SOME THEOREMS ON GENERALIZED DEDEKIND SUMS

L. Carlitz

1. Introduction. Using a method developed by Rademacher [5], Apostol [1] has proved a transformation formula for the function

$$
\begin{equation*}
G_{p}(x)=\sum_{m, n=1}^{\infty} n^{-p} x^{m n} \quad(|x|<1) \tag{1.1}
\end{equation*}
$$

where p is a fixed odd integer >1. The formula involves the coefficients

$$
\begin{equation*}
c_{r}(h, k)=\sum_{\mu(\bmod k)} P_{p+1-r}\left(\frac{\mu}{k}\right) P_{r}\left(\frac{h \mu}{k}\right) \quad(0 \leq r \leq p+1), \tag{1.2}
\end{equation*}
$$

where $(h, k)=1$, the summation is over a complete residue system $(\bmod k)$, and $P_{r}(x)=\bar{B}_{r}(x)$, the Bernoulli function.

We shall show in this note that the transformation formula for (1.1) implies a reciprocity relation involving $c_{r}(h, k)$, which for $r=p$ reduces to Apostol's reciprocity theorem [1, Th. 1; 2, Th. 2] for the generalized Dedekind sum $c_{p}(h, k)$. In addition, we prove some formulas for $c_{r}(h, k)$ which generalize certain results proved by Rademacher and Whiteman [6]. Finally we derive a representation of $c_{r}(h, k)$ in terms of so-called "Eulerian numbers".
2. Some preliminaries. It will be convenient to recall some properties of the Bernoulli function $P_{r}(x)$; by definition, $P_{r}(x)=B_{r}(x)$ for $0 \leq x<1$, and $P_{r}(x+1)=P_{r}(x)$. Also we have the formulas

$$
\begin{equation*}
\sum_{r=0}^{k-1} P_{r}\left(t+\frac{r}{k}\right)=k^{1-m} P_{r}(k t), \quad P_{r}(-x)=(-1)^{r} P_{r}(x) \tag{2.1}
\end{equation*}
$$

It follows from the second of (2.1) that $c_{r}(h, k)=0$ for p even and $0 \leq r \leq p+1$. We have also

$$
\begin{equation*}
c_{0}(h, k)=c_{p+1}(h, k)=k^{-p} B_{p+1} \tag{2.2}
\end{equation*}
$$

provided $(h, k)=1$. Further, it is clear from the second of (2.1) that

$$
\begin{equation*}
c_{r}(-h, k)=(-1)^{r} c_{r}(h, k) . \tag{2.3}
\end{equation*}
$$

Now as in $[5,321]$ put $x=e^{2 \pi i \tau}$,

$$
\tau=\frac{i z+h}{k}, \quad \tau^{\prime}=\frac{i z^{-1}+h^{\prime}}{k}
$$

so that, on eliminating z, we get

$$
\begin{equation*}
\tau^{\prime}=\frac{h^{\prime} \tau+k^{\prime}}{k \tau-h} \quad\left(h h^{\prime}+k k^{\prime}+1=0\right) \tag{2.4}
\end{equation*}
$$

thus (2.4) is a unimodular transformation. Now Apostol's transformation formula [1, Th. 2] reads (in our notation)

$$
\begin{aligned}
G_{p}\left(e^{2 \pi i \tau}\right) & =(i z)^{p-1} G_{p}\left(e^{2 \pi i \tau^{\prime}}\right)-\frac{1}{2}\left(\frac{2 \pi z}{k}\right)^{p} \frac{B_{p+1}}{(p+1)!} \\
& +\frac{i^{p-1}}{2 z}\left(\frac{2 \pi}{k}\right)^{p} \frac{B_{p+1}}{(p+1)!}+\frac{(2 \pi i)^{p}}{2 \cdot p!} c_{p}(h, k) \\
& +\frac{(2 \pi)^{p} z^{p-1}}{2(p+1)!} \sum_{r=0}^{p-2}\binom{p+1}{r+1} e^{\pi i(r-1) / 2} z^{-r} \sum_{\mu=1}^{k} P_{p-r}\left(\frac{h^{\prime} \mu}{k}\right) P_{r+1}\left(\frac{\mu}{k}\right) .
\end{aligned}
$$

