if it
is atomic. A dual ideal in £ (or V') is called constructive in the first sense if
I (resp. I ') is r.e. Theorem T 2.5 is therefore identical to the part of Theorem

A which deals with constructivity in the first sense.

III. Simple extensions of P

1. The only proper extensions of P in V, of which we have discussed whether
they intersect F in a r.e. class, are P itself and maximal extensions of P in
V; P intersects F in a r.e. class, namely in P itself, and any maximal extension
of P in V intersects F in a class which is not r.e. A solution of the problem:
“Which extensions of P in V intersect F in a r.e. class?’’ might increase our
understanding of maximal extensions of P in V. If it would turn out that no
proper extension of P in V which properly includes P intersects F in a r.e.
class, the fact that maximal extensions of P in V do not intersect F in a r.e.
class would not reveal much about their nature. If the collection of proper ex-
tensions of P in V which properly include P, would, however, consist of two
nonempty subcollections: those which do intersect F in a r.e. class and those
which do not, we might get a better insight into the nonconstructive character
of maximal extensions of P in V by studying these two subcollections. The
¢S and IV are an attempt to determine which proper extensions of P in V
properly including P intersect I’ in a r.e. class. The analogous problem for

extensions of P in E is also considered.

2. DEFINITION. = f3 = (af’+x"B € Q), ie.,, au=p if « and B
differ by at most a finite number of elements. We shall read this: ““a and B

are congruent.”’
DEFINITION. {0 ) is the class of all sets congruent to «.
DEFINITION. o) + 3> = (a+ B, <> x (B> = Lupr,

df df
(a>” = <ad.
df

It is easy to see that these definitions are unique and that the equivalence
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classes defined by the congruence relation in V form a Boolean algebra with

respect to +, x, °, which has @ as its null element and P as its one element.
DEFINITION. v(n) = {0, 1, «+-, ni.
df

DEFINITION. 3 almost includes ¢ (or & is almost included in f3), ab-
breviated B alin «, if &3’ € (¢, i.e., if 3 contains all but at most a finite

number of elements of .2

DEFINITION. Alin S is the class of all sets which almost include a set
of S.

Obviously, Balin ¢ <> 0 + B = 8 <> there exists an n such that 3D & — v(n)
<> there exists a set 5 € Q such that § C & and B8 D ¢ — 5. Also,

«=p <> {c alin 8 and B alin 0. }.

The alin relation is clearly a generalization of the inclusion relation. It is
reflexive and transitive; it is, however, not a partial ordering relation, since it

is not antisymmetric. For if
o=10,2,3,4,++.} and B =1{1,2,3,4,.-.}

then « alin 8 and f alin o, while o # 8. If B alin « and 3, alin &,, then
B, + B, alin a, + &, and B, B, alin « «,. Also B alin « if and only if o”alin
B’ Any set 8 almost includes any finite or empty set; a finite or empty set
B almost includes a set & if and only if « is finite or empty. Alin S = V when-
ever S contains a finite set, and Alin / =/ for any extension / of P in V. If S
consists of a finite number of sets, say o, ++-, 0, , we shall denote Alin S by
Alin (g vy &)

3. Let I be a dual ideal in the Boolean algebra B. Any dual ideal in B which
includes [ is called an extension of [ in B. If S C B, we shall denote the inter-
section of all extensions of / in B which include S by /,(S). In case S consists
of a finite number of elements, say ¢, «++, & , we shall denote /,(S) by
IB((AO, ey Otn). IB(S) is obviously the smallest extension of I in B which

includes S. Also
IB(C() =lpca + vyl
where p ranges over / and y over B.

2This relation was studied by Sierpinski [ 5]
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DEFINITION. The extension /, of the dual ideal / in B is called a simple
extension of I in B, if there exists an element & € B such that ]l =]B(C<).

Evidently Py(«)=Alin « for any ¢ € ¥, and Pp(u)=E - Alin & for any
o €L, Let I be a simple extension of P in V; every set o € } such that
I=Py(a) is called a generator of I. A necessary and sufficient condition that
o and 3 are generators of the same simple extension of P in } is & = . This
means that a simple extension of P in V uniquely determines its generator
modulo Q. The following statements are easily verified: Py (¢ ) = P if and only
if « € P; Py(a)=V if and only if o €Q; P E Py () < I if and only if
€L R,

T 3.1. 1) Every proper extension of P in V is included in at least one

maximal extension of P in V.

