
ORTHOGONAL HARMONIC POLYNOMIALS

P. R. GARABEDIAN

1. Introduction. In this paper we develop sets of harmonic polynomials in

x, y$ z which are orthogonal over prolate and oblate spheroids. The orthogo-

nality is taken in several different norms, each of which leads to the discus-

sion of a partial differential equation by means of the kernel of the orthogonal

system corresponding to that norm. The principal point of interest is that the

orthogonality of the harmonic polynomials in question does not depend on the

shape of the spheroids, but only on their size. More precisely, the polynomials

depend only on the location of the foci of the ellipse generating the spheroid,

and not on its eccentricity.

The importance of constructing these polynomials stems from the role which

they play in the calculation of the kernel functions and Green's functions of

the Laplace and biharmonic equations in a spheroid. One can compute from the

kernels, in turn, the solution of the basic boundary-value problems for these

equations. As a particular case, one arrives at formulas for the solution of the

partial differential equation

dp2 P dp dz2

which arises in discussion of axially symmetric flow.

Results of the type presented here have occurred previously in the work of

Zaremba [10], and are related to recent developments of Friedrichs [3, 4] and

the author [5]. The polynomials investigated in this earlier work are in two

independent real variables and yield formulas for solving the Laplace and bi-

harmonic equations in two dimensions. Thus it is natural to suggest that the

basic results generalize to n-dimensional space. In this connection, it is
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586 P. R. GARABEDIAN

easily verified that a part of the theory carries over to arbitrary ellipsoids in

three-dimensional space.

2. Notation and definitions. We shall make use of rectangular coordinates

x, γ, z9 cylindrical coordinates p, φ, z, and spherical coordinates r, θ, φ.

Thus

x = p cos φ = r sin θ cos φ,

y = p sin φ = r sin (9 sin <£,

2 = r cos ^.

The Laplace integral formula

P Λ ( c o s θ) = ( " + A ) ! f77 {cos θ + i sin 0 cos I ) Λ cos ht dt

for the Legendre polynomials P^(cos θ) - P® (cos θ) and the associated

Legendre functions PR (cos ^) is basic for our work. In terms of Laplace's

integral we obtain the solid spherical harmonics in the form

rn Ph(cos θ) cos hφ = / (z + ip cos t)n cos hφ cos ht dt,
πihn\ JQ

rnPh(cos θ) sin hφ = - ^ — '- / (z + ip cos t)n sin ^ cos ht dt.
πihn\ Jo

They are homogeneous harmonic polynomials of degree n in x$ y9 z.

We shall be interested in obtaining complete orthogonal systems of har-

monic polynomials in the interior of the prolate spheroid

c h 2 α s h 2 α

and in the interior of the oblate spheroid

z2 p2

(2) + — - = 1.
sh2 α ch 2 α

Thus it is convenient to introduce coordinates u, v defined by the relations
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z + ip = cos ( ι t - ΐ ι ) a cos u ch v + i s in w sh i;

for the prolate case, and defined by

p + i z = sin (u + i v) = sin u ch v + i cos u sh v

for the oblate case. In both cases, the boundaries of the above spheroids have

the equation v - (X.

We define

\(n + h)\]ί/2 1 fπ
Vn,h(p, z)=\ , ΓTT r / Pn(z + *P c<>s O cos Aί dt,

L(Λ - A ) ! J π ih Jo

r / Λ [ ( ^ + A ) ! 1 1 / 2 i ^ fπ t

Vn,h\Pf z ) = : Γ T 7 / Pn\i z - p cos t) cos ht dt.
l(n-h)\l π Jo

By the addition theorem for the Legendre polynomials we obtain the well-

known expressions

U - A ) M ι / 2

Π7

where in the first case u9 v are coordinates in the prolate spheroid ( 1 ) and in

the second case u$ v are coordinates in the oblate spheroid ( 2 )

Here

P f ( c h t ) = shhvPJ;h) (chv),

υ) = chhv

The expressions

Un,h(p, z) cos hφ, Un9h(p, z) sin hφ,

Vnfh(p> z) cos hφ, VΛfh(Pf z) sin hφ

are harmonic polynomials in x9 y> z of degree n.
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We shall be concerned here with the new polynomials

Xn,h = —
dz

πih Jo

and

d
Ynth = — ^n + l, h

dz

Γ U + i + Λ ) ! l ι / 2 in'h r-rr
= - —r\ I Λz'+iίi z -p cos ί ) cos ht dt.

l ( π + l - λ ) I J π Jo

The functions

Xn,h(p> z) cos hφ, Xn,h(p, *) s i n hΦ >

Yn,h(p>z) cos hφ, Yn,h(p>z) sin hφ

are linear combinations of the classical spherical harmonics. The functions

Xn,o and Yn9θ involve only zonal harmonics and satisfy the partial differential

equation

d2f 1 df d2f
+ - — + = 0

dp2 P dp dz2

of axially symmetric flow.

