
SOME THEOREMS ON GENERALIZED DEDEKIND SUMS

L. CARLITZ

1. Introduction. Using a method developed by Rademacher [ 5 ] , Apostol

[ 1 ] has proved a transformation formula for the function

oo

d a ) GP{X)= Σ
 n'PχMn ( l * l < ι ) >

m, Λ=I

where p is a fixed odd integer > 1. The formula involves the coefficients

μ(mod k)

where (A, i ) = l , the summation is over a complete residue system (mod k)9

and Pr(x)« Br(x)9 the Bernoulli function.

We shall show in this note that the transformation formula for (1.1) implies

a reciprocity relation involving cr(h, k)9 which for r-p reduces to ApostoΓs

reciprocity theorem [ 1 , Th. 1; 2, Th. 2] for the generalized Dedekind sum

Cp(h9 k) In addition, we prove some formulas for cr(h9 k) which generalize

certain results proved by Rademacher and Whiteman [ 6 ] . Finally we derive a

representation of cr(h9 k) in terms of so-called "Eulerian numbers".

2. Some preliminaries. It will be convenient to recall some properties of

the Bernoulli function Pr(x); by definition, Pr(x)- BΓ(x) for 0 < x < 1, and

Pr(x + l ) = Pr(x) Also we have the formulas

k-i . r χ

(2.1) £ PM* + - ) = kl'mpr(te)> Pr(-x)=(-lYPr(x).
r=0 * '

It follows from the second of (2.1) that cr(h9 k) = 0 for p even and 0 < r < p + 1.

We have also
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(2.2) co(h,k) = c p + ί(h, k) = k'P

provided (h, k) - 1. Further, it i s clear from the second of ( 2 . 1 ) that

( 2 . 3 ) c Γ ( - λ , k) = ( - l ) Γ c Γ ( A , k).

Now as in [ 5 , 3 2 1 ] put x = e 2 7 7 l V ,

iz + h iz" + h'
7" — 7" —

* ' k

so that, on eliminating 2, we get

(2.4) T' = —Lt— (hh' + kk'+ 1 = 0);
kτ~ h

thus (2.4) is a unimodular transformation. Now Apostol's transformation formula

[ 1, Th. 2] reads (in our notation)

iP 1 /2π\P βp + i (2ττi) p

I — I r— + cD(h, k)
2z \ k I (p + 1 ) ! 2 P ! P

Making use of (1.2), (2.2), and (2.3), we easily verify that this result can be

put in the form

(2.5) Gp(e27TiT) = (kr-h)P-ιGp(e27Tir')+ ^ " ^ ^ f(h,k;τ),

where

(2.6) f(h,k;τ)= £ lP*l)(kτ-h)P'rcr(h, k ) .
r=o * Γ '

We remark that (2.6) can be written in the symbolic form
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(2.7) (kτ-h)f(h, k; r) = (AT- h + c(h, A))^
 + ι
,

where it is understood that after expanding the right member of (2.7) by the

binomial theorem, cr(h> k) is replaced by cr(h, A).

We shall require an explicit formula for /(0, 1; r). Since, by (1.2),

c Γ (0, 1) =

it is clear that (2.6) implies

1 P + ι
(2.8) /(0, 1; T) = - T

T f?0 \ r I >

If in (2.4) we replace r by -1/τ, then r' becomes

(2.9) τ* = ~ T + ,
ΛT + A

and (2.5) becomes

By (2.5) and (2.8) we have

(2.11) Gp(e27Tir)= rP'ιGp{e'2πi/τ) + ( 2 7 Γ t ) P

 t (β
2r(p + l)!

and by (2.5) and (2.9),

(2.12) G p (e 2 π ι ' τ ) = (λτ+ k)P-ι Gp(e27Tiτ*)+ ^ l /(-A, A; r).
2(p + 1)!

Comparison of (2.10), (2.11), (2.12) yields

/(-£, h; r) = τP-1 flh, A; - I\ + I (β
\ T I T

or with r replaced by -1/τ,
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+ r(2.13) /(A, k; T) ~ rP'1 fLk, Λ; - ί ) + I

(For the above, compare [3, pp. 162-163]).

3. The main results. In (2.7) replace h, k9 r by -k, h9 - 1 / τ respectively;

we get

kτ-h I 1\ ίkτ-h \P+i

/ ( - * • * ; - - ) « ( + c(~A, A))

By (2.3), it is clear that (2.13) becomes

(3.1) τ(kτ-h + c(h, k))P+ι

= {τc(k, h) - rk + h)P+ι + (kr- h)(B + τB)P+ι.

Comparison of the coefficients of τ Γ + ι in both members of (3.1) leads immedi-

ately to:

THEOREM 1. For p odd> 1, 0 < r < p,

(3.2) lP*l)kΓ(c(h, A)-A)P+ι-Γ = lP + l\hP-r(c(k,h)-k)r+ί

In the next place, if for brevity we put w = kτ~ht then (3.1) becomes

(3.3)

We now compare coefficients of u/ + ι in both members of (3.3); a little care

is required in connection with the extreme right member. We state the result as:

THEOREM 2. For p odd> 1, 0 < r < p,

(3.4)
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+ 1

+ 1

where

p+i-r

s = o ' s

For r= 0, (3.4) becomes

(p+l)hkPcp(h, k) + kPcp + i(h, k)

= ( p + l ) Λ P | c p + ι (A, λ ) - A c p (

which reduces to

( 3 . 5 ) (p + DihkPcp (A, A) + kPhcp (k9 h)\ = (p + 1)(BA + S A ) ^ + ι + P S p + ι

This is Apostol's reciprocity theorem.