2) If B does not almost include &, there exists a simple extension
I of P in V such that 0 € I, B ¢ I, and a maximal extension M of P in V such
that o € M, B ﬁz m.?

3) If o alin B, then Py(a) C Py(B); if o alin B is true, but 3
alin o false, then Py (o) - Py ().

4) A simple extension of P in V cannot be a maximal extension of

Pinl.

Proof. 1) Every proper extension of P in V is a product system not contain-

ing o; we can therefore apply the theorem of the product system.

2) uf’ € ¢, since B alin o is false. Let I=Py(af’); then IC V3
furthermore o, 8° € I, because o 8° € L. It follows that 8 §Z I, since [ - v
and 87 € I. Thus [ is a simple extension of P in V satisfying the requirements.
In view of 1), I is included in a maximal extension of P in V, say M. Conse-

quently o, 87 € M, hence 3 ¢M.

3) Any set which almost includes a set of I belongs itself to /, since indeed

Alin I = L. Tf o alin 8 then &€ Py (), hence

Py(a) = Alin & C Py (B).

Now Py(a)=Py(B) would imply o = 8, hence S alin «. It follows that
Py (&) ¢ Py (B), whenever ¢ alin 3 is true and 8 alin o false.

3The second part of T 3.12 was suggested by a result of Stone [6, p. 105, Theo-
rem 641,
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4) Let I=Py(c); we may assume O.ng, the theorem being trivial in
case & € R. We observe that there exists an infinite set 3 such that 3 C « and
«-pB §Z U, because ¢ is infinite. But this implies that o alin 3 is true and
(3 alin « false. Moreover, Py () c V, since B §Z Q. Thus Py () C+PV(B) Vs

this implies that Py () is not a maximal extension of P in V.

ReEMARK. All four parts of this theorem remain valid, if we replace ““I'”’
by “E”’ and assume &, 3 € E. In the proof of the third part we have to take a
recursive subset of o0 for B. If a(n) is a strictly increasing recursive function

ranging over 0, we can take 3 as the range of a(2n).

4. Let I be a dual ideal in B, and suppose ¢, U, +++, U, € B. It is easy
to verify that

I(ag, o) = Tp(og - o) and Tp(og, o, ee,y o, ) =T oy e apeee o).

This means that adjunction of any finite number of elements of B to I leads to

the same result as adjunction of a certain single element of B to I. Clearly
Py(a, B) = Pv(ap).

Hence
Py(a, B) = Py(a)

if and only if B alin «, and Py (o) - Py (o, 3) if and only if B does not almost
include o. Similarly for Py () and Pg(c, B8 ) under the restriction &, 8 € E.

DEFINITION. ¢ alin™' B 7 B alin o.

DEFINITION. Alin~! S is the class of all sets which are almost included

in a set of S.

Clearly
Alin™! S = (Alin $°)%, Alin S = (Alin™! S*)°,

0, () = Alin"" &, G () = (P, (@)’ P, (a) = (G, (a))"

By means of these relations the theory of simple extensions of a dual ideal in
a Boolean algebra can easily be dualized to a theory of simple extensions of an

ideal in a Boolean algebra. If, for example, / is an ideal in B and Chgo =oes O € B,
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then
IB(QO, cees ) = IB(a0+--.+an).
I'rom the fact that o = 3 if and only if & alin 3 and 3 alin ¢ follows:
Cad = P (o). ¢ ().

5. We shall now discuss some theorems dealing with the relation between

simple extensions of P in £ or V and r.e. classes.

DEFINITION. L (&) is the class of all sets which include & (note that
L(a) is a dual ideal for every ci). The dual ideal I in £ (or V) is called
principal if there exists an « () (resp. « € V) such that I=FE .« L(«)
(resp. [ = L(&)); & is called the generator of I.

The principal dual ideals in V can be classified according to the nature of
their generators; we shall therefore discuss a classification of sets in V' which

is relevant to the character of the class L () . F.
DEFINITION. B is a superset of o if & is a subset of 8.

DEFINITION. & is called immune if it is infinite and has no subset in

F —¢; o is called contraimmune if «’ is infinite and & has no superset in

F-P,

DEFINITION. ¢ is called normal if it is r.e.; o is called subnormal if it

is not r.e. but has a superset in F ~ P.

