
A NOTE ON THE HOLDER MEAN

T Y R E A. NEWTON

1. Introduction. Of the two better-known generalizations of the simple arith-

metic mean, the Holder mean and the Cesaro mean, the latter has been the more

extensively studied. This is primarily due to the equivalence of the two when

used to define summability methods and to the following formulas. If we define

C^, the k order Cesaro mean of the terms So, S p , Sn9 by the relation

pk i n+k\-i nk
Ln ~ [ k > V
pk i n+k\-i

where

S°n = Sn and Sk

n = £ St~l for n > 0, k = 1, 2,

then it follows [ l , p. 96] that

V = 0

n
]k+m _ y » / Λ - v + m - l \ c Λ
n /L* * m - 1 ' f

t> = 0

and

(1.2) Sπ = Σ ( ~ 1 ) 1 ; C ) 5 π - ^ ( m = ι> 2» •••)•
f = 0

The only known analogues to these formulas for the Holder mean that this writer

has been able to find are as follows. Denoting the kι order Holder mean of the

terms SQ9 Sί9 , Sn by H , and recalling the definition that

1 n

H° = S and Hk = V ff*"1 for n > 0, i - 1, 2, ,
n n n , l ^ - ^ t> —

f = 0
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it can be proved [ 1, p. 250] that

(1.3) *

and

(1.4) ^ = Σ ^ ^
v =o

where Δα(rc) = w(rc + 1) - M(TI). These formulas follow from a more general ex-

pression for the coefficients in any Hausdorff transformation. It is easily seen

that the coefficients involved in (1.3) and (1.4) in many respects are not as

convenient to work with as those of (1.1) and (1.2).

In § 2 below, the coefficients of (1.4) are obtained in different form, being

expressed in terms of a particular set of polynomials. A few of the properties of

these polynomials are considered in § 3 , while applications with respect to

Holder summability are dealt with in § 4 .

2. A set of polynomials. It follows from the definition of the Holder mean

that

( Λ + l ) Ufι - nHk

nl\ = Hk

n

for integers k > 0 and n > 0. By iteration, it follows that there exist coefficients

A^n) such that

m

(2.1) Hk

n = Σ, (-1)7' A™(n) H\η (m = 0, 1, 2, )
; = o

if

(2.2) f f

for 0 < / < m, where

(2.3) A°o(n) = 1 and Afin) = 0

for < 0 or y > m. By virtue of the identity
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it follows that the coefficient of (1.4),

AJ(n) = φ Δ ' U + l - / ) m ,

is a solution of (2.2) satisfying the boundary condition (2.3).

Another form of this solution is obtained when we consider the following set

of polynomials. For arbitrary nonnegative integers m and /, 0 < / < m, let

(2.4) F™(x)

= £ *'•(*-1)7',(x) =
m + l

m + 1

F™{x) = x ( x - l ) . . . ( x - m ) ,
m

the symbol

m + l

denoting the sum of all possible but different such products where p, q, , s

are positive integers such that p + ςr + + s = m + l Ifwe further let

(2.5) F™{x) = 0

whenever / < 0 or / > m, it follows that

(2.6) F ;

m + ι(*) = (*-/) IF^^x) + Ffix)]

for integers / and m > 0. To prove the latter relation, apply (2.4) to get

m + l

+ 5 ^ χ P ( x - l ) q .•• ( * - / + l ) Γ ( Λ ; - / ) S + 1

m +1
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for 0 .< / < m. In the first sum on the right, the exponents p, q, , r take on all

possible positive integral values such that (p + ςr + + r) + l = m + 2. In the

second sum, the integers p, q, , r, s take on all possible integral values such

that (p + <7 + + r) + (s + l ) = m + 2. It follows that if we consider both sums

on the right of (2.7) together, then their sum is Fτn*ί(x), thus completing the

proof of ( 2.6) when 0 < < m. Its truth for / < 0 or / > m follows when we further

consider (2.5) as well as (2.4).

Reconsidering equations (2.4), we note that each of the polynomials defined

there has x as a factor. Consequently there exists a unique polynomial G™(χ)

such that

(2.8) F™{x) = xGj(x)

for integral m > 0 and /. Substituting into (2.5) and (2.6), and noting that

G^(x) = 1 for all x, we see that G™ (n + 1) is a solution for (2.2) satisfying the

boundary conditions (2.3). Consequently, we assert that

(2.9) Hk

n = Σ, (-1)7' Gj{n+l)

for integers k > 0 and m > 0. x

3. Properties of the polynomials G™{x). In the work that follows, it will be

more convenient to consider the polynomials G™ {x) defined by (2.8). As might

be expected, we find a considerable number of recurrence relations and other

formulas involving these polynomials and their coefficients. Before proceeding

to the particular applications in view, we shall list a few such relations. For

integral m > 0 and /,

l r Γhe author is indebted to the referee for suggesting the above derivation of ( 2 . 9 )
which i s somewhat simpler than the proof originally presented. The referee also proposed
the following alternative derivation. We v;rite

n = 0

and then with D = d/dxf

and symbolically,

[{l-x)Dx]m Hk+m(x) = Hk{x).