Let us denote by D either the prolate or the oblate spheroid described

above, and let us denote the Dirichlet integral over D by

ίίί ldf dg df dg df

ψ \-X-X

+ Ty-y + -z

ϊldσ, ( Δ g = 0 ) ,

where S is the surface of D, and where v and dσ denote outer normal and area
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elements on S. Since z + ip = cos (u — i v) and p + iz = sin (u + ί t;) are

isogonal mappings, we obtain, on the spheroid S,

d d
dσ — = p dφ du .

dv dv

Hence

i f v f> C Ή C2.TT θ ε
(3) (/, g) = // / -r- pdφdu=\ I f-lpdφdu.

V dv Jo Jo dv

3. Orthogonality. If h £ k, we have by the orthogonality of ordinary Fourier

series

(Unfh cos hφ, Um9k cos kφ) = 0,

(Un9h sin hφ, Vm§k sin kφ) = 0,

(Un9h cos Aψ, J7m>^ sin kφ) = 0,

(ί/π>Λ cos A<£, ί/m>Λ sin A<̂ ) = 0,

and similarly for Vn9h For A = k we obtain in the prolate spheroid

/

77 pTΓ dVmth
/ #n,Λ —r (cos2hφ)p dφ du

Jo dv

7 T T T P π

* / Pn^C03 u) Pm^cos u) s i n u d u

Jo

P
2n + l

where δ π m = 0 for n 7̂  ^ and δ n π = 1.

Similarly
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(Un9h sin hφ9 Umth sin )

2π h

2n+l n

For the oblate spheroid we have in like manner

(K,h cos hφ, Vm9h cos hφ)

αPm

Λ(ί shα)]

s h α ) [*" c h α P m l {i s h

Also

( ^n,Λ sin hφ , Fm>Λ sin hφ )

= — - ( - D ^ P f d s h α ) Γ * c h α P Λ + ι ( i s h α ) 4 - A s h α P Λ ( j s h α ) l 8nm.
2 ^ + 1 L n n Λ

We have therefore proved:

THEOREM l The harmonic polynomials ί/̂ /j cos hφ, Unfh sin hφ form a

complete orthogonal system for the interior of the prolate spheroid (1) in the

sense of the Dirichlet integral. The harmonic polynomials FΛ>/j cos hφ9 VUfh

sin hφ form a similar system inside the oblate spheroid (2) . The polynomials

Un,o anά Vn,o alone form9 respectively, complete orthogonal systems for the

equation of axially symmetric flow inside the spheroids (1) and (2) .

We turn next to a less obvious result for the polynomials Xn>h
 a n d YΛ>Λ

Let

f g dx dy dz .
D
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Then clearly, if h £ k9

[Xn,h
 c o s hφ> Xm,k cos kφ] = 0,

ίXn,h sin hφ, Xmfk sin kφy= 0,

[Xnth cos hφ, Xmtk sin Λφ] = 0,

[Xnfh cos λ<£, Xm9h sin λ<£] = 0,

and similarly for Ynth Now

d du d dv d

dz dz du dz dv

w h e n z + i p = c o s ( u — i t>). A l s o

d u dt> i ( u - i ι ) c ί ( 2 - i p ) c ? ( u + i ι ; ) c ί (

(9z 5 z ( / ( z + i p ) d { u + i v ) d ( z — i p ) d ( z + i p )

d ( u , v )

s l n

Therefore

cos

flit LAd»*uh . . U.A
- /1 / / cos Λ0 l sin u ch v - cos ushi;

**y du dv

• — pdφdpdz
σ(z, p)

I — — — — I I I I ] cos hφ sin u sh v

L ( / ι + l + A ) ! J Jo Jo Jo J Ψ

( c h v ) Pπ + il ( c o s u ) s i n u c h v

+ Pn+i ( c o s u)P^l(chv)cos ush v]dφdudv.

The last integral vanishes when / is a harmonic polynomial of the form
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P^icos u) P^(chv) cos hφ

with m < n, since

P x, (cos u ) sin u P (cos u ) sin u du = 0,

ίπ h h
/ P . (cos w) cos M P (cos u) sin a

Jo

Hence for n Φ m

[Xn,h cos /*<£, ̂ m>/j cos Λ 6̂] = 0,

and similarly

[XUfh sin A^, iYm>Λ
 s i n hφ] = 0.