Every set clearly belongs to exactly one of the three categories: normal,
subnormal, contraimmune. Obviously « ¢R whenever ¢( is immune or contra-

immune.
We shall use the letter ¢ to denote the cardinal number of the continuum.

T 3.2. 1) There exist exactly ¢ immune sets.

2) There exist exactly denumerably many normal sets, ¢ subnormal

sets, and ¢ contraimmune sets.

Proof. To prove that there are c¢ sets of a certain kind it suffices to show

that there are at least c¢ sets of that kind, since there are only ¢ sets in V.

1) The existence of an immune set follows from the application of T 1.2 to
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the class F ~ (J. An immune set clearly has c infinite subsets, each of which

is again immune. Thus there are at least ¢ immune sets.

2) There exist exactly denumerably many normal sets, since F is denumer-
able. When we apply T 1.2 to the class F’— () we see that there exists a set
y §Z R such that y* does not include any set of F“~ (; thus y is not included
in any set of /' — P, i.e., y is contraimmune. Since y’ is infinite, there exist
disjoint infinite sets p, and p, such that y*=p +p . If TCp , theny+ T¢R,
and y + T has no superset in F ~ P; it follows that y + Tis contraimmune. There
exist at least ¢ contraimmune sets because T can be chosen in ¢ different
ways, while different choices of T yield different sets y + T. To prove that
there exist exactly ¢ subnormal sets, let & and 8 be two sets in F — R such
that ¢ C 8 and B-« ¢Q None of the ¢ sets y such that « Cy C B is
contraimmune, as each is included in B3; but only denumerably many of these

sets y can be normal. We conclude that there exist at least ¢ subnormal sets.

DEFINITION. The principal dual ideal L () is called normal (subnormal,

contraimmune ) if ¢« is normal (resp. subnormal, contraimmune ).

Fvery principal dual ideal belongs to exactly one of these three categories
because it uniquely determines its generator. Every set which is congruent to
a normal (subnormal, contraimmune) set is also normal (resp. subnormal,
contraimmune ), since two congruent sets differ in at most finitely many ele-
ments. It follows that all generators of some simple extension of P in V belong

to exactly one of the three categories: normal, subnormal, contraimmune.

DEFINITION. A simple extension of P in V is called normal (subnormal,

contraimmune) if its generators are normal (resp. subnormal, contraimmune ).

T 3.3. 1) Every principal dual ideal in E is r.e. Every normal principal

dual ideal in V intersects F in a r.e. class.

2) Every simple extension of P in E is r.e. Every normal simple ex-

tension of P in V intersects F in a r.e. class.

Proof. The proofs of the two statements dealing with £ are similar to the
proofs of the two statements dealing with F; we therefore restrict our attention
to the latter.

1) We assume o # o, the theorem being trivial in case « = o. Let f(m, n)
be a recursive enumeration of ' —[ 0], and a(n) a recursive function ranging

over ¢; suppose U, is the range of f(m, n), when we consider f(m, n) as a
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function of n. We can now effectively find from f(m, n) and a(n) a recursive

function g (n) ranging over « + o, Then

L(ca)+ F=Enum gm(n),

and L(a) . F is r.e.

2) We have
n=oo
Py(a) = >° (a—-v(n)),
n=0
and therefore

Py(e).F

I

z L(a ~v(n)).F.
n=o

But L{a —v(n))+ F is r.e. for every n by 1) and the fact that o —v(n) is
normal for every n. Thus Py, (). F is r.e. by T 2.1.5.

T34, If ¢ R, then:
1) L(a). F - P <> o is contraimmune;

2) Py(c). F=P <> o is contraimmune.

Proof. 1) L(c). [ < P — o has no superset in F—P — 0 is con-
traimmune. Now suppose 0. is contraimmune. Then L( )« F C P; but if ¢ € «,
€—-1{alis a set of P which does not include ¢; hence L (&) . F C+ P.

2) Sufficiency. Suppose [ = Py(a), where o is contraimmune. Then
I.F CP,by
n=oo
[.F = Z L(a-vi(n))«F

n=o
and 1). Let # € P and suppose m is the maximum of 7#’. Then
ﬂCL(O( ~V(m))- F.

Thus /. F=P. Necessity. Let I=Py(a) and suppose [.F=P. Clearly
L(a)F < P because L(at)« F - I . F. Then ¢ is contraimmune by 1).

