
ITERATES OF ARITHMETIC FUNCTIONS AND A PROPERTY
OF THE SEQUENCE OF PRIMES

H A R O L D N. S H A P I R O

1. Introduction. In a previous paper [ 2 ] , the author has investigated certain

properties of the iterates of arithmetic functions which are of the following form.

For n = Π pf1,

(1.1) /(«) = Π /(Pέ) [A(Pi)frl,

where / ( p t ) is an integer, 1 < f(p ) < p , and ^ ( p t ) is an integer < p.9 for odd

primes p ; ; whereas /(2) = 1, A (2) = 2. We shall denote the set of these arith-

metic functions by K, These conditions ensure that for n > 2, /(n) < n, and hence

if / (n) denotes the k-th iterate of /there is a unique integer k such that

(1.2) / * ( * ) » 2 .

For this k we write k = CΛn). We define

Cf(l) = Cf(2) = 0.

In this paper we propose to consider the problem of determining a g G K such

that for all odd primes p, and all / G X,

(1.3) Cg(P)>Cf(p).

The solution to this problem produces an interesting property of the sequence of

primes in that we shall show that (1.3) is equivalent to having g skip down

through the primes. More precisely, if p = 2, p = 3, , and in general p. de-

notes the i-th prime, (1.3) is equivalent to having g ( 3 ) = 2, g ( 5 ) = 4 or 3,

and

(1.4) g(p.) = p . β l for i > 3 .

2. A theorem concerning functions of K. In carrying out the proof of the result
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stated in the introduction, we shall require a certain property of the iterates of

the functions of K, which we now derive.

For n = Π p ,we define the arithmetic function A(n) as

Λ{n) -

where the A (p.) are as given in (1.1). It then follows that, for all integersm and

n,

A(mn) = A(m) A(n) and A (n) < n.

LEMMA 2.1. For any divisor d of n, we have for f G K,

Aid) fin)

(2.1, -KTΓ^'

where A(d) f(n)/f(d) is an integer.

Proof. We can write

f{n) = Aίn) Π
p\n

Ai \ n / ( p ) π
= Λ{n) 11 —— 11

p \ d ^ ( P ) p i n

where

A(d) # A(d') '

d'= Π P,
P I

so that d'divides n. Since A (n) is completely multiplicative, we have then

A(n) = AI^\ A{d'), or 7̂ =

Hence
Ajd) fjn)

fid)
A\ —
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where clearly A(d) f(n)/f(d) is an integer.

LEMMA 2.2. For f E Kf if e(n) = 0 or 1 accordingas n is odd or even,

(2.2) Cf(2n) < Cf(n) + e(n).

Proof. S i n c e f G K, we h a v e / ( 2 ) = 1, A ( 2 ) = 2 , and h e n c e

f(2n) = 2/U) or f(n),

where if n is odd f(2n) = / ( Λ ) and Cf(2n) = Cf{n). Otherwise, continuing, we

have

/ 2 ( 2 * ) = 2/2(/») or f2{n)

.
and in general

fk(2n) = 2 / A ( Λ ) or / A ( i ι ) .

Then taking k = Cf(n) we get

/ Λ (2rc) = 4 or 2,

so that

(^(2/0 < k + 1 = C^.(n) + 1.

THEOREM 2.1. If x is such that for all z < x, Cf(z) < Cf(x)f where f £ K9

then for all y9

(2.3) Cf(xy) < Cf(x) + Cf(y) + e(x).

Proof. We have

a x f(χ)Ky)A(d)
f ( x y ) = JiT) '

where d=^(x,y). Letting

f(x)A{d)

β

we know from Lemma 2.1 that βχ is an integer less than or equal to x; and
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Then similarly

fHχy)-βaf
2(y),

where

y - ( / 3 t

Thus in general we have:

f k ( χ y ) = β k f k ( y ) , β k < β k - ι $ • - < )8

so that, letting & = C/(;y), we get

fk{xy) = 2 j % , βk < x .

Then if /3^ < x we have via Lemma 2.2, and our hypothesis,

Cf(xy) = ίγ(y) +

< Cf(y) + Cf(βk) +

< Cf(y) + Cf(x).

On the other hand, if βk = x we have

Cf(xy) = C ^

< Cf(y) + Cj(x) + e{x),

and the theorem is proved.

3. Derivation of the main result. In carrying out the proof of the equivalence

of (1.3) and (1.4) we shall need certain estimates from elementary prime number

theory. These results are given in the following lemma. As is conventional, we

shall write pχ = 2, p 2 = 3, » » , and let p^ denote the i-th prime.

LEMMA 3.1. Letting π(x) = the number of primes < xy we have

( a ) 2 P / - 2

 > pi for ι > 5 >

( b) for all positive integers x > 2f

(3.1) π(x) - TΓ/-
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Proof. Both of the above are deducible from a result of Ramanujan [ l ] which

asserts that for x > 300,

/«, n\ / \ ίx\ x/6 - 3 \ίx
(3.2) π{x) - π - ) > — i —

\2/ log x

Ramanujan gives explicitly the result that for x > 11,

π(x) - 7r|—) > 2,

which implies ( a ) . As for (b) , we note that since, for x > 10,590,

(-_ x - 3 V^) > yβ ,
log * \6 /

we have (3.1) for all x > 10,590. We can check (3.1) for all x < 10,590 very

quickly. We check up to x - 17. Then let

α0 = 10,590, a i = 2,309, α 2 = 653,

α 3 = 229, α 4 = 103, α 5 = 59,

α 6 = 37, α 7 = 23, α 8 = 17;

inspecting tables of primes, we see that these numbers have the property that

ττ(α, + 1 ) - π{

which completes the proof of ( b ).