For m — n, we have

cos /*<£ = (2n + 1) ί/ΠfΛ cos
L I h J

=
L n + I — h J

where the dots indicate harmonic polynomials of lower degree, which are

orthogonal to Xn,h
 c o s hφ Thus

[^7i,h cos hφ, Xnth cos hφ ]

( τ i — A ) ! Z α / 77- Λ27Γ _ L L

1) — / / / cos2 A^sinusht;Pn

Λ(cosα)P*(chi;)

{n + h)l Jo Jo Jo n

* [ P ^ + i l ( c o s u ) Pn + l ( c h r ) s i n w c h v

+ P «+i ( c o s w ) Pn+ι(<chv) c o s " s h f l ^ ώ rfv

n + ί(ch v) s\ι v ch t; s in w C/M dv
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(n- h + 1) ! Z α fπ

"> tek")

v) sh 2 vs inu

— — U + l + λ) fa Ph(c\ιv) shi ;
2rc + 3 Jo n

. [ U + 2 + A) P n \ t (ch «) ch v + P**/ (ch v) sh v] dv.n + l

The same value is obtained if we replace cos hφ by sin hφ throughout, h > 0.

For the oblate spheroids, we have, on the other hand,

d du d dv d

dz dz du dz dv

w i t h p + i z - s i n ( u + i v ) . H e n c e

du dv d{u - i v ) dip + i z ) diu + i v ) diu — i v )

dz dz diz + i p) diu + iv) dip + i z ) diz + i p)

diu9 v )

, z)
(u + i v)

Therefore

[Ynh cos hφ, f]

-ill f cos hφ
du

— sm u s h t ; cos u ch v
dv

d(u,v)

d(p,z)
pdφ dp dz

•n+i-Λ ' Γa pπ f2ττ

Jo Jo Jo
cos λ<£ sin α ch v

i sh t;) P Λ

Λ

+ \ ι (cos α ) sin w s h t ;
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+ * P * + i ( c 0 S u)P^(i8hv)co8 u ch v]dφ dudu.

This integral vanishes when / is a harmonic polynomial

P^(cos u) P^iish υ) cos hφ

of degree m < n, since

/ P^+

+ ι(cos u) sin u P^icos u) sin u du = 0,
Jo

/ P^+ (cos w) cos w P (cos u) sin w du = 0.
Jo

Hence, for n ^ m,

[Yn>h cos hφ, Ym>h cos hφ] = O,

and also

ίYn,h s i n A^» ym,Λ sin λ<£] = 0.

For m — n, we note that

/= yn>Λ cos A<̂  = - [ ^ | ^ ] (2n + 1) F M cos hφ + . . . ,

where the dots represent harmonic polynomials of lower degree, which are

orthogonal to Yn ^ cos hφ. Therefore

[ y , cos hφ, Yn h cos hφ]
TL y ΓL Th j fit

( B ~ * ) 1 ΓΓ [2\os>hφ sin uchv
(n + h)\ Jo Jo Jo

P ^ ( c o s u ) P ^ ( i s h v ) . [ P ^ + ι ( i s h t ; ) P / f +

+

1

l ( c o s M ) s i n M s h t;

i Pn +. ( c o s u) P + j 1 ( i s h v) c o s α c h v ] G?<£ cfo c?v
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/ PHi shv)chv
Jo n2n + 3

. [{n + 2 + h)P^ι(i s h t ; ) s h v + i P^{{i shv) c h v] dv.

We obtain the same value if cos hφ is replaced by sin hφ.

This completes the proof of:

THEOREM 2. The harmonic polynomials Xn>h cos hφ, XUfh sin hφ form a

complete orthogonal system for the interior of the prolate spheroid (1) in the

sense of the scalar product

[/, g]= JJJ fgdxdydz.
D

The corresponding system in the oblate spheroid (2) is

Y , cos hφ, Yn L sin hφ

JAe zonal polynomials Xnf0 and Ynf0 are complete and orthogonal for the equa-

tion of axially symmetric flow in their respective domains ( 1 ) and ( 2 ) .

