ORTHOGONAL HARMONIC POLYNOMIALS

P. R. GARABEDIAN

1. Introduction. In this paper we develop sets of harmonic polynomials in
%, v, z which are orthogonal over prolate and oblate spheroids. The orthogo-
nality is taken in several different norms, each of which leads to the discus-
sion of a partial differential equation by means of the kernel of the orthogonal
system corresponding to that norm. The principal point of interest is that the
orthogonality of the harmonic polynomials in question does not depend on the
shape of the spheroids, but only on their size. More precisely, the polynomials
depend only on the location of the foci of the ellipse generating the spheroid,
and not on its eccentricity.

The importance of constructing these polynomials stems from the role which
they play in the calculation of the kernel functions and Green’s functions of
the Laplace and biharmonic equations in a spheroid. One can compute from the
kernels, in turn, the solution of the basic boundary-value problems for these
equations. As a particular case, one arrives at formulas for the solution of the

partial differential equation

0} 1 df 9

—_— et = — f — =

> PO 922

which arises in discussion of axially symmetric flow.

Results of the type presented here have occurred previously in the work of
Zaremba [10], and are related to recent developments of Friedrichs [3, 4] and
the author [5]. The polynomials investigated in this earlier work are in two
independent real variables and yield formulas for solving the Laplace and bi-
harmonic equations in two dimensions. Thus it is natural to suggest that the

basic results generalize to n-dimensional space. In this connection, it is
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586 P. R. GARABEDIAN

easily verified that a part of the theory carries over to arbitrary ellipsoids in

three-dimensional space.

2. Notation and definitions. We shall make use of rectangular coordinates

%, ¥, Z, cylindrical coordinates p, ¢, z, and spherical coordinates r, 0, ¢.

Thus

R
[}

p cos ¢ =r sin O cos ¢,

p sin ¢ =r sin 0 sin ¢,

<
n

z =r cos 0.

The Laplace integral formula

(n+h)!

P:(cos 0) = / (cos O + i sin 0 cos t)" cos ht dt

wif nl

for the Legendre polynomials P,(cos 0)=Prf(cos f) and the associated
Legendre functions P:(cos 0) is basic for our work. In terms of Laplace’s

integral we obtain the solid spherical harmonics in the form

+h)!
r"Ph(c(,s())coshqﬁ:S_n___)_ /ﬂ (z + ip cos t)" cos h¢ cos ht dt,
" mitnl Jo
(n+h)!
r"Prf‘(cos 0) sin k¢ = —L—f (z + ip cos t)" sin hep cos ht dt.
wi

They are homogeneous harmonic polynomials of degree n in x, vy, z

We shall be interested in obtaining complete orthogonal systems of har-

monic polynomials in the interior of the prolate spheroid

2 2
z p
+ =1,

ch? o sh? o

(1)

and in the interior of the oblate spheroid

22 p?

+ =1,
sh? o ch?«

(2)

Thus it is convenient to introduce coordinates u, v defined by the relations
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z+ip=cos (u—iv)=cosuchv+isinushv
for the prolate case, and defined by
p+iz=sin(u+iv)=sinuchv+icosushv

for the oblate case. In both cases, the boundaries of the above spheroids have
the equation v = .

We define
U n ) (n+h)!]l/2 1 /WP( ) ) b d
nhipy 2)= DY nih , n zZ +1ip cos t) cos ht dt,
(n+h)1]Y/2 in-h T
Vo n(p, z)= ] /Pn(iz-pcos-t)coshtdt.
’ (n-h)! 7 0

By the addition theorem for the Legendre polynomials we obtain the well-

known expressions

(n=h)17"2 b A
Un b(py 2) = | —— P%(cos u) P*(chv),
’ (n+h)! n n
—-R)17Y2
Van(p, 2) = En h;'] i"'hP:(cosu)P:(ishv),
n+h)!

where in the first case u, v are coordinates in the prolate spheroid (1) and in
the second case u, v are coordinates in the oblate spheroid (2).

Here

Ph(chv) = shhv P (chv),

Ph(ishv) = chv P) (i shv).