Making use of (1.2), (2.2), and (2.3), we easily verify that this result can be put in the form

$$
\begin{equation*}
G_{p}\left(e^{2 \pi i \tau}\right)=(k \tau-h)^{p-1} G_{p}\left(e^{2 \pi i \tau^{\prime}}\right)+\frac{(2 \pi i)^{p}}{2(p+1)!} f(h, k ; \tau) \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
f(h, k ; \tau)=\sum_{r=0}^{p+1}\binom{p+1}{r}(k \tau-h)^{p-r} c_{r}(h, k) . \tag{2.6}
\end{equation*}
$$

We remark that (2.6) can be written in the symbolic form

$$
\begin{equation*}
(k \tau-h) f(h, k ; \tau)=(k \tau-h+c(h, k))^{p+1}, \tag{2.7}
\end{equation*}
$$

where it is understood that after expanding the right member of (2.7) by the binomial theorem, $c^{r}(h, k)$ is replaced by $c_{r}(h, k)$.

We shall require an explicit formula for $f(0,1 ; \tau)$. Since, by (1.2),

$$
c_{r}(0,1)=P_{p+1-r}(0) P_{r}(0)=B_{p+1-r} B_{r}
$$

it is clear that (2.6) implies

$$
\begin{equation*}
f(0,1 ; \tau)=\frac{1}{\tau} \sum_{r=0}^{p+1}\binom{p+1}{r} B_{p+1-r} B_{r} \tau^{p+1-r}=\frac{1}{\tau}(B+\tau B)^{p+1} \tag{2.8}
\end{equation*}
$$

If in (2.4) we replace τ by $-1 / \tau$, then τ^{\prime} becomes

$$
\begin{equation*}
\tau^{*}=\frac{-k^{\prime} \tau+h^{\prime}}{h \tau+k}, \tag{2.9}
\end{equation*}
$$

and (2.5) becomes

$$
G_{p}\left(e^{-2 \pi i / \tau}\right)=\left(\frac{h \tau+k}{\tau}\right)^{p-1} G_{p}\left(e^{2 \pi i \tau^{*}}\right)+\frac{(2 \pi i)^{p}}{2(p+1)!} f\left(h, k ;-\frac{1}{\tau}\right)
$$

By (2.5) and (2.8) we have

$$
\begin{equation*}
G_{p}\left(e^{2 \pi i \tau}\right)=\tau^{p-1} G_{p}\left(e^{-2 \pi i / \tau}\right)+\frac{(2 \pi i)^{p}}{2 \tau(p+1)!}(B+\tau B)^{p+1} \tag{2.11}
\end{equation*}
$$

and by (2.5) and (2.9),

$$
\begin{equation*}
G_{p}\left(e^{2 \pi i \tau}\right)=(h \tau+k)^{p-1} G_{p}\left(e^{2 \pi i \tau *}\right)+\frac{2 \pi i}{2(p+1)!} f(-k, h ; \tau) \tag{2.12}
\end{equation*}
$$

Comparison of (2.10), (2.11), (2.12) yields

$$
f(-k, h ; \tau)=\tau^{p-1} f\left(h, k ;-\frac{1}{\tau}\right)+\frac{1}{\tau}(B+\tau B)^{p+1},
$$

or with τ replaced by $-1 / \tau$,

$$
f(h, k ; \tau)=\tau^{p-1} f\left(-k, h ;-\frac{1}{\tau}\right)+\frac{1}{\tau}(B+\tau B)^{p+1} .
$$