Friedrichs [4] has investigated the eigenvalue problem

r , , ", ίf(n(df/dz)2dxdγdz
i]Z9 Jz J D

= maximum
1 + (df/dz)2\dx dydz

for harmonic functions / in quite general regions D of space. It is clear from

Theorem 1 and Theorem 2 that we have:

THEOREM 3. The ei gen functions for the problem

= maximum, Δ/ = 0,

in the prolate spheroid (1) are

U , cos hφ, U , sin hφ,

and in the oblate spheroid (2) they are
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Vn,h c o s hΦ> Vn,h s i n hΦ

The corresponding eigenvalues are

{n + l + h)
P*+,(ch v) ch v+P^ (ch v)sh v]dv

P*+ 1 (ch α) [sh α P**/ (ch α) + A ch α P*+ 1 (ch α)]

/or ίAe prolate spheroids and (n+l + h)Qf where Q is the expression

i / α P Λ ( ίi / o

α P n

Λ ( ί sh v) ch υ[(n + 2 + A) P * + , (» sh w) sh v + i PΠ

Λ

+

+/ ( i sh v ) ch υ]rfυ

Pf+1 (ί sh α) [i ch α PJ!ϊ}ti sh α) + h sh α PΛ

Λ

+1 (i sh α)]

/or ίΛe oblate spheroids.

Friedrichs was led to this extremal problem through his investigation of

Korn's inequality and existence theorems for the partial differential equations

of elasticity. We shall show in the following how the eigenfunctions can be

used to solve the biharmonic equation.

One sees easily from Theorem 3 that

Un,h c o s hΦ> Un,h s i n hΦ

and

Vn9h
 C O S hΦ> Vn,h S i n hΦ

are a lso orthogonal in the norm

However, we do not go into details since this norm leads to no apparent ap-

plication.

One can obtain quite interesting results, on the other hand, by using the

orthogonality of the XΠfh
 a n ( l t n e In,A o v e r the interior of the ellipses (1) and
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(2) for all values of (X to obtain a corresponding orthogonality of the same

polynomials over the surface of the spheroids with respect to a suitable weight

function. Indeed, we have

d
—
ad

cos hφ, Xm,k cos kφ]

d Γ<x u
/ P*(chv)βht;

da Jo n

whence

su,,.cos

A)P π

A

+ 1 (chi;)cht; + P*++ι (ch v) sh v] dv,

c o s k φ ] \ l - ( z + i p ) 2 \ ι / 2 dσ

P n

Λ (chα)shα

[(n + 2 + h) P* + ι (ch α) ch α + P^l (ch α) sh α] 8hk 8nm.

Likewise, by the same reasoning,

C O S Ymfk
 C O S

ί . ( _ 1 ) n - Λ + i p Λ ( ί s h α ) c h α

. [(n + 2 + A) PΛ

Λ

+ι (i sh α)sh α + £ P ^ 1 (i sh α) ch α] 8hk δnm,

with exactly the same formulas in both cases if cos hφ is replaced by sin hφ.

This calculation yields:

THEOREM 4. The polynomials Xn ^ cos hφ, Xn ^ sin hφ are complete and

orthogonal over the surface of the spheroid (1) in the, sense of the scalar pro-

duct
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\US\- JJ f g \ l - ( z + i p ) 2 \ ι / 2 d σ

with weight function \l ~ {z + ip)\ι/2 equal to the square root of the product

of the distances from ( p , φ9 z) to the points (0 , 0, 1) and ( 0 , 0 , - 1 ) . The

harmonic polynomials YR ̂  cos hφ, Yn ^ sin hφ are complete and orthogonal

over the surface of the oblate spheroid ( 2 ) in the sense of the scalar product

There exist quite clearly further orthogonality properties of the polynomials

Un ^ and VR h which do not depend on the shape of the spheroids (1) and (2) .

However, we make no pretense here at tabulating all possible orthogonal har-

monic polynomials of this type (cf. [ 8 ] ) , but proceed rather to apply the re-

sults already obtained to the Laplace and biharmonic equations.

4. The kernels. The Green's function G(P, Q) for the Laplace equation

in a region D is a harmonic function of the coordinates x9 γ9 z of the point

P in Z), except at Q, where

G(P, Q) - + harmonic terms,

and it vanishes for P on the surface S of D. Here r{P9 Q) denotes the distance

from P to Q. The Neumann's function N(P9 Q) has a similar fundamental singu-

larity,

N (P9 Q) + harmonic terms ,
Γ \* 9 V )

while its normal derivative is constant on S and

N(P9Q)dσ(P) = 0.
s

The harmonic kernel function K(P9 Q) is defined by the formula [ 2 ]

K(P, ρ ) = — ! Λ ' ( P , Q)-G(P, Q)}.
4,π
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K fn(P) * s a complete orthonormal system of harmonic functions in D in the

sense

with

s

then one has the Bergman expansion

oo

K{P,Q)- Σ fn(P)fn(Q).