The expressions
Un,h(p, 2) cos h, Un,n(p, 2) sin ke,
Va,h (py 2) cos h, Va,h (p, z) sin hep

are harmonic polynomials in x, ¥, z of degree n.
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We shall be concerned here with the new polynomials

0
Xn,h = - Un+1,h
0z

(n+1+h)']

(n+1-h)! _/ P’ (z+ipcost)cos htde
n+

and

d
Yn,n = a'—z' Vn+l,h

»

(n+1+h)!]1/2

n- v
(n+1-h)! ” ./0 Pi+1(iz —pcost) cos ht dt.

The functions
Xn,1(p, z) cos he, Xn,h(p, z) sin ke,
Ya,1(p, 2) cos he, Yo,1(p, z) sin k¢

are linear combinations of the classical spherical harmonics. The functions
Xn,0and Y, o involve only zonal harmonics and satisfy the partial differential
equation

9} 19 9%

— _—e— o —— =
dp* P %  9z?
of axially symmetric flow.

Let us denote by D either the prolate or the oblate spheroid described
above, and let us denote the Dirichlet integral over D by

. of a5 9f dg of %)
(f,g)— gf{a-a;+5-;$+z-é-; dxdydz

]
e
[ N—
\

Q;IQJ
T |ox

Y

Q

(Ag = 0)’

where S is the surface of D, and where v and d o denote outer normal and area
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elements on S. Since z+ip=cos(u—i v) and p+iz=sin(u+i v) are

isogonal mappings, we obtain, on the spheroid S,

d 9 deé d 9
0 — = _—
v p e uav

Hence

; dg m f2m  dg
3 > == hnuned = — .
(3) (f, g) {ffavpd¢du /; ’/; favpdqfxdu

3. Orthogonality. If & £ k, we have by the orthogonality of ordinary Fourier

series
(Un,h cos ho, Um,k cos k¢) = 0,
(Un,h sin h, Un,k sin k¢) = 0,
(Un,h cos b, Un,k sin k¢) = 0,
(Un,h cos he, Um,h sin h¢p) = 0,
and similarly for ¥, j. For k = k we obtain in the prolate spheroid

OUm,h

(cos?hep)p dep du

m fam
(Un,h cos hp, Up, b cos hop) = / / Un,h
o Jo

v

(n-h)!
(n+h)!

m(1+8,,) Ph(cha) [sho PP*1(cha) + h cha P! (cha)]

. /o" P:(cos u)Pg(cos u) sin u du

27T(l+80h)
2n +1

Ph(cha) [shaPH* (cha) + & ch & PP (ch ®)] 8nm,

where 8, =0 for n # m and &, = 1.

Similarly
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(Up,n sinhp, Up,p sin h¢p)

2
2n+1

P! (ch ) [sha P! (chat) + b ch o PH(ch )] 8-

For the oblate spheroid we have in like manner
(Va,h cos hp, Vi h cos hep)

(n=nh)!
=a(1 +80h) (—,-L~—h—:-'- jrtm-2h P:(ish o) [i chC(Pn]:“(ish «)
n+h)!

hy. T ok h .
+hsha P (isha) P (cos u) P (cos u) sin u du
)

277(].+50h)

= ——— DR sha) [i cha PG sh )
n +

+hsha PH(isha)] Spm.
Also

(Vn,h sin hpy Vi, h sin hp)

27

2n + 1

(~1)™# P (i sho) [i cho PA*1 (i shot) + h shot P (i sh )] 8

We have therefore proved:

THEOREM 1. The harmonic polynomials Uy j cos h¢y Up p sin b form a
complete orthogonal system for the interior of the prolate spheroid (1) in the
sense of the Dirichlet integral. The harmonic polynomials V, p cos he¢s Vp p
sin h¢ form a similar system inside the oblate spheroid (2). The polynomials
Un,o and Vp,o alone form, respectively, complete orthogonal systems for the
equation of axially symmetric flow inside the spheroids (1) and (2).

We turn next to a less obvious result for the polynomials X, ; and Y, .