Interpretation of the operator leads to the same results. This derivation is worth noting,
for it is analogous to the classical development of equations ( 1.1) and (1.2 ).
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(3-D GJ+Hx) = <*-/) IGJl^x) + Gf(χ)V,

for integral m > 1 and /,

(3.2) G ;

m + ι ( * ) = (x-1) G^ix-l) + * G ;

m U ) ;

and for integral m > 0 and jf

(3.3) (//2 + «) Gf(j/2 + x) = (-l) m + ι (//2-*) Gf(j/2-x).

Equation (3.1) is obtained by substituting from (2.8) into (2.6). The proof

of (3.2) is carried out by first deriving the relation

x) =χ[F'jι_ι(x-l) + FJ>(x)]

in the same manner as we derived ( 2 . 6 ) , then substituting from ( 2 . 8 ) . Equation

( 3 . 3 ) follows from the defining equation of F™ (x) when ( —1) i s factored from

each of the factors of the defining sum giving

for 0 < j < m. Replacing x by (j/2) + x and substituting from (2.8) yields the

desired result. This relation displays the symmetric nature of the polynomials

F™(x) - xG™(x) in that they are symmetric with respect to the line x = j/2

when m is odd, and symmetric with respect to the point (//2, 0) when m is even.

Determine coefficients j^mti such that

- jAm,oχm + iΛm,ι(3.4) i f

for m > 0. It follows from the definition that

/ m,m-ι

(3.5) iAm,i

for either i < 0, i > m > 0, / < 0, or / > m > 0, and in particular o^m,o " 1 while

0Amfi = 0 for ΐ > 0 . The following is a table of the polynomials G™(x) when

m = 1, 2, 3, and 4:

k = 1

Gι

o(x) =x

G\{x) =x ~ 1

G2(x)

G\(χ)

G2

2(χ)

k

=

=

=

= 2

X2

2x2 - 3

Sx

X

+

+ 1

2
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Gl(x)

G\(χ)

G\{χ)

G\{x)

k

= * 3

= 3*3

= 3*3

= * 3 -

= 3

- 6x2 + 4,x

- 12x2 + 1

6x2 + 11*

- 1

iix - 6

- 6

G o U )

G\(x)

G\(χ)

G\(x)

= X4

= 4x4

= 6* 4

= 4x4

= * 4 -

A =

- 1 0 * 3

- 3 0 * 3

- 3 0 Λ ; 3

- 10x3 4

4

+ 10*2

+ 55* 2

+ 80* 2

-35* 2 -

- 5 * + l

- 45x + 14

- 90x + 36

• 50* + 24

Substituting from (3.4) into (3.1), collecting like terms with respect to %, re-

placing m by m - 1, and equating coefficients, yields the recurrence relation

(3.6) jΛm,i

for integral m > 1 and /. Summing the latter expression with respect to / results

in the relation

(3.7)
f =0

/ -

f = 0

for 0 < i < m. An interesting particular case of the latter formula is obtained by

letting = m and considering (3.5). It follows that

m- l

V - 0 t> = 0

From repeated substitution, we conclude that

771

whence

(3.8)

when m > 1.

Δ* v
V = 0

Recalling the factorial notation

for ΐ < m

~ x(x - I) ••• (%~m), ^ > 0 , we ob-
tain
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But by definition, the numbers sm such that

are the Stirling numbers of the first kind [2, p. 143 ] . 2 It now follows, since

that

< 3 9 > mA

m,i " S

In turn, letting i = 0 in (3.6), we find that

.A ~ .A + . A .