We now give our main result as:

THEOREM 3.1. If g(x), g 6 K> is such that Cg(x) is maximal for all primes

p, that is Cg(p) > Cf(p) for all f E K and all p, then g (3) = 2, g (5) = 4 or 3,

and, for i> 3, g(pi) = Pi-ι

Proof. Since g £ K, we clearly have g(2) = g ( l ) - 1; and g(3) = 2. Now

in choosing g(5) < 5, we consider all possible values and choose the one which

makes Cg(5) a maximum. Symbolically, we may write

g(5) = C - ι { m a x [ C ( ; ) , 0 < / < 5] 1 = 4 or 3.

Thus g (5) has two possible values 4 or 3. Similarly proceeding to p 4 = 7 and

ρ 5 = 11 we have
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g(7) = C"Mmax [ C ( / ) f 0 < / < 7]} = 5

and

g ( l l ) = C"M max[C(/) , 0 < / < 11]} = 7.

In general, for the ι-th prime we must have

(3.3) e ( p f ) = C~ι { max[C(/) , 0 < / < p . ]J .

Now it would seem that the determination of this value gip^), since it depends

upon the C ( ; ) , which in turn may require the values of g(n) for composite n,

would remain undetermined so long as nothing is said about the function A(n).

However, as we shall see, the maximum of these C(/) , required in (3.3), will

turn out to be completely independent of A (n).

We have noted that the theorem is true for i = 4, 5. Proceeding by induction,

assume it true for all i'f 4 < i'< n, and consider n > 5. From (3.3) we see that

in order to complete the proof we need only show that for any x such that

O . 4 ) Pn > x > ?„_,

we must have

(3.5) C(x) < C(pn_ι) = n - 2.

Assume that for some x satisfying (3.4), (3.5) is false, and let x be the smallest

one satisfying (3.4) for which

(3.6) C(x) > n - 2.

Then we have also

(3.7) C(g(x)) > n - 3.

We shall now show that g(x) £ pn_χ For suppose that g{x) = PΛ_ 1 Then #.

must have a prime divisor q such that g{q) = p _ But from (3.4) we see that

q < Pfl-j which is impossible.

If g(x) < Pn^ί9 by our inductive hypothesis we would have

C(g{x)) < C(pn_2) = n- 3.

Now i f C ( g ( x ) ) s τ ι - 3 9 i t would follow that g(x) = p n - ι This in turn implies

that pn^ί divides x. Since x £ Pn.1> t n ί s yields
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*>*Pn-ι > P n ,

which is a contradiction. The only alternative left is that C(g{x)) < n — 3,

which contradicts (3.7). Thus we conclude that g(x) > p so that we must

have

pn > x> g(x) > p n _ l #

Since x is the smallest integer satisfying (3.4) and not (3.5), we must have

) ) < n - 2 or C(x) <n~2; hence

(3.10) C(x) = τ ι - 2 .

Now x is not even, for if it were we would have

x Pn

which is a contradiction. Also x is not divisible by 3 for n > 5; for if it were,

g(x) would be even and we would get, using Lemma 3.1 (a) ,

But then

C(g2(x)) < C(pn_3) = τ ι - 4 .

If the inequality sign holds, this implies C(x) < n - 2 in contradiction to (3.10).

On the other hand, if the equality sign holds then g2 {x) = pn_3 This in turn im-

plies that PΛ_2 divides g(x). If g(x) £ Pn-2>
 t ' i e n

_2 >Pn ,
which is impossible. Finally, g(x) = P n_ 2 implies that x is divisible by p n - 1 >

which is impossible.

Also, if x is not divisible by 5, the argument is the same as for 3. On the

other hand if g ( 5 ) = 3, and x is divisible by 5, it results that g 2 ( 5 ) is even,

and hence

1 „ 1 2 ^ 1 2 3 Pn
3 U ) 2 ( ) U )

But this again implies that C(x) < n — 2, which is impossible.
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Suppose then that p > 7 is the smallest prime which divides x. Since x is com-

posite, 1 < x/p < x and p <\fx. It is clear from (3.3) and our inductive hypo-

thesis that for z < p, C (z) < C(p). Hence via Theorem 2.1 we have

n - 2 = C{x) < c l - \ + C(p).

Via our inductive hypothesis we see that, since p < \/lc~,

so that

(3.11) cl-\+ π(<Jx)>n-2.

Since

x x

and

C(x) = Cip^) = n - 2,

we have

C(X) - C(~\ > w(χ)

by Lemma 3.1 ( b ) ; and

(3.12) C/-J < n - 2 ~

Combining (3.11) and (3.12) yields π(^fx) > \fx9 an obvious contradiction: thus

the proof of the theorem is completed.

4. Some remarks and generalizations. From the above we note that imposing

the condition that the function Cf(n) be maximal at the primes determines u-

niquely the values of f(n) at the primes without restr ict ing A(n) in any way.

This is natural from a certain point of view, since the function A (n) plays a role

only in evaluating f{n) for powers of a prime. This might lead one to s u s p e c t

that requiring that Cf(n) be maximal at the p? in addition to the p^ would also
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determine the values of A(n). This is in fact the case, and one may prove (we

omit the proof since it is long and very similar to that of § 3) :

THEOREM 4.1. // Cg{x) is maximal at the primes and squares of primes,

then Ag (3) = 2 or 3, Ag (5) = 5 or 4, and for p { > 5, Ag (p t ) = p { or p;_ ι # Further-

more this same maximal Cg{x) is realized for any admissible choice of the Ag(pι)

(that is, as either pi or p^_ t ) .
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