Let
(f, gl = ffffgdxa’ydz.
D
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Then clearly, if & £ k,
(X5, cos hpy X, cos kel =
[Xn,h sin hpy Xp,k sin k¢p)/= 0,
(X, 5 cos hpy Xpm,k sin ko] =
[Xn, 4 cos hpy Xpm,h sin hgp] =
and similarly for ¥, ;. Now

dJ du 9 dv 0

—_— — o —— —

(-9—2 dz du dz dv
when z +ip=cos (u~iv). Also

du  dv d(u-—iv)_d(z—ip) du+iv) dlu-iv)

9z ‘9z dz+ip) dwriv) dz—ip) dlz+ip)

d(u, v)
a(z, p)

sin (u+iv).

Therefore

[X,,,h cos hep, f]

aU
- ffffcoe.h(ﬁ[ PLE inwchv— ;“'h cos u shv

v

d(u, v)
d(z, p)

111/2 ”
[EZ:i+Z;'] ///2 f cos hep sin u sh v

[Ph (ch v)Ph l (cos u)sinu chwv

n+1

pd¢ dp dz

+ PP (cos u) PH} '(ch v) cos u sh v]dqédudv.

n+l nti

The last integral vanishes when f is a harmonic polynomial of the form
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h h
P (cos u) P, (chv) cos he

with m < n, since

f pht !(cos u)smuP (cos u)sinudu=0
0

n+l

/ nﬂ(cosu)cosuPrf:(cosu)sinudu=0

Hence for n # m

[Xn,hcos hpy X p cos hp]=0
and similarly

[Xp,p sin hpy X p sin b1 =0

For m = n, we have

n+l+h

1/2
f=Xn,hcos b = [ ] (20 +1) Up p cos hp + <=+,

n+l-h

where the dots indicate harmonic polynomials of lower degree, which are
orthogonal to X, 5 cos he¢p. Thus

[Xn,h cos h¢py Xp h cos ko]

h)! m
=(2n +1) (n+h;'/,/. /2 cos? he sin u sh v P (cosu)Ph(chv)

. [pht1 (cosu) P

1 nﬂ(ch v)sinuchv

+ n+l (cos u) P:“l(ch v) cos u sh v] d¢ du dv

=77(1+50h)( +h)'// P (cos u)? Ph(ch )

(chv)shv chv sinu dudv

n+l
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(n=h+1)!
+7'r(1+50h) VY /f nﬂ(cosu)zP:(chv)

P:Ill(ch v) sh?v sin u du dv

(n+1+h)/aP:(chv) sh v
2n+3 0

l(n+2+h)PE_(ch u)chv+Ph+1 (chv)shv]dv.

nt+i

The same value is obtained if we replace cos h¢ by sin h¢ throughout, 2 > 0.

For the oblate spheroids, we have, on the other hand,

d du 4 Jdv O

—_— e —— o — —

dz dz du 9z dv

with p + iz = sin (u + i v). Hence

du  dv  du-iv) d(p+iz) dlu+iv) d(u—-iv)
9z 9z d(z+ip) du+iv) d(p+iz) dlz+ip)

. 9(u, v)
d(p, z)

cos (u+iv).

Therefore

[Yn,h cos ho, f]

v, av
- j]]’ f cos h¢l sin u sh v~ r:;l’h cos u chv

v

0 (u, v)
. do dp dz
35, 2) pde dp
1]1/2
=i"+l-h[§n+i Z;'] // 2‘”fcos/u;zS sinu chv
n+l+

[Ph (1. shv) P:Hl(cos u) sinu sho
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(cos u) ph

+1 n+1

'(ishv)cosu chv]de dudu.

n+1

This integral vanishes when f is a harmonic polynomial

Prz(cos u) Pﬁ(ish v) cos ho

of degree m < n, since

-/; P:ﬂl(cos u) sin u Prg'(cos u)sinu du=0

™ ok h .
./; P, (cos 1) cos qu(cos u)sinu du=0

Hence, for n £ m,
Ly, b ©os hé, Y ' h COS h¢p1=0
and also

[Yn,h sin ho, Y, psin h¢l =

For m = n, we note that

n+l+h

=Y shd=—] —m
f n,h ©° ¢ [n+1-—h

1/2
] (2n+l)Vn’h cas hep + +o+,

where the dots represent harmonic polynomials of lower degree, which are
orthogonal to ¥, , cos h¢. Therefore