On the other hand, if gn(P) is a complete orthonormal system of harmonic

functions in D in the sense of the scalar product

/,g!= JJ fgωdσ
S
JJ

S

corresponding to an arbitrary positive weight function ω on S, then the kernel
oo

H{P,Q)= Σ SniP)gn(Q)

is given by [ 7 ]

1 ff 1 dG(T,P) dG(T,Q)

(4τ7)2 Y ω(7") dv(T) du{T)

For P on S we have

The Green's function Γ ( P , (^) of the biharmonic equation

Δ Δ F = 0

is a biharmonic function of the coordinates of P9 except at Q9 where
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Γ(P, Q) = - r{P, Q) + biharmonic terms,

and for P on S it satisfies

If hn(P) is a complete orthonormal system of harmonic functions in the sense

[hn, hm] = δnm,

then the kernel function

k(P,Q)= Σ hniP)hn(Q)
n = l

is given by the identity [5, 10]

k(P,Q) = Δ(P)Δ(ρ)Γ(P, <?).
8ττ

The relation here between the harmonic functions hn and the biharmonic kernel

function A: is a consequence of the nature of the energy integral

(ΔF)2 dxdydz
D

for the biharmonic equation.

We discuss here the expansion of the kernels Kf H9 and k in terms of the

orthogonal polynomials of § 3 for the case where D is a prolate or oblate

spheroid. One obtains easily from Theorems 1, 2, and 4, together with the

computation of the related normalization constants, the following results:

THEOREM 5. In the prolate spheroid ( 1 ) we have

K{p, z9 φ; p ' , z% φ')

^ (2n + l)Un§h(p,z)Un9h(p',z')c<»hiφ-φ')

) f [ f + ι Λ ) ]
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where C is a constant chosen to agree with the normalization of Neumann9s

function. In the oblate spheroid (2),

K(ρ ,z, φ; p', z', φ')
~ A ~ 2,(1 + δoΛ)

Vn>h^,z)Vnth(p',z') cos

where again C is a suitable constant.

THEOREM 6. In the prolate spheroid (1) ,

, / ^ / / \ V * v * (2n + 3)

fo
α Pn

Λ(ch υ)sh t;

/n ίAe oblate spheroid (2),

/ o

α P n

Λ ( i sh v) ch t>t(i» + 2 + A) P * + ι (i sh v) sh v + iP^+V (* sh υ)ch v]cfo*

THEOREM 7. /n the prolate spheroid (1) ,

oo n i n , q \

H(p, z, φ; p\ z\ φ') = T Σ\
έ j j f c 2n(l + δoh){n+l + h)

Xn>h{p,z)Xn>h{p',z') cos h(φ-φ')

P n

Λ (ch α ) sh α [{n + 2 + A)P n

A

+ 1 (ch α ) c h α + pj£ (ch α ) sh α ]P n + 1

when ω = 11 — (z + ip)2 \ 1 / 2 // ω = 11 — (p + iz ) 2 | ι / 2 , we Aαι>e, /br

oblate spheroid (2) ,
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H{p,z,φ;p',z',φ')=
n-0

Yn,h(p> z)Yn>h(p',z') cos hiψ-φ')

Λ)P* + ι (i sh α)sh α + t P * ^ 1 (ί sh α)ch α]

Theorem 7 is of interest because it yields, say for (1), the relation

4*

- φ')

when the point p, z, <̂  lies on S. This formula can be compared with the cor-

responding, more classical, formula which follows from Theorem 5.

Theorem 6 permits one to calculate the biharmonic Green's function for

prolate or oblate spheroids, and thus in turn to solve the biharmonic boundary-

value problem in this case. Indeed, we have (cf [ 5 ] )

o) J- iff dσ{T) -— ίίί fff^./OaMn^*)
> V 2π nJ r(T, P)r{T, Q) 2π ψ ψ r(T,P)r(R,Q) '

It is significant to note in this connection that all our results can be extended

to the case of the region outside a spheroid. One has merely to replace for this

purpose the Legendre functions P^ by the Legendre functions Q^ of second

kind [6]. Thus UUfh should be replaced, for example, by

I Qn ( z + i P cos t) cos ht dt,
Jo

and V i should be replaced by

I Qn(i z -^p cos t) cos ht dt.
Jo

Finally, by combining both kinds of functions, one can obtain orthonormal

systems in the region between two confocal spheroids. Thus one might develop
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elaborate formulas for the solution of the biharmonic equation in such shell
regions using the basic method of this paper.
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