Our discussion of the nature of the class Py ()« F is incomplete, since
we have considered only the case that o is normal or contraimmune, but not

the case that ¢ is subnormal.
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6. DEFINITION. Let S # O. Every set y such that S C Alin y is called a
kernel set of S. The class of all kernel sets of S will be denoted by Ker S.

Using the properties of the alin relation it is easy to show that Ker S is an

extension of () in V for every nonempty class S.

T 3.5.1)IfO - SCTCV-0Q, where S is at most denumerable and T a

product system, then Ker S contains a set of V — R.

2) If, moreover, S is r.e. we can effectively find a set & € D « Ker S,

Proof. 1) Since S is nonempty and at most denumerable, we can order the
sets of S in an infinite sequence G, 0, -+ . Let B, be the product of the sets
Uys +++» O in this sequence; then 3 € V- Q for every n, since B, € T for
every n and T C V - (). There exists an enumeration without repetitions of

B, for every n. Let b, , b, , -+ be such an enumeration of ;. Suppose

co = boo >

df

1 = first element in { b,, } which is greater than ¢,

c, = first element in { b,, } which is greater than ¢,, etc.

Let

= {cg, Cyyooe s
ydf 0> C1»

then y €V — Q. We shall show that o, alin y for every n. Clearly Cn+k€Bn for
k>0, since ¢, ,, € ,, CpB,. Consequently tc ,c  »+++}Cp,, hence
B, alin y. Then ¢ alin y as o, O 3,. We know that y € V-0. Let

Yo d=f {CO’ Cas Cq5 *0" H

then S C Py (y,) and y, € V= R.

2) Let s(n, x) be a recursive enumeration of S, and o _ the range of s(n, x)
when we consider s(n, x) as a function of x. Then we can effectively find a
recursive enumeration without repetitions of the set 8, mentioned in 1). Thus

we can effectively find ¢, and
Y, € (V=-R)- E=D.

COoROLLARY, If I is a proper dual ideal in V not containing any finite
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set, then I« F is included in a simple extension of P in V. If, moreover, I . F is

ree., [« I is included in a normal simple extension of P in V with a generator

in D.

Proof. Take S=T=1.F and observe that O < [.F CV-(Q, where I . F

is a product system.

We can now give a second proof of part b) of T 2.5, i.e., of the statement:
if M is a maximal extension of P in £ (or V), then M (resp. M . F) is not r.e.
For if ¥ were a maximal extension of P in V such that # . F is r.e., there would

exist a set 8 € D such that ¥ « F C Py (8) by the corollary. Then

M«E CPy(8) - E=Pg(8) C E-Q;

thus # - E would be equal to the simple extension P (8) of P in £ because
M« £ is a maximal extension in £. This would contradict the fact that T 3.1.4
also holds if we replace *“V”’ by ““£’’, Thus M - F is not r.e. Now suppose M is
a maximal extension of P in £ which is r.e.; then we could prove by a similar
reasoning that } is a simple extension of P in £; since this is impossible, M

cannot be r.e.

IV. Semisimple extensions of P

1. We have seen in the previous section that every extension of P in V which
is obtained by adjoining a finite number of sets to P is a simple extension of
P in V. We shall now discuss extensions of P in V which are obtained by ad-

joining denumerably many sets to P.

DeFINITION. The extension / of P in V is called a semisimple extension

of P in V if there exists a sequence { O(n} of sets in V such that

n=oco
I= 22 Py(oy).
n=0
Any such sequence {&, }is called a P-basis of I.
NotaTion. I=P,ta }.

We do not exclude the case that all elements of the P-basis {o } of [ are
equal. It follows that every simple extension of P in V is also a semisimple
extension of P in V. The sequence {a, } is called an d-sequence if for every
pair (m, n) of nonnegative integers there exists a k such that & o alin ;. It

is readily proved that { &} is the P-basis of a semisimple extension of P in V' if
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and only if it is an ¢-sequence. The following theorem can easily be verified.

T ad. If 1= Pyl oy} then:
1) I=P if and only if tn € P for all n;
1=V if and only if ¢y € Q for at least one n;
P C1CVifand only if Uy & P for at least one n and oy € O for all n.

2) lis a simple extension of P in V if and only if there exists a k such that
Gy alin ¢ty for all n.