[Yn,h cos he, Y, , cos hep ]

— )
=—(2n+1)i2"'2h+l§n h;'// fz‘”cos hé sinu ch v
n+

Ph(cos u) Ph(t sh v).[Ph

oy (ish U)P:::(COS u) sinu sh v

+1 nﬂ(cos u)Ph 1(zsh v) cos u chv]de du dv
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277(1+80h)

-— (-1)"'h*1i(n+1+h)/O'“P:(ishv)chu

[(n+2+h)Ph

n+1(i sh v) sh v+iP:++11(ish v)chovldv.

We obtain the same value if cos h¢ is replaced by sin Ag.

This completes the proof of:

THEOREM 2. The harmonic polynomials X, j cos he, X, p sin he form a
complete orthogonal system for the interior of the prolate spheroid (1) in the
sense of the scalar product

[f, gl= ./[:)/]fgdxdydz.

The corresponding system in the oblate spheroid (2) is

Yn,h cos hg, Yn,h sin ho.
The zonal polynomials X, o and Y, o are complete and orthogonal for the equa~
tion of axially symmetric flow in their respective domains (1) and (2).

Friedrichs [4] has investigated the eigenvalue problem

M1 (0f/0z)? dx dy dz

(fz f2] .
= = maximum

(D[] §(af/ax)? + (3f/3y)? + (8/02) ) dx dy dz

for harmonic functions f in quite general regions D of space. It is clear from

Theorem 1 and Theorem 2 that we have:

THEOREM 3. The eigenfunctions for the problem

[fzs f2]
(£, N

= maximum, Af =0,

in the prolate spheroid (1) are
Un,h cos he, Un,h sin hd,

and in the oblate spheroid (2) they are
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Vn,h cos ho, Vn,h sin h¢.
The corresponding eigenvalues are

(ch v)ch v+PM 1 (ch v)sh vldo

n+1

[ZPMchv)shol(n+2+h)PE

n+1

(n+1+4)

(cha)lsha PAFE(cha)+hcho PR (cha)]

n+1

for the prolate spheroids and (n+1+h)Q, where Q is the expression

ifoaP:(ish v) ch v[(n+2+h)P:+l (ishv)shv+i Pt (ishv)chovldy

n+1

’

Pk Gisha)licha PAIt(isha)+hsha Ph (isha)l

for the oblate spheroids.

Friedrichs was led to this extremal problem through his investigation of
Korn’s inequality and existence theorems for the partial differential equations
of elasticity. We shall show in the following how the eigenfunctions can be

used to solve the biharmonic equation.

One sees easily from Theorem 3 that
Un,h cos ho, Un,h sin ho
and

Vn,h cos ho, Vn,h sin h¢

are also orthogonal in the norm

JT(EEY + (ELY Yot = = 11

However, we do not go into details since this norm leads to no apparent ap-
plication.

One can obtain quite interesting results, on the other hand, by using the
orthogonality of the X, , and the Y, ; over the interior of the ellipses (1) and



ORTHOGONAL HARMONIC POLYNOMIALS 597

(2) for all values of & to obtain a corresponding orthogonality of the same

polynomials over the surface of the spheroids with respect to a suitable weight

function. Indeed, we have
d[X hé, X ke
T n,h €08 hépy Xp i cos k¢

2n(1+80h) (n+1+h)8hk 8 m
- 2n +3

d fa_,
"'iz./; Pn(chv)shv

. [(n+2+h)Ph (chv)chv + P::ll(ch v)shvldv,

n+1

whence

fJ‘{Xn,h cos h¢Xm,k cos k¢} ll—(z+ip)2!'l/2 do
S

27(1+8,,) (n+h+1)

Ph(ch o) sh o
2n+3 n(cha)s

[(n+2+h)PH (cha)cha + PRI (cha)shalsy, 5, .