(For the above, compare [3, pp. 162-163]).
3. The main results. In (2.7) replace h, k, τ by $-k, h,-1 / \tau$ respectively; we get

$$
\frac{k \tau-h}{\tau} f\left(-k, h ;-\frac{1}{\tau}\right)=\left(\frac{k \tau-h}{\tau}+c(-k, h)\right)^{p+1} .
$$

By (2.3), it is clear that (2.13) becomes

$$
\begin{align*}
\tau(k \tau-h+c & c(h, k))^{p+1} \tag{3.1}\\
& =(\tau c(k, h)-\tau k+h)^{p+1}+(k \tau-h)(B+\tau B)^{p+1}
\end{align*}
$$

Comparison of the coefficients of τ^{r+1} in both members of (3.1) leads immediately to:

Theorem l. For p odd $>1,0 \leq r \leq p$,

$$
\begin{array}{r}
\binom{p+1}{r} k^{r}(c(h, k)-h)^{p+1-r}=\binom{p+1}{r+1} h^{p-r}(c(k, h)-k)^{r+1} \tag{3.2}\\
+k B_{p+1-r} B_{r}-h B_{p-r} B_{r+1}
\end{array}
$$

In the next place, if for brevity we put $w=k \tau-h$, then (3.1) becomes

$$
\begin{align*}
& k^{p}(w+h)(w+c(h, k))^{p+1} \tag{3.3}\\
& \quad=((w+h) c(k, h)-w k)^{p+1}+w(B k+(w+h) B)^{p+1} .
\end{align*}
$$

We now compare coefficients of w^{r+1} in both members of (3.3); a little care is required in connection with the extreme right member. We state the result as:

Theorem 2. For p odd $>1,0 \leq r \leq p$,

$$
\begin{equation*}
\binom{p+1}{r+1} h k^{p} c_{p-r}(h, k)+\binom{p+1}{r} k^{p} c_{p+1-r}(h, k) \tag{3.4}
\end{equation*}
$$

$$
=\binom{p+1}{r+1} h^{p-r}(c(k, h)-k)^{r+1} c^{p-r}(k, h)+\binom{p+1}{r}\left(B k+B^{\prime} h\right)^{p+1-r} B^{\circ r},
$$

where

$$
\left(B k+B^{\prime} h\right)^{p+1-r} B^{\circ r}=\sum_{s=0}^{p+1-r}\binom{p+1-r}{s} B_{p+1-r-s} B_{r+s} k^{p+1-r-s_{h} s}
$$

For $r=0$, (3.4) becomes

$$
\begin{aligned}
& (p+1) h k^{p} c_{p}(h, k)+k^{p} c_{p+1}(h, k) \\
& \quad=(p+1) h^{p}\left\{c_{p+1}(k, h)-k c_{p}(k, h)\right\}+(p+1)(B k+B h)^{p+1},
\end{aligned}
$$

which reduces to
(3.5) $(p+1)\left\{h k^{p} c_{p}(h, k)+k^{p} h c_{p}(k, h)\right\}=(p+1)(B k+B h)^{p+1}+p B_{p+1}$.

This is Apostol's reciprocity theorem.
If we take $r=1$ in (3.4), we get

$$
\begin{aligned}
& p\left\{h^{2} k^{p} c_{p-1}(h, k)-k^{2} h^{p} c_{p-1}(k, h)\right\} \\
& =-2\left\{h k^{p} c_{p}(h, k)+p k h^{p} c_{p}(h, k)\right\}+p B_{p+1}+2\left(B k+B^{\prime} h\right)^{p} B^{\prime} h .
\end{aligned}
$$

If in this formula we interchange h and k and add we again get (3.5), while if we subtract we get

$$
\begin{align*}
p & \left\{h^{2} k^{p} c_{p-1}(h, k)-k^{2} h^{p} c_{p-1}(k, h)\right\} \tag{3.6}\\
& =(p-1)\left\{h k^{p} c_{p}(h, k)-k h^{p} c_{p}(k, h)\right\}-(B k+B h)^{p}(B k-B h)
\end{align*}
$$