As a consequence of the initial conditions that 0Amt0 = 1 and jAmf0 = 0 for / > 0,

it follows [2, p. 615] that the solution of this partial difference equation is

( 3 1 0 > jΛm,o = Φ

When considering the polynomials G™{x) as displayed in the table, we see

that, for any m, the coefficients considered by rows in light of (3.9) and (3.6)

give a possible extension of the Stirling numbers. On the other hand, when the

coefficients are considered by columns in light of (3.10), they present a possi-

ble extension of the binomial coefficients. This latter property is better dis-

played when we consider the known formula [2, p. 169]

m

*—* v ' j ,τn
v = l

where SjfTn is the Stirling number of the second kind and thus SjfTn = 0 for 0 < / <

m. Make the definitions

Pm(i,j)- Σ ( -D" vAm,i V' a n d ^ ^ / ) = Σ (-D" v
v ~ l v = o

where m > 1. It follows from a straightforward induction proof that

(3.11) P m ( 0 , 0) = - 1 and Pm (i9 j) = 0

2 The notation used here for the Stirling numbers of the first and second kind is not
the same as that used by Jordan in [2].
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whenever 0 < i < m9 0 < j < m - ί, and i + j £ 0. The induction can be carried out

by using the identity

and the fact that the truth of (3.11) implies that both

(3.12) Qm(i,j) = 0

for 0 < i < m9 0 < j < m - i, and

Qm{i, m-i) ^ Pm{i, m-i)

for 0 < i < m.

It is of interest that

m m - i

(3.13) Σ, (-1)' G™(x + in) = Σ nm"iPm(i9m-i)
i = o * = °

for m > 1, n = 0, ±1, ±2, , and all x. That is, the sum

m

Σ, (-i) ' cΓ(* + ί'n)
« = o

is a function of π and m alone, independent of x. This follows from (3.8), (3.11),

(3.12), and the identity

I = 0

t / = o

m- l

ί = o

where m > 1. Since the sum on the left of (3.13) is independent of x, we can

write

m m

Σ. (-i)'' GΓ(* + w) = Σ (-i)'' GΓ(ι»)
ί = 0 1 = 0
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for m > 1, n = 0, ±1, ±2, , and all x. Letting n = 1, recalling that G™(x) has

( « - ί ) a s a factor for i > 0 and that Gm (x) = * m , we see that

m

V-l) Ui {x + i) = U

ι=0

for m > 1 and all x. If we let n = 0 in (3.13), then

771

(3.14) Σ, (-1)1' G Γ ( Λ ; ) = X

I = 0

for m > 1 and all #. It turns out that n = 0, 1 are the only two cases where the

sum

is independent of m as well as x.

Consideration of (1.4) with (2.9) yields

(3.15) GJin) = r~ι) A> (n-j)m.

As might be expected, more is found concerning the nature of the coefficients of

the polynomial G™ (x) by studying the expression on the right of (3.15). Sub-

stituting into (3.15) from the identity

v = 1

where Sm v denotes the Stirling number of the second kind [2, p 181 ]» and sim-

plifying, we obtain the relation

Substituting from the defining relation for the Stirling numbers of the first kind,

x(v) _ y j

i = I
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collecting like terms with respect to nυ

f v = 0, 1, , m, and equating coeffi-

cients, yields the relation

m-j
A Γ̂"* (]' Ί" v \ c ( * \

/ m,i ~ Z-* j m,j + v^Sj+v,m-i ~~ ? 5/+υ,m-i + i '
v = o

for integral m > 0, i9 and /.

4. Application to Holder summability. For the remainder of this paper ί Sn \

denotes the sequence of partial sums of the arbitrary infinite series Σ, an, and

Hn denotes the k order Holder mean of the terms S o, Sl9 , Sn. If

lim Hκ = S,
n -*oo n

then Σ α n is said to be summable Holder of order k to S9 and this fact is denoted

by

Σ,an = S(H,k).

In the same manner, the sequence { Cn \ defines Cesaro summability of order k.

Likewise, Cesaro summability of order k is denoted by

Σan = S(C,k).

The Holder and Cesaro summability methods are equivalent in that

if and only if

Σ,an = S ( C , k ) .

At times it will be convenient to use the operator form of denoting the Holder

mean. That is* the kι order Holder mean of the terms p , p , , pn is denoted

by Hk (p n ). If pn = Sn_k, k > 0, and Sm = 0 for m < 0, then we have

1 1 + 1 V = 0

for k > 1, and
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It follows that

(4.1) H
m
(H

k
(
Pn
)) = H

m
+
k
(p

n
)

and

where m and k are nonnegative integers.

Letting k=—m in (2.9), m > 0, we have the following definition for Holder

means of negative integral order.

DEFINITION 1. For m^ 0,

m

(4-3) Ή~n

m = Σ (-1)1' GJ U + 1) S n_ t .
i = 0

Referring to the defining equation for the Cesaro mean,

r m i n +m \-ι cm
Ln " V m ) *n

we see that the first factor on the right is undefined for negative m when τι is

sufficiently large.

From Definition 1, it follows that (2.9) can be extended to all integral values

of k. The Holder method of summation is said to be regular since

implies

for m > 0. With respect to negative order summation, the following extended sense

of regularity is immediate.

( i ) If Σ α n is divergent, then it is not summable (//, —TO) for any m > 0.

( ϋ ) If
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for m > 0, then

for all p > — m.