Likewise, by the same reasoning,

f—’.{Yn,h cos hg Ym,k cos k¢}|1_(p+iz)2‘1/z do
S

27(1+8,,) (n+h+1)

. -h+ hy-
513 i(-1)" lPn(zshoc)chO(

«[(n+ 24—h)P,:'+1 (isha)sho+iP*  (isha)chaldy, 8,.,,

with exactly the same formulas in both cases if cos h¢ is replaced by sin Ad.

This calculation yields:

THEOREM 4. The polynomials X, ; cos h¢y X, , sin h¢ are complete and
orthogonal over the surface of the spheroid (1) in the sense of the scalar pro-

duct
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if, gt= fj fell-(z+ip)?*|'?%do
S

with weight function |1~ (z +ip)|'/? equal to the square root of the product
of the distances from (p, ¢, z) to the points (0,0, 1) and (0,0, —~1). The
harmonic polynomials Yn,h cos hdo, Yn,h sin h¢ are complete and orthogonal
over the surface of the oblate spheroid (2) in the sense of the scalar product

if, g} = ff fegll=(p+iz)*|'? do.
S

There exist quite clearly further orthogonality properties of the polynomials
Unh and V, , which do not depend on the shape of the spheroids (1) and (2).
However, we make no pretense here at tabulating all possible orthogonal har-
monic polynomials of this type (cf. [8]), but proceed rather to apply the re-

sults already obtained to the Laplace and biharmonic equations.

4. The kernels. The Green’s function G (P, Q) for the Laplace equation
in a region D is a harmonic function of the coordinates x, y, z of the point

P in D, except at (), where

G(P’ Q)=

+ harmonic terms,

1
r(P, Q)
and it vanishes for P on the surface S of D. Here r(P, Q) denotes the distance
from P to Q). The Neumann’s function N (P, Q) has a similar fundamental singu-

larity,

+ harmonic terms,

N(P, Q) = —————
(. Q) r(P, Q)

while its normal derivative is constant on S and
_UN(P, Q)do (P) = 0.
S
The harmonic kernel function K (P, Q) is defined by the formula [ 2]

1
K(P, Q) = yp {N(P, Q) - G(P, O)}.



ORTHOGONAL HARMONIC POLYNOMIALS 599

If f,(P) is a complete orthonormal system of harmonic functions in D in the

sense

(fru fm) = anm:

[ 1as-o.
s

then one has the Bergman expansion

with

K(P, Q)= 2" fu(P)fa(Q).

n=1

On the other hand, if g,(P) is a complete orthonormal system of harmonic
functions in D in the sense of the scalar product

if, g} = ,gfgwda

corresponding to an arbitrary positive weight function @ on S, then the kernel

n=1
is given by [ 7]

ff 1  dG(T,P) 9G(T, Q)

HP’ =
(0 (am? % o(T) (D) o (T)

do(T).

For P on S we have

1 4G(P, Q)
H AL £
w(P)H(P, Q) = )

The Green’s function I' (P, Q) of the biharmonic equation
AAF =0

is a biharmonic function of the coordinates of P, except at (J, where
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['(P, Q) =-r(P, Q) + biharmonic terms,
and for P on S it satisfies

ar(p, Q)

F(P:Q)= aV(P)

If ,(P) is a complete orthonormal system of harmonic functions in the sense
Lhny b = Snms
then the kernel function
k(P, Q) = 2= hn(P)ha(Q)
n=t

is given by the identity [5, 1€]
1
kE(P, Q) =~ = APYAQYT (P, Q).
7

The relation here between the harmonic functions A, and the biharmonic kernel

function % is a consequence of the nature of the energy integral

fff (AF)? dx dy dz
D

for the biharmonic equation.