In view of (3.6), it does not seem likely that Theorem 2 will yield a simple expression for

$$
h^{r+1} k^{p} c_{p-r}(h, k)+(-1)^{r} k^{r+1} h^{p} c_{p-r}(k, h) \quad(r>0)
$$

We remark that Theorems 1 and 2 are equivalent. Indeed it is evident that
(3.2) is equivalent to (3.1), and (3.4) is equivalent to (3.3); also it is clear that (3.1) and (3.3) are equivalent.
4. Some additional results. We next prove (compare [6, Th. 1]):

Theorem 3. For $p, q \geq 1,0 \leq r \leq p+1$, we have

$$
\begin{equation*}
c_{r}(q h, q k)=q^{r-p} c_{r}(h, k) . \tag{4.1}
\end{equation*}
$$

Note that we now do not assume p odd, $(h, k)=1$.
To prove (4.1), we have, using (1.2),

$$
\begin{aligned}
c_{r}(q h, q k) & =\sum_{\mu(\bmod q k)} P_{p+1-r}\left(\frac{\mu}{q k}\right) P_{r}\left(\frac{h \mu}{k}\right) \\
& =\sum_{\substack{\nu(\bmod q) \\
\rho(\bmod k)}} P_{p+1-r}\left(\frac{\nu k+\rho}{q k}\right) P_{r}\left(\frac{h(\nu k+\rho)}{k}\right) \\
& =\sum_{\rho} P_{r}\left(\frac{h \rho}{k}\right) \sum_{\nu} P_{p+1-r}\left(\frac{\nu}{q}+\frac{\rho}{q k}\right) \\
& =q^{r-p} \sum_{\rho} P_{p+1-r}\left(\frac{\rho}{k}\right) P_{r}\left(\frac{h \rho}{k}\right) \\
& =q^{r-p} c_{r}(h, k) .
\end{aligned}
$$

For brevity we define
(4.2) $\quad b_{r}(h, k)=(c(h, k)-h)^{r}=\sum_{s=0}^{r}(-1)^{r-s}\binom{r}{s} h^{r-s} c_{s}(h, k)$,
which occurs in Theorem 1. Clearly

$$
c_{r}(h, k)=(b(h, k)+h)^{r}
$$

Theorem 4. For $p, q \geq 1,0 \leq r \leq p+1$, we have

$$
\begin{equation*}
b_{r}(q h, q k)=q^{r-p} b_{r}(h, k) \tag{4.3}
\end{equation*}
$$

By (4.1) and (4.2) we have

$$
\begin{aligned}
b_{r}(q h, q k) & =\sum_{s=0}^{r}(-1)^{r-s}\binom{r}{s}(q h)^{r-s} c_{s}(q h, q k) \\
& =\sum_{s=0}^{r}(-1)^{r-s}\binom{r}{s} h^{r-s} q^{r-p} c_{s}(h, k) \\
& =q^{r-p} b_{r}(h, k)
\end{aligned}
$$

If we define

$$
\begin{equation*}
a_{r}(h, k)=(c(h, k)-h)^{r} c^{p+1-r}(h, k) \tag{4.4}
\end{equation*}
$$

which is suggested by Theorem 2, we get:
Theorem 5. For $p, q \geq 1,0 \leq r \leq p+1$,

$$
\begin{equation*}
a_{r}(q h, q k)=q a_{r}(h, k) . \tag{4.5}
\end{equation*}
$$

The proof, which is exactly like the proof of (4.3), will be omitted. We note that (4.4) implies

$$
\begin{equation*}
h^{r} c^{p+1-r}(h, k)=\sum_{s=0}^{r}(-1)^{s}\binom{r}{s} a_{s}(h, k)=(1-a(h, k))^{r} . \tag{4.6}
\end{equation*}
$$