If we take r = 1 in ( 3 . 4 ) , we get

= - 2{hkPcp (A, k) + pAÂ Cp (A, k)\ + pβ p + ι + 2(βfc + B'hψB'h.

If in this formula we interchange A and k and add we again get (3.5), while if

we subtract we get

( 3 . 6 ) p\h2kPcpml(h9 k)-k2hPcpml{k$ A)}

(Af k)-khPCp(k, h)\~{Bk + Bh)P(Bk-Bh).

In view of (3.6), it does not seem likely that Theorem 2 will yield a simple

expression for

Pcp.Γ(A, k) + {-l)rkr+ιhPcpmΓ{k, h) (r > 0 ) .

We remark that Theorems 1 and 2 are equivalent. Indeed it is evident that
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(3.2) is equivalent to (3.1), and (3.4) is equivalent to (3.3); also it is clear

that (3.1) and (3.3) are equivalent.

4. Some additional results. We next prove (compare [6, Th. 1]):

THEOREM 3. For p, q > 1, 0 < r < p + 1, we have

(4.1) cr(qh9 qk)=qr"Pcr{hf k) .

Note that we now do not assume p odd, (h, k) = 1.

To prove (4.1), we have, using (1.2),

qk)

v (mod q)
p (mod k )

p (hPΛ

= qr-Pcr(h,k).

For brevity we define

Γ . V

(4.2) b Γ ( h , k ) = ( c ( h , k ) - h ) Γ = Σ ( - 1 ) Γ " 5 ( ) h r ' s c s ( h $ k ) ,
s=o * 5 ^

which occurs in Theorem 1. Clearly

cr(hf k) = (b (A, k) + h)

THEOREM 4. For p, 7 > 1, 0 < r < p + 1, we have

(4.3) 6 Γ M
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By (4.1) and (4.2) we have

br(qh, qk)- Σ, (~1 ) Γ 'S {qhVscs(qh, qk)
s=o ' S '

= Σ (-lY-s(r)hr s

q

r-Pcs(h,k)

= qr-Pbr(h,k).

If we define

( 4.4 ) ar (h, k ) = ( c ( h9 k ) - h ) r c p + 1 " Γ ( A, A:) ,

which is suggested by Theorem 2, we get:

T H E O R E M 5. For p, q > 1, 0 < r < p + 1,

(4.5) ar(qh, qk) = #a r (A, A).

The proof, which is exactly like the proof of (4.3), will be omitted.

We note that (4.4) implies

( 4 . 6 ) hrcP + ι-r(h$ k) = T ( ~ l ) s Γ)as(hfk)=(l-a(h,k))r,s
s I

Also using (4.2) and (4.6), we get

(4.7) hP + ι'rbr(h, * ) - ( l - α ( Λ , k))P + ι'rar{h, k) 9

and reciprocally from (4.4),

(4.8) a r ( h 9 k ) = ( b ( h , k ) + h)P + i m r b Γ ( h , k ) .

Using ar(h, k) and br{h, k), we can state Theorems 1 and 2 somewhat more

compactly.

5. Another property of cΓ(λ, k). For the next theorem compare [6, Th. 2].

THEOREM 6. For p >_ 1, 0 < r < p, and q prime, we have
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(5.1) £ c r ( A + m*f ? * ) « ( ? + ql~P)cr(h9

By (1.2), the left member of (5.1) is equal to

- qlmrcr(qh, qk) + qcr (A, k) - q1^cr(qh, k)

= (qi"P + q)cr(h,k)-ql-rcr(qh$k),

by (4.1).

It does not seem possible to frame a result like (5.1) for the expressions

bτ(h9 k) or αΓ(A, k) defined by (4.2) and (4.3).

6. Representation by Eulerian numbers. If k > 1, pk = 1, p ^ 1, we define

the " E u l e r i a n number" //m ( p ) by means of [ 4 , p . 8 2 5 ]

1 —
(6.1) — -

m=o

Then it is easily verified that [4, p. 825]

" " 1

which may be put in the more convenient form
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(6.2)

Now consider the representation (finite Fourier series)

k-i

(6.3) P m l - Uζm

s=o

If we multiply both members of (6.3) by ζrt and sum, we get

mkum

(tfί 0 )

(ί = 0 ) ,

by (6.2) and (2.1). Thus (6.3) becomes

(6.4) p m

Thus substituting from (6.4) in (1.2), we get after a little reduction

(6.5) cr(h,k)= P * W ' + r ( p + 1 ~ r ) V - ^ —

Thus cΓ(A, A) has been explicitly evaluated in terms of the Eulerian numbers.

One or two special cases of (6.5) may be mentioned. For r = p we have

(6.6) cp(h, k) = — (p > 1 ) ,

while for r = p = 1 we have

1 1

where 7(A, A) = Cj(Λ, A). Note that's (A, k) = s (h, k) + 1/4, where s(A, k) is

the ordinary Dedekind sum [ 6 ] . We also note that (6.4) becomes, for m=\r
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( \ l l ^"ι C"μs

k I ~~ 2k k ^~* fs ~ 1 '

which is equivalent to a formula of Eisenstein.

Possibly (6.5) can be used to give a direct proof of Theorem 1 or Theorem 2.
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