We discuss here the expansion of the kernels K, H, and k& in terms of the
orthogonal polynomials of §3 for the case where D is a prolate or oblate
spheroid. One obtains easily from Theorems 1, 2, and 4, together with the

computation of the related normalization constants, the following results:

THEOREM 5. In the prolate spheroid (1) we have

K(pyz, ¢35 p% 2% ¢7)

=§ Zn: (2n+1)Un,h (p,z)Un,h (P'9z’)c°5h(¢_¢’)

n=t h=o 2m(1+8,,) P*(cha)lsha PP*! (cha)+h cha P (cha)]

+ C,
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where C is a constant chosen to agree with the normalization of Neumann’s
function. In the oblate spheroid (2),

> & =D (24 1)
K( 12y P5 '9 ', ’)=
Potn $iph 20 @) = 2 2

Vn,h(p, z) Vn,h(p', z’)cos h(p—¢”)
PhGisho)licha PA* (i sho) + hshaPP(isha)]

+C,

where again C is a suitable constant.

THEOREM 6. In the prolate spheroid (1),

(2n +3)
2n(1+80h)(n+1+h)

[ n

k(P’ 2z, ¢; P’, Z', 96’) = Z Z
n=0 h=0
Xn,h(p,z)Xn’h(p',z') cos h (¢ -o”) )

foa P:(ch v)sh v[(n+2+h)P’:‘+l(ch v)ch v+Ph+l(ch v)shv]dv

nt+1

In the oblate spheroid (2),

o0

n (=)™ i(2n+3)
k(p, z, b3 " ” ) =
(P2, 45 % 2% ¢7) ,IZ_;I,EO 27(1+8,,) (n+1+h)

Yn,h (py 2) Yo (p% 2" cos h(p~¢?)
f(‘;Prf’(i sh v) ch v[(n+2+h)P,{’+l(i shv)shv+ iPh“(i sh v)ch v]dv.

nt+1

THEOREM 7. In'the prolate spheroid (1),

(2n +3)
27(1+38,,) (n+1+h)

o0 n
H(Pyzv¢;P’9z:¢’)= Z Z
n=0 h=0
Xn’h(p,z)Xn'h(p',z') cos h(gp—o”)
Ph(cho)sha [(n+2+h)PA, (cha)cho+PAH (cho)shal -

n+1

when w=|1-(z+ip)2|/2 If o=|1-(p+iz)?|'/% we have, for the
oblate spheroid (2),
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(2n +3)i(~1)""
20(1+8,;,) (n+1+h)

H(p, z, ¢5 p' 2% ¢7) = Z Z

n=0 h=0

Yn’h(p, z) Yn,h(/"v z’)cos h(p— ")
Ph(isha)chal(n+2+h)Ph (isha)sho+iPil(ishoa)echal

Theorem 7 is of interest because it yields, say for (1), the relation

(2n +3)
27 (148, (n+1+4)

1 0G(p,z, ¢;p% 2% ¢

oo n
- — =ll—(z+ip)2ll/zz Z
4m dv n=0 h=o0

Xn,h(p, Z)Xn,h(P” z’)cos h(¢p—-¢”)
Ph(cho)shal(n+2+h) PR, (cha)cha+ Pt (cha)shal

nt+i nt+1

when the point p, z, ¢ lies on S. This formula can be compared with the cor-

responding, more classical, formula which follows from Theorem 5.

Theorem 6 permits one to calculate the biharmonic Green’s function for
prolate or oblate spheroids, and thus in turn to solve the biharmonic boundary-

value problem in this case. Indeed, we have (cf. [5])
1 do(T) 1 E(T, R)do(T)do(R)
P = — -— .
0 ) 2n '/l;ff (T, P)r(T, Q) 2= "I;ﬂg r(T, P)r(R, Q)

It is significant to note in this connection that all our results can be extended

to the case of the region outside a spheroid. One has merely to replace for this
purpose the Legendre functions P: by the Legendre functions Qr}zl of second
kind [6]. Thus Un, should be replaced, for example, by

Y
f Qn(z +ipcost)cos ht de,
0
and Vn,h should be replaced by

/77 Q,(iz~p cos t)cos htdt.
)

Finally, by combining both kinds of functions, one can obtain orthonormal

systems in the region between two confocal spheroids. Thus one might develop
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elaborate formulas for the solution of the biharmonic equation in such shell

regions using the basic method of this paper.
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