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1. Introduction. We consider in the plane the class of all convex curves into

which a given convex curve can be affinely transformed, and seek the minimum

of L /A, where L denotes perimeter and A the area. This amounts to finding the

minimum length for a fixed area, or, what is the same thing, to finding the mini-

mum length under area-preserving affine transformations. In § 2 are found neces-

sary conditions on the supporting function that a given curve yield the minimum

of L2/A, and in § 3 these are shown to be sufficient. In § 4 is derived a proper-

ty of the minimizing curves; namely that if they are sufficiently smooth, they

have at least six vertices. In § 5 is derived an integral representation of the

supporting function of a convex curve, and another lemma to be used in §6. In

6 we study the problem of finding the maximum, over all convex curves, of the

minimum over affine transformations of L2/A; in other words, we seek that curve

of given area, which when affinely transformed so as to minimize its length,

gives the greatest length. We show that the extreme curve is a polygon of not

more than five sides, but fail to show what is extremely likely, that the solution

is a triangle.

For general facts about convex figures and their supporting functions which

are used, see [3] .

2. Necessary conditions. Consider a convex curve K and its area-preserving

affine transforms. Since rigid motions can be ignored, any transformation in which

we are interested can be written in the form

( 1 ) T:

x = eλ x'

μ x + e" λ y'

The length L(λ, μ) of the transformed curve K(λ, μ) is a continuous function

of λ and μ, and tends to oo as (λ 2 + μ 2 ) becomes large. Thus L(λ, μ) has

a minimum value, which we take for the moment to be at λ = μ - 0.
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In order to find L (λ, μ ) we need the supporting function p ( λ , μ ; Θ) of K(λ, μ ) .

If p( 0) = p (0 , 0, 60 is the supporting function of K, then a supporting line to

Kis

( 2 ) # cos θ + y sin 0 = p(θ).

The transformation ( 1 ) carries ( 2 ) into

( 3 ) x'{eλ cos (9 + μ sin 0) + y ' e " λ sin (9 = p(θ),

which is a supporting line to K{λ, μ ) .

To convert ( 3 ) into normal form we set

( 4 )
e cos θ + μ sin θ = k cos 0 ,

e~ λ sin θ ~ k sin ώ ,

cot φ = e 2 λ cot 0 + μ e λ ,

A;2 = ( β λ cos 0 + μ sin (9)2 + e ' 2 λ sin2 θ.

The normal form of (3) is then

A;' COS φ + y' sin 0 = p(θ)/k,

and so

p(λ, μ, 0) = p{θ)/k.

From (5) and (4) we see that

c s c 2 0 dφ = e 2 λ c s c 2 θ rfθ, e 2 λ A;2 sin2 0 = s i n 2 ^ ,

and so dφ = αf^A2. Thus 1

p ( λ , μ, φ) dφ = J p ( θ ) — .

N o w l e t λ a n d μ b e f u n c t i o n s of a p a r a m e t e r ί, w i t h λ ( 0 ) = μ ( 0 ) = 0 . T h e n

L ( λ U ) , μ ( O ) = L ( ί ) ,

a n d d i r e c t c o m p u t a t i o n f rom ( 6 ) r e s u l t s i n

All integrals go from 0 to 2π unless otherwise noted.
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-L'{0) r ί 1 1
(7) = / p ( 0 ) | λ ό cos 2(9 + -μ'o sin 2 (9 \ dθ = 0.

Since λ' and μ' may be taken at pleasure, it is clear that in order for t — 0 to

yield a minimum, we must have

(8) ίp(θ) cos 20 dθ = fp(60 sin 2(9 rf0 = 0.

In other words, a necessary condition that K give a minimum length is that the

second Fourier coefficients of p be zero.

3. Sufficiency. Suppose now that λ = μ = 0 is a critical value of L (λ, μ), not

necessarily the minimum. Then, as in § 2, we see that

ίp cos 2Θ dθ = ίp sin 20 dθ = 0.