3) [ is a maximal extension of © in V if and only if I S V and for every
B €V there either exists an n such that § alin 0, or an n suc/z that 3 alin
Cipye

If ¢, O Gp4y for all n, {0,} is called a descending chain with H';;:
inner limit; if ¢, C Gy, for all n, ta,} is called an ascending chain with

&, as

n= oo .« . . o e
Zn=0 On as outer limit. If we replace ““ct;,”” by ““S;”” in these definitions, we
obtain definitions of a descending chain of classes and its inner limit, and an

ascending chain of classes and its outer limit.

T 4.2. 1) There exists an extension of P in V which is semisimple but not
simple.

2) Every semisimple extension [ of P in V has a descending P-basis
{0, ) such that I is the outer limit of the ascending chain { Py (&, )} of simple
extensions of P in V.

Proof. 1) Let

=f{2",2.2”,3.2”,...z;

then {u,} is an G-sequence, since O O, = &, where k= Max (m, n). Let
I = Pyi{cn,}; then I is a semisimple extension of P in V. Now P C 1 C V, since
Clpy Q/Q for all n and o, &P forn > 1. If I were a simple extensmn of PinV
there would exist a nonnegative integer r such that o, alin &, for all n, in par-
ticular G+, alin 0} i.e., Oy — G4y € Q. This contradicts

U= Cpay =127,3-2,5.2, ... } €0
I is, therefore, not a simple extension of P in V.

2) Let I=Py{B,}, and let o, be the product of By, +++, By; then {oi,}
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is a descending P-basis of / such that [ is the outer limit of the ascending

chain { Py (o) 3.

It is possible to strengthen the second part of the theorem by replacing the
words ‘‘a descending P-basis {,}"’ by ‘‘a descending P-basis {a,} with inner
limit o”’. Suppose, namely, that { ¢,} is a descending P-basis of /, and Yy =
¢, —v(n); then {yn} is a descending P-basis of / with inner limit o. Since
there exist semisimple extensions / of P in V such that P < 1 < V we see that

in general

n=

Pyla,t £ Py ﬂ Gpnl.

n=0

Semisimple extensions of P in £ can be defined in an obvious manner.
Theorems T 4.1 and T 4.2 and their proofs remain valid if we replace V by £.
Theorems about semisimple extensions of P in V can be dualized to theorems

about semisimple extensions of J in V' by means of the relation

n=o0

Z QV(O(n)= Z Py(op)| -
n=o0

n=0

2. DEFINITION. The dual ideal 7/ in V is called pseudoprincipal (p.pr.)

if there exists a sequence { ¢, } of sets in V' such that

I= 3 L(xy).
n=0

Each such sequence is called a basis of I.

Any principal dual ideal in V is p.pr.; the converse is false, for
n=o0
P= 3% L(e-v(n))
n=0

is p.pr. but not principal. A necessary and snfficient condition that the se-
quence {%,} be a basis of a p.pr. dual ideal :n V is that for every pair (m, n)
of nonnegative integers there exists a % such that ¢, ¢, O «i. We siould dis-
tinguish between bases of / and P-bases of /, in case / is both a p.nr. dual

ideal in V and a simple extension of P in V. Principal and p.pr. dual ideals
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in £ and principal and p.pr. ideals in V and £ can be defined in an obvious

manner.

DEFINITION. The sequence { &, } of nonempty sets is r.e. if there exists
a recursive function f(m, n) such that for every m, f(m, n), considered as a

function of n, ranges over Up,.

T 4.3. 1) An extension of P in E (or V) is a semisimple extension of P in

E (resp. V) if and only if it is a p.pr. dual ideal in E (resp. V).

2) Let | be a semisimple extension of P in k£ (or V). Then every
basis of I is a P-basis of 1. Moreover I has a r.e. basis if and only if | has a r.e.

P-basis.

Proof. We shall restrict our attention to extensions in P in V. The proofs

for extensions of P in [ are similar.

1) Let { &, } be a P-basis of the semisimple extension / of P in V. Then /
is a p.pr. dual ideal in V with 0y — v(0), oy —v(1), 0ty —v(0), -+ as basis.
Conversely, suppose / is an extension of P in V which is a p.pr. dual ideal in
V with { &, } as basis. Since Alin / = I, we see that

o, €1 —Py(da,) = Alin o, C I
Hence [ is a semisimple extension of P in V with { &, } as P-basis.