Also using (4.2) and (4.6), we get

$$
\begin{equation*}
h^{p+1-r} b_{r}(h, k)=(1-a(h, k))^{p+1-r} a^{r}(h, k), \tag{4.7}
\end{equation*}
$$

and reciprocally from (4.4),

$$
\begin{equation*}
a_{r}(h, k)=(b(h, k)+h)^{p+1-r} b^{r}(h, k) . \tag{4.8}
\end{equation*}
$$

Using $a_{r}(h, k)$ and $b_{r}(h, k)$, we can state Theorems 1 and 2 somewhat more compactly.
5. Another property of $c_{r}(h, k)$. For the next theorem compare [6, Th. 2].

Theorem 6. For $p \geq 1,0 \leq r \leq p$, and q prime, we have

$$
\begin{equation*}
\sum_{m=0}^{q-1} c_{r}(h+m k, q k)=\left(q+q^{1-p}\right) c_{r}(h, k)-q^{1-r} c_{r}(p h, k) . \tag{5.1}
\end{equation*}
$$

By (1.2), the left member of (5.1) is equal to

$$
\begin{aligned}
& \sum_{m=0}^{q-1} \sum_{\mu=1}^{q k} P_{p+1-r}\left(\frac{\mu}{q k}\right) P_{r}\left(\frac{(h+m k) \mu}{q k}\right) \\
&= \sum_{\mu=1}^{q k} P_{p+1-r}\left(\frac{\mu}{q k}\right) \sum_{m=0}^{q-1} P_{r}\left(\frac{h \mu}{q k}+\frac{m \mu}{q}\right) \\
&= \sum_{\mu=1}^{q k} P_{p+1-r}\left(\frac{\mu}{q k}\right) P_{r}\left(\frac{h \mu}{k}\right) q^{1-r} \\
& \quad+\sum_{\nu=1}^{k} P_{p+1-r}\left(\frac{\nu}{k}\right)\left\{q P_{r}\left(\frac{h \nu}{k}\right)-P_{r}\left(\frac{q h \nu}{k}\right) q^{1-r}\right\} \\
&= q^{1-r} c_{r}(q h, q k)+q c_{r}(h, k)-q^{1-r} c_{r}(q h, k) \\
&=\left(q^{1-p}+q\right) c_{r}(h, k)-q^{1-r} c_{r}(q h, k),
\end{aligned}
$$

by (4.1).
It does not seem possible to frame a result like (5.1) for the expressions $b_{r}(h, k)$ or $a_{r}(h, k)$ defined by (4.2) and (4.3).
6. Representation by Eulerian numbers. If $k>1, \rho^{k}=1, \rho \neq 1$, we define the "Eulerian number" $H_{m}(\rho)$ by means of [4, p. 825]

$$
\begin{equation*}
\frac{1-\rho}{e^{t}-\rho}=\sum_{m=0}^{\infty} H_{m}(\rho) \frac{t^{m}}{m!} \tag{6.1}
\end{equation*}
$$

Then it is easily verified that [4, p. 825]

$$
k^{m-1} \sum_{r=0}^{k-1} \rho^{r} B_{m}\left(\frac{r}{k}\right)=\frac{m}{\rho-1} H_{m-1}\left(\rho^{-1}\right),
$$

which may be put in the more convenient form

$$
\begin{equation*}
k^{m-1} \sum_{r(\bmod k)} \rho^{r} P_{m}\left(\frac{r}{k}\right)=\frac{m}{\rho-1} H_{m-1}\left(\rho^{-1}\right) \tag{6.2}
\end{equation*}
$$

Now consider the representation (finite Fourier series)

$$
\begin{equation*}
P_{m}\left(\frac{r}{k}\right)=\sum_{s=0}^{k-1} A_{s} \zeta^{-r s} \quad\left(\zeta=e^{2 \pi i / k}\right) \tag{6.3}
\end{equation*}
$$