Futher differentiation of (6), with the use of (8) and certain trigonometric i-

dentities, results in

(9) L " ( 0 ) = - | p ( 0 ) U 2 ( l + 5 cos 460+ 10 xy sin 4(9 + y2 (1 - 5 cos 4(9)

where % = λ^ , 2y = μ^ . Setting

1 2 1
(10) K(θ) = % 2 ( 1 ~ - cos 4(9) %y sin 4 (9 + y2 (1 + — cos 4 (9),

o o o

we may rewrite (9) as

(11) L " ( 0 ) = - Jp(θ)\K + K"\ dθ.

Suppose now that p is twice differentiate, and integrate the K term in (11)

by parts twice. We get

(12) ZΛ0) = - f(p + p") K dθ.

The discriminant of the quadratic form (10) is equal to -32/9, and the form is

positive definite. Let M be its minimum value for x2 + y2 = 1, and all 0. The

quantity p + p " is the radius of curvature, ds/dθ, of K, and so

=-j ML.
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If p is not twice differentiate, we approximate it uniformly by supporting func-

tions which are. The right member of (9), for these approximating functions, is

at least 3 ML/2, where L is computed for the approximating function; thus,

passing to the limit, we see that (13) is satisfied in this case also.

because of (13), we now see that if λ = μ = 0 is a critical point for L (λ, μ),

then it is a proper relative minimum. Consider now any transformation 7 0 , corre-

sponding to parameters λ 0, μ0, which yields a

for which the second Fourier coefficients of the supporting function vanish. We

may write T in the form ( TTQ1) TO; that is, in studying the length of the trans-

forms of K as function of Γ, we may study instead the length of the transforms of

Ko as function of TTQ1. We may write

7 Ύ - ' :

where

(14)

Now

X = e ( λ - λ 0 ) x'

y = ( μ e - λ o _ μ e " λ ) x' + e " ( λ - λ θ ) r ' =

£ - λ - λ 0 ,

7/ = μe" λ o - μQ

L ( λ , μ ) = Q ( £ η ) ,

and, by the foregoing analysis, Q ( ξ, η) has a proper relative minimum at ξ = η =

0. But the transformation (14) is nonsingular, and so L (λ, μ) has a proper rel-

ative minimum at λO5 μo Thus every critical point of L(λ, μ) is a proper relative

minimum. But an (analytic) function in the plane which has only minima for

critical points and which tends to oo at great distance can have only one critical

point [ 6 ] . Thus L(λ, μ) has only one critical point, and this must be at the

minimum.

THEOREM 1. A necessary and sufficient condition that K have the least

length of all curves into which it can be transformed by an area-preserving affine

transformation is that

Jp cos 2Θ dθ = I p sin 2(9 dθ = 0.

Henceforth we shall refer to such K as extreme curves.
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4. A six-vertex theorem. A vertex on a convex curve is a point where the

radius of curvature has an extremum. It is a theorem of Kneser (see for example

[ l , p. 160]) that every convex curve, if sufficiently smooth, has at least four

vertices.

THEOREM 2. Each extreme curve with a continuous radius of curvature has

at least six vertices. 2

The radius of curvature p is given in terms of the supporting function by

p = p + p ". Now

jp cos θ dθ = I cos θ dθ = /cos θ ds = φ dy = 0,

and similarly for f p sin θ dθ . Also

ί p cos 2(9 dθ = Γ ( p + p " ) cos 2Θ dθ = 0,

by two integrations by parts. Thus we see that

1 £.
(15) p ~ + 2_, ( α

π

 c o s ra^ + b sin n ί ) .
2 ί 7 3

It has been known since Liouville ( [5 , p. 264]) that (15) implies that p — L/2π

has at least six alternations in signs, and hence p six extrema.

In a very similar manner one can prove the following theorem, which however,

will only be stated.

THEOREM 3. Each extreme curve intersects a certain circle, of radius L/2πt

at least six times.