2) Let I be a semisimple extension of P in V. Then every basis of [ is a
P-basis of I [see the second part of the proof of 1)]. It follows that ar.e.
basis of / is also a r.e. P-basis of /. If [ has a r.e. P-basis, say { &}, [ has

also a r.e. basis, namely 0y — v(0), ttg — v (1), 0ty —v(0), +--.

T 4.4. 1) A maximal extension of P in V cannot be a p.pr. dual ideal in V.

2) A maximal extension of P in E cannot be a p.pr. dual ideal in E

with a r.e. basis.

Proof. 1) Suppose { &,} is a basis of the p.pr. dual ideal / in V. If &, € Q
for some n, / cannot be a maximal extension of P in V; we therefore assume
that «, ¢ Q for all n. The class S over which o, ranges, if n ranges over €,
is at most denumerable, and consists of infinite sets. It follows by T 1.2 that
there exists a set j such that neither y nor y” belongs to /; thus [ is not maxi-

mal.

2) Suprose {¢,} is a r.e. basis in £ of the p.pr. dual ideal / in £. We
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can again restrict our attention to the case 0, Q Q for all n. The sequence
{ p} recursively enumerates a nonempty subclass of E ~ Q; it follows by T 2.3
that there exists a set 7 € D such that neither 5 nor ” includes any set of

the sequence { ¢, }; thus / is not maximal.

We shall now discuss the question whether maximal extensions of P in E

(or V) can be semisimple, and if so, whether they can have a r.e. basis in £

(resp. F').

T 4.5. 1) Every extension (in particular every maximal extension) of P in

E is a semisimple extension of P in E.
2) A maximal extension of P in E cannot have a r.e. basis in L.

3) There exist semisimple extensions of P in E which are neither

simple nor maximal.

4) No maximal extension of P in V is a semisimple extension of

PinV.

Proof. 1) Let I be an extension of P in K£; then / is denumerable, since P

and £ are denumerable. Let

[—_— [0(0, Cxp "‘];

then
n=o0
] = Z L(a,)E.
n=0

Hence [ is a p.pr. dual ideal in £ and a semisimple extension of P in £.

2) Suppose M is a maximal extension of P in £. Then M is both a p.pr.
dual ideal and a semisimple extension of P in £. If M would have a r.e. P-basis,
it would be a p.pr. dual ideal in E with a r.e. basis, by T 4.3.2; this is, how-

ever, impossible in view of T 4.4.2.

3) Vet I=Pgix,}, where { «,} is the sequence of sets used in the proof
of T 4.2.1. Then we can easily show that P < I < E and that [ is not a'simple
extension of P in E. Now'/ has a r.e. basis, because it has the r.e. P-basis

{ &, }; thus I is not a maximal extension of P in V.

4) Every semisimple extension of P in V is a p.pr. dual ideal in V by

T 4.3.1. But a MDI in V cannot be p.pr., by T 4.4.1.
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We see, therefore, that the relation between semisimple extensions of P and
maximal extensions of I’ is very different in £ and }'. This is obviously related

to the fact that £ is denumerable and V nondenumerable.

3. While we have been able to solve the problem ‘‘Which semisimple exten-
sions of P intersect F in a r.e. class?”’ for the DBoolean algebra £, we have

solved only some special cases of this problem for the Boolean algebra V.

T 4.6. 1) A dual ideal in E is r.e. if and only if it has a r.e. besis in k.

2) A semisimple extension of P in E is r.c. if and only if it has a

r.e. P-basis in E.

Proof. 1) Suppose { G} is a r.e. basis in £ of the p.pr. dual ideal [ in /..
Then

n=o<
I= 3 La,)-L;
n=0

hence / is r.e., by T 2.5 and T 3.3.1. If the dual ideal [ in [ is r.e., its elements
can be written in a r.e. sequence { Ci,}; this r.e. sequence { %, } is one of the

bases of I.
2) This follows from 1) and T 4.3.

COROLLARY. There exist semisirnle extensions of I in £ which are not

r.e,

Proof. A maximal extecn~ or of P in £ is semisimple; it is not r.e., by

T 4.6.1 and T 4.5.2.

DEFINITION. A p.pr. dual ideal in V is called normal (subnormal, con-
traimmune ), if it has a basis consisting entirely of normal (resp. subnormal,

contraimmune ) sets.

DEFINITION. A semisimple extension of P in V is called nermal (sub-
normal, contraimmune ), if it has a P-basis consisting entirely of » rmal (resn,

subnormal, contraimmune ) sets.