If we multiply both members of (6.3) by $\zeta^{r t}$ and sum, we get

$$
k A_{t}=\sum_{r} \zeta^{r t} P_{m}\left(\frac{r}{k}\right)= \begin{cases}\frac{m k^{1-m}}{\zeta^{t}-1} H_{m-1}\left(\zeta^{-t}\right) & (t \neq 0) \\ k^{1-m} B_{m} & (t=0)\end{cases}
$$

by (6.2) and (2.1). Thus (6.3) becomes

$$
\begin{equation*}
P_{m}\left(\frac{\mu}{k}\right)=k^{-m} B_{m}+m k^{-m} \sum_{s=1}^{k-1} \frac{H_{m-1}\left(\zeta^{-s}\right)}{\zeta^{s}-1} \zeta^{-\mu s} \tag{6.4}
\end{equation*}
$$

Thus substituting from (6.4) in (1.2), we get after a little reduction

$$
\begin{equation*}
c_{r}(h, k)=\frac{B_{p+1-r} B_{r}}{k^{p}}+\frac{r(p+1-r)}{k^{p}} \sum_{t=1}^{k-1} \frac{H_{p-r}\left(\zeta^{h t}\right) H_{r-1}\left(\zeta^{-t}\right)}{\left(\zeta^{-h t}-1\right)\left(\zeta^{t}-1\right)} \tag{6.5}
\end{equation*}
$$

Thus $c_{r}(h, k)$ has been explicitly evaluated in terms of the Eulerian numbers. One or two special cases of (6.5) may be mentioned. For $r=p$ we have

$$
\begin{equation*}
c_{p}(h, k)=\frac{p}{k^{p}} \sum_{t=1}^{k-1} \frac{H_{p-1}\left(\zeta^{-t}\right)}{\left(\zeta^{-h t}-1\right)\left(\zeta^{t}-1\right)} \quad(p>1) \tag{6.6}
\end{equation*}
$$

while for $r=p=1$ we have

$$
\bar{s}(h, k)=\frac{1}{4 k}+\frac{1}{k} \sum_{t=1}^{k-1} \frac{1}{\left(\zeta^{-h t}-1\right)\left(\zeta^{t}-1\right)}
$$

where $\bar{s}(h, k)=c_{1}(h, k)$. Note that $\bar{s}(h, k)=s(h, k)+1 / 4$, where $s(h, k)$ is the ordinary Dedekind sum [6]. We also note that (6.4) becomes, for $m=1$,

$$
P_{1}\left(\frac{\mu}{k}\right)=-\frac{1}{2 k}+\frac{1}{k} \sum_{s=1}^{k-1} \frac{\zeta^{-\mu s}}{\zeta^{s}-1}
$$

which is equivalent to a formula of Eisenstein.
Possibly (6.5) can be used to give a direct proof of Theorem 1 or Theorem 2.

References

1. T. M. Apostol, Generalized Dedekind sums and transformation formulae of certain Lambert series, Duke Math. J. 17 (1950), 147-157.
2. _, Theorems on generalized Dedekind sums, Pacific J. Math. 2 (1952), 1-9.
3. R. Dedekind, Erläuterungen zu zwei Fragmenten von Riemann, Gesammelte mathematische Werke, vol. 1, Braunschweig, 1930, pp. 159-173.
4. G. Frobenius, Über die Bernoullischen Zahlen und die Eulerschen Polynome, Sitzungsber. Preuss. Akad. Wissenschaften (1910), 809-847.
5. H. Rademacher, Zur Theorie der Modulfunktionen, J. Reine Angew. Math. 167 (1932), 312-336.
6. H. Rademacher and A. Whiteman, Theorems on Dedekind sums, Amer. J. Math. 63 (1941), 377-407.

Duke University