5. Some lemmas. If //(<f, μ) is the Minkowski Stϋtzfunktion of a convex

curve, then

p ( 0 ) = H{cosθ, s i n θ).

Now // i s a c o n v e x funct ion of ξ, η; p(θ)is not c o n v e x , b u t h a s the s o m e w h a t

Blaschke [2] has already shown that a convex curve K may be affinely transformed
until its radius of curvature is in the form (15), and thus that it has six vertices. How-
ever, the vanishing of the coefficients α 2 and ό 2 was attained in an entirely different way.
Namely, he found that ellipse K p of area equal to that of K, whose mixed volume with K
is a minimum. Transforming affinely so that K t becomes a circle, we see that K becomes
a curve satisfying ( 15). We have not been able to discover that Blaschke or others made
any application of this result to the present problem.
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analogous property of being sub-sine. A function f(θ) is sub-sine if, provided

f{β) = A cos θ + B sin θ at 0γ and θ2, where θ < θ < θ + π,

then

/ ( 0 ) < A cos (9 + S sin θ ίov θχ< θ < θ2.

A necessary and sufficient condition [ 4 ] that a periodic function p(θ) be the

supporting function of a convex curve is that it be sub-sine, or, if it is of c las s

C " , that p + p" > 0.

L E M M A 1. A necessary and sufficient condition that a function p(θ) of peri-

od 2π be the supporting function of a convex curve is that it be expressible 4n

the form

Cθ
(16) p(θ) = I sin {θ - t) da(t) + A cos θ + β sin θ,

where α is a nondecreasing function.

First let a supporting function p C C"; then

P + P " = g(θ) > 0 .

The solution of the differential equation p + p" ~ g(0) is readily verified to be

( 1 7 ) p ( 0 ) = / sin ( 0 - ί ) g ( ί ) Λ + p ( 0 ) cos ( 0 - 0 )

p ' ( . 0 o ) s i

which is of the form (16) with

α(0) = ί
Jθ0

Note that

α(0Q) = 0 and a(θQ + 2π) = J (p + p'O c?0 = L.

Now if p ^ Cκ /, it is the uniform limit of supporting functions pn which are. We

put each pn in the representation (17), and apply the Helly selection theorem

and the Bray-Helly theorem ([7, p. 29-31]) to obtain the result immediately.

The factors pή(θ0) offer no difficulty, since one easily shows that they are
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bounded for all n.

The converse is proved similarly. If a periodic p is given by (16), we can

approximate α by a sequence of smooth monotone functions <xn which give peri-

odic functions pn; these pn are sub-sine since they satisfy

Again using the Bray-Helly theorem, we have that p = lim pn; that is, p is a limit

of sub-sine functions, and so is sub-sine.

LEMMA 2. If p(θ) is a supporting function, and if there exist at least six

disjoint intervals in 0 < θ < 2π9 interior to each of which p is not identically of

the form A cos θ + B sin θ, then there exists a function η(θ) with the following

properties:

( a ) p + \η is a supporting function for small | λ | ,

(b) / η dθ = fη cos 2(9 dθ = fη sin 2Θ dθ = 0,

(c) η φ A cos θ + B sin θ*

Let Li α, < 0 < bjf j = 1, 2, , 6, be the disjoint intervals mentioned, and

let p be given by (16). We may assume that a(θ) is continuous at αy and bj.

Define

a (a.) for 0 < θ < α ,

α ( 0 ) for α. < θ < b.,

a(b.) for b. < θ < 2π.

while outside (0, 2π) we make dβ: periodic. Set

j 3 = Σ λ / i3 ;., where | λ;. | < 1 .

Then CL(Θ) 4- λβ(θ) is nondecreasing if | λ | < 1, as simple computation reveals .

We set

77. = / sin ( 0 - ί ) dβ.(t) and η = 2 ^ λ η..