It is easily verified that a semisimple extensicr ot P in V is a normal (sub-
normal, contraimmune) semisimple extension of ” in V if and only if it is a

normal (resp. subnormal, contraimmune ) p. pr. dual ideal in V.
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T 4.7. 1) A normal p.pr. dual ideal (or semisimple extension of P) in V
intersects F in a r.e. class if and only if it has a r.e. basis (resp. r.e. P-basis)

in F.

2) A contraimmune semisimple extension of P in V intersects F in

Proof. 1) The proofs are sinilar to those of the two parts of T 4.6.
2) This follows from T 3.1.2.

4.1 4.8. Suppose [ does not contain any finite set.

1) Lvery duel ideacl | in E (or every p.pr. dual ideal I in V) is included
in a proper simple extension of P in V.
2) Every dual ideal I in L with a v.e. basis in F (or every p.pr. dual ideal |

in V with a r.e. basis in F') is included in a simple extension of P in £ (resp. V)

with a generator in D.

Proof. 1) By applying the diagonal procedure used in the proof of T 3.5
to a basis { &, } of I we can prove the existence of a set y € V — R such that

[ C Py(y)
2) If {o,} is r.e., the diagonal procedure becomes effective and y € D.

COROLLARY. 1) Every proper semisimple extension of P in V is included
in a proper simple extension of P in V. 2) Every proper semisimple extension
of P in E (or V) with a r.e. basis in £ (resp. I') is included in a simple ex-

tension of P in I (resp. V) with a generator in D.

5. We refer to the introduction for the definition of a dual ideal in £ (or

V') which is constructive in the second sense.

REMARK. A dual ideal in E is constructive in the second sense if and only
if it has a r.e. basis in E. A dual ideal in V is constructive in the second sense

if and only if it is a p.pr. dual ideal in V with a r.e. basis in F.

T 4.9. A MDI in E (or V) is constructive in the second sense if and only

if it is atomic.

Proof. We shall denote the class of all sets which include a set of S by
S.

a) Let M be an atomic MDI in V, say /= L (k). Then M =S, where S = [{k}];

moreover, S is r.e., since S = Enum f(m, n), where f(m, n) ;f k for every m and
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n. The proof that an atomic MDI in £ is constructive in the second sense can
be obtained by replacing “V**, ““L (k)”’, “S”’ respectively by “E”, “L (k) . £,
“S.E”.

b) Let ¥ be a maximal extension of P in V. Then M is not a p.pr. dual
ideal in V, by T 4.4.1; thus # is not constructive in the second sense. If, how-
ever, M is a maximal extension of P in £, M is a p.pr. dual ideal in E, by
T 4.5.1; but M has no r.e. basis in £ by T 4.5.2; thus ¥ is not constructive in

the second sense.

6. We have seen that a MDI in £ (or V) is constructive if and only if it is
atemic according to each of the two definitions for a constructive dual ideal
which we discussed. The question now arises whether these two definitions are

equivalent.

T 4.10. 1) The two definitions are equivalent in the Boolean algebra E.

2) The two definitions are equivalent for p.pr. dual ideals in the

Boolean algebra V.

3) Every dual ideal in V which is constructive in the second sense

is also constructive in the first sense; the converse however, is false.

Proof. 1) All dual ideals in £ are p.pr., since £ is denumerable. A p.pr.
dual ideal in £ is constructive in the first sense if and only if it has a r.e. basis
in £, by T 4.6.1; and a p. pr. dual ideal in £ is constructive in the second sense

if and only if it has a r.e. basis in £.

2) The only dual ideals in V' which can be constructive in the second sense

are the normal p.pr. ones; and for these the two definitions agree, by T 4.7.1.

3) If a dual ideal in V is constructive in the second sense, it is p.pr.;
hence it is also constructive in the first sense, by part 2). Let / be a con-
traimmune semisimple extension of P in V. Then /. F =P, where P is r.e.;
hence I is constructive in the first sense. To prove that / is not constructive
in the second sense it suffices to show that / is not a normal semisimple ex-
tension of P in V. Suppose [ = Py { o, }, where oy € F for every n; then €P
for every n, since [ - F = P, Consequently / = P; this however, is false, for the
fact that / contains a contraimmune set implies P < I. The assumption that [ is

a normal semisimple extension of P in V leads, therefore, to a contradiction.
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