Also, the right side of (4.3) can be used to define the operator H~m. From this

definition, it follows that properties (4.1) and (4.2) are true for all integral m

and k.

Applying summation by parts to (4.3), considering (3.14), and using the op-

erator notation, we find that

m-l / i \

(4.4) z/"m(s n) = £ I Σ ί-1*7 G

7

m(» + i ) **-»• +

i = o \ / = o /

for m > 0. Applying the operator W^+m, we see that

(4.5) HHSn) =

for integers m > 0 and ^ Since

*£ I Σ. (-1)' G^n+l)] απ_J + H1+m(Sn.m)
; = o \ / = o / J

lim H1(Sn) m S
n-*oo

implies

lim HΊ+m(Sn-m) = S
n -»oo

for m > 0, we have the following theorem as a formal statement of our results.

THEOREM 1. //

(
i = 0 \ / = 0

is α necessary and sufficient condition that
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£ « „ =S(H,q).

Letting q = 0 in Theorem 1 yields a Tauberian theorem, that is, a theorem in

which ordinary convergence is deduced from the fact that the series is summable

and satisfies some further condition (which will vary with the method of summa-

tion).

Letting q = -m in Theorem 1, we have the following corollary with respect to

negative order summation.

C O R O L L A R Y 1. / /

then

m - l

lim
I = 0

(-1)7" α»-i = 0

/=o

is a necessary and sufficient condition that

, - m ) , m > 0 .

Noting that

is a polynomial at least of degree m9 it follows that

lim nm a = 0n

implies

lim (-D7 cj di β»-i = °

and consequently we assert:



820 TYRE A. NEWTON

COROLLARY 2. //

then

lim nm aR = 0 , m > Q,

is sufficient for

~ i> ~τn).

Letting m = 1 in (4.5) we have

HHSn) =ff? + 1

or, applying the distributive property of this operator,

(4.6)

This relation is equivalent to a well-known analogue to Kronecker's theorem [3,

p.485] which states that if Σ,<*n is summable ( C, q)f then

Hι(nan) = 0(C, g).

Conversely, it follows from (4.6) that if Σ,an is summable (//, <? + 1), then a

necessary and sufficient condition that it be summable (//, q) is that

na = 0 ( # , g.+ l ) .

For integral q> 0 this is analogous to Theorem 65 of [ l ] However, in the fore-

going case, the statement is true for all integral q. As a further extension of the

analogue to Kronecker's theorem, we have the following.

COROLLARY 3. //

then

mΣ ( έ (-1)7' Gf(n+1)\ an_. = 0(H, q + m)
i = 0 \ / = 0 /
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for integral m > 0.

For a special case where the condition of Corollary 2 is necessary as well

as sufficient, we shall prove the following.

THEOREM 2. // Σ,an is a convergent alternating series, then

lim nm an = 0, m > 0,

is a necessary and sufficient condition for Σ α π t° be summable (H, -m).

Proof. Letting i - 0 in (3.7), we conclude that there exist constants

/ = 1, 2, , 77i, such that

k

.

(4.7)
7 = 0

kam,2 ^ ^ * + kam,m

for 0 < k < 7π. We recall from the definition of Gf (*) that , A , > 0 for 0 < k <

m. Consequently, for a given m, it follows that there exists an n0 such that for

all even k,

h

> 0;
I = 0

and for all odd k9

(-I)1' < 0
I = 0

whenever n > n0. But by hypothesis, α ^ ^ is alternating in sign with respect to

77i, whence

(4.8)
m - l / i

Σ Σ (-i)''G U) -„_,_,
ι = 0 \ / = 0 / I = 0

£(-!)/ Gf(n)
y = 0

n-i-l i

for n> nQ. Also, it follows from (4.7) that

lim n~m

Σ M
7 = 0
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consequently there exist positive constants nι > n0, M(m), and N(m) such that

nm M{m) < Σ (-iv GJ(»
; = o

< nm N{m)

for 0 < i < m and n^n^ Considering this with (4.8) yields

M(m)
m - 1/ i

Σ Σ<

for n > 7i .We conclude that

m - i - 1
X ^ / Ί \7 C*Tϊl ( \ I r\
y i ~ 1 1 u • i n ) a = = u

— - i = o \ / = o /

if and only if

lim nm an = 0 .

The theorem now follows from Corollary 1.

Letting q = - 1 in (4.6), we see that any convergent series for which

lim nan £ 0
Π-4OO

is not summable Holder for any negative order. On the other hand, Σ l / ( / ι + I ) 2

is convergent and

lim n2 an Φ 0 ,
n-*<χ>

yet it follows from direct application of Corollary 1 that this series is summable
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