Then p + kη i s of the form ( 1 6 ) , with α + λ/3 in place of α . In order that r/ have

period 277, and thus that (a) be satisfied, we demand that

(19) Σ λ ; . fsin<9 cί/3yC0) = Σ λ fcosθ dβ.(θ) = 0 .
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To sa t i s fy c o n d i t i o n s ( b ) of t h e lemma, we s e t

(20) Σ λ; Jηj dθ = Σλ ; . Jηj cos 20 dθ = Σ λ J ηέ sin 2(9

Equations (19) and (20) comprise five homogeneous equations in the six un-

knowns λy. They always have a nontrivial solution, which we employ for the con-

struction of β. If λk^ 0, then η is equal in /& to a nonzero multiple of p(θ),

plus sine and cosine terms, and this by hypothesis is not of the form A cos θ +

B sin Q. Thus ( c) is satisfied, and the lemma is proved.

6. The minimax problem. We now restrict our attention to extreme curves, and

seek the maximum m of L2/A. A crude estimate of m can be obtained as follows.

If K is any convex curve of area 1, inscribe in K a triangle Δ of maximum area,

/4(Δ). Then at each vertex of Δ, K must have a supporting line parallel to the

opposite side of Δ, and these three supporting lines form a triangle Δ t . Trans-

form the plane in an area-preserving affine way so that Δ and Δt are carried intov

equilateral triangles Δ ' and ΔJ* and K into K'.- The perimeter L ( Δ ' ) of Δ ' is

given by

L(Δ ' ) = 6

Then

L(K') < L(Δp = 2L(Δ') = l2y/A(Δ')/yβ < 12/^3.

Thus for the transform X Ό f K, we have

L2/A < 48 y/3, and so m < 48 V~3

On the other hand, the equilateral triangle gives

L2/A = 12 V % and so m > 12 yβ.

We now normalize our problem by considering extreme curves of length 1, and

try to minimize the area. By the usual compactness argument ( [ 2 , p . 6 2 ] ) , there

does exist a minimizing curve K. Let p be the supporting function of K. Suppose

there exists a function η(0) satisfying conditions ( a ) , ( b ) of Lemma 2. Con-

sider the area A(\) of the extreme curve, of unit length, whose supporting func-

tion is p + λη. We have
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( 2 1 ) 2A(λ) = J\{p + λη)2 - ( p ' + λ r , ' ) 2 ! dθ

= 2/1(0) + 2λ f{pη - P y ) dθ + λ2 f{η2 - η'2) dθ.

Because of the extreme nature of K9 the term f(pη — p'η') dθ = 0. Because of

conditions ( b ) of Lemma 2, the Fourier series of η will be as follows.

η = aχ cos θ + ^ sin (9 + ^ ( α c o s / # + &• sin / # ) >
3

and by Parseval's relation,

+ έ

Similarly (77' being bounded),

— Ϊη'2

π J
b2)

and so

(22) J { η 2 - η ' 2 ) d θ = π £ ( I - / 2 ) ( o 2

+ fc
2 ) .

3

Since /l(λ) > ^ (0), we see from (21) and (22) that α; = bj = 0 for 7 > 2, so that

η^at cos # + & ! sin (9. Thus it is not possible to satisfy ( a ) , (b), and (c)

simultaneously.

Now if K is a polygon, p is piecewise of the form A cos θ + B sin θ, and con-

versely. If K is not a polygon it is clear that one can find as many intervals as

desired in each of which p is not of that form, and Lemma 2 applies. Lemma 2

also applies if K is a polygon of six or more sides. Thus it is not possible for

K to be other than a polygon of five or fewer sides.

It appears very likely that K is an equilateral triangle and that m = 12 yHI.

To eliminate the cases of four and five sides is just a problem in the calculus,

but possibly a very difficult one. In these cases there are not enough sides to

construct the variations used above, which consist of sliding sides in and out

parallel to themselves, so if a variational method is to be used, a different kind

of variation, involving changing the angles, must be found.
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