
INVARIANT INTEGRALS OVER A CLASS OF BANACH SPACES

G E R S O N B. R O B I S O N

1. Introduction. The main content of this paper is inspired by the theorem

of von Neumann [8, p. 92] :

If S is a compact topological group it has a unique invariant integral. 1

The "invariant integral" may be described as a linear functional x* over

X = C(S) which satisfies the following conditions:

(N ) #* (e ) = 1 (normalization);

(Γί ) inf * ( ί ) >. 0 implies x*(x) >^ 0 (positivity ) 2 ;

(P 2 ) inf x (t) >_ 0 and x £ 0 implies x* (x) > 0 (strict positivity);

( I ' ) for each x Eλ9 s € S, if the functions xS9 sx9 sιχs2

 a r e defined by:

xs ( t) = x (ts )

SίXs2 (*) = * U i ts2 ) ,

then always:

χ*(χs) = χ*(sχ) = x* ( S l *s 2 ) = X* (x)

(invariance ).

The relations x—• χs , x—>sx are bounded linear transformations on X,

indexed by S. Because of their definition in terms of an underlying topological

XAs stated in the given reference, it is also required that 5 satisfy the second axiom
of countability. However, by use of Ascoli's theorem [3, Chapter X], this can be elimi-
nated.

2Unless otherwise stated, inf and sup will always be taken over 5.
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group they possess strong properties which enable the construction to go

through. We consider here a more general underlying space and a more general

class of functions on S, together with a semi-group G of bounded linear trans-

formations on this class. The invariance is defined in terms of G.

( I ) Foral l T £ G, and x G A, x* ( Tx) = x* (x).3

Thus the restrictions sufficient for the construction of a unique invariant

integral are expressed in terms of the transformations themselves. Since we

will be working in terms of linear functionals, it should be noted that Γ2 implies

I\ , since x* ( θ ) = 0 for any x* £ X*.

2. Notation. S is a topological space. The points of S will be denoted by

^9 ^i* I** a n d s o o n B(S) is the collection of bounded, real-valued functions

on S. Its elements will be denoted by x9 y, z9 e (the unit function), θ (the

zero function). Addition in B(S) and scalar multiplication by real numbers are

defined linearly:

ί x + y ] ( t ) = x ( t ) + y ( t ) ,

It has a topology defined by the norm:

| | * | | = sup | * ( ί ) | .

C ( S ) C δ ( S ) is the subspace of continuous bounded functions over S. F will

be any subset of B(S), subject to certain restrictions as needed; X will be the

closed linear manifold generated by F. .X* is the space of continuous linear

real-valued functionals on X ("dual space", "conjugate space") . Its elements

are denoted by **, y*, and so on. Addition and scalar multiplication in X* are

defined linearly, as in X. Its topology is given by the norm:

| * * ( * ) |

11 ** 11 = S U P ,, ,,
x φ θ

For linear functionals, boundedness in the above norm is equivalent to

continuity [2, p. 54]. β ( S ) , C(S), X and Z* are all Banach (normed, linear,

3Alternatively, this condition may be expressed: **x* is a fixed point under G*,tf

where G* = { Γ*!, the semigroup of transformations on X*, adjoint to G, defined as fol-
lows: Corresponding to each ΓGG, a T*€G* is defined by:

[ Γ*(%*)] {x)=x*(Tx) for each xSX.
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complete ) spaces [2, p. 53 ] .

B [ X ] is the algebra of bounded linear transformations on X. Addition and

scalar multiplication are defined linearly, and

[TV](x)=T[V(x)\.

It has a topology given by the norm:

= s u p

G will denote a multiplicative semi-group contained in B[X]» Gγ is the closed

convex hull of G, that is, the transformations of the form:

V = Σ * λf Ti (Ti e G, λt > 0, Σ λ f - 1 ) .

If G is uniformly bounded, that is, if there exists a finite number ft such that

| | T Π < ft all T e G, then for any V £ Gx :

i m i = l l Σ λ . n H < Σ.λi\\Ti\\ < m a x | | 7 i | | .

Hence Gι will have the same bound. We shall say in that case, that "G is

bounded by ft." Gx contains G, and ( G i ) i = G 1 . For a given AJ E l , # [ # ] is the

closure in B (S) of

and 0 [x ] = sup x(t) - inf x ( ί) .

3. Note on a result of J. Dixmier. If less is demanded of the invariant

integral, a necessary and sufficient condition on X and G for its existence can

be obtained by restating and extending a theorem of J. Dixmier [ 5, pp. 214-215].

In [5], an invariant mean is defined in terms of an underlying topological semi-

group, omitting F2 and any requirement of uniqueness, and with X-C{S)\ the

author gives a necessary and sufficient condition for the existence of such a

mean, and his theorem may be restated in the terms we are using:

THEOREM 3 (after Dixmier). Let S be any topological space, X any closed

subspace of B(S), G as above. Then a necessary and sufficient condition that

there exist an x* G ί * satisfying N, Pi, I, is that for any integer n and any set
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of pairs

(xi, Ti) (Xi eλ, TiEG;i=l, 2, . . . π ) ,

we have:

n

inf £ [Xi- TXi](t) < 0.
1

Dixmier's proof goes through in this formulation. It should he noted that the

condition is quite symmetrical, being equivalent to:

inf Σ[T.y.-y.]U)-0;

this we obtain by letting yχ = - x^ The two forms may also be expressed:

sup Σ [ Ti%i - Xi ] ( t) = 0,

sup Σ ίyi - Ίiyi ] ( t) = 0, respectively.

However, this theorem does not ensure uniqueness of the functional so obtained,

as the following example will show.

EXAMPLE 3.1. Let S consist of the two points 0, 1, in the discrete to-

pology, G of the identity alone, and

X = C(S) = B(S).

X i s then a two-dimensional vector space, with bas is /, g; / ( 0 ) = 0, / ( 1 ) = 1,

and g ( 0 ) = l , g ( l ) = 0. Any linear functional is determined by its values on

/ and g, by linearity. The Dixmier condition is trivially fulfilled, and so is con-

dition I for any functional. The remaining conditions can be met by ass igning

the values

where a can have any value between 0 and 1.

Furthermore, P2 may be unfulfilled even when x* is unique.
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EXAMPLE 3.2. Let S be the closed interval 0 < t < 1, with X = C(S).

Let G consist of the identity and the transformation T defined by:

[ T ( x ) ] ( t ) = x ( 0 ) f o r a l l tβS.

Thus

Γ 2 = T and Π * ) = [ * ( 0 ) ] e .

G satisfies the Dixmier condition since for t = 0, we have

Hence there is a linear functional x* satisfying N, P l f L But x is completely

determined now, since for any x £ X:

by N. Thus x*(x) = 0 for any continuous function if only x ( 0 ) = 0, regardless

of how the function behaves elsewhere on S. In fact, in this case the functional

is identifiable with one on the quotient space X/M, where

Since M is a maximal ideal, the quotient space is the field of real numbers

[9, Theorem 76].

Finally, the Dixmier criterion refers to all possible finite combinations of

equal numbers of functions and transformations, which makes it inconvenient to

apply, as may be seen in the examples given in the paper to which we have

referred. We have sought conditions which apply to each function and its trans-

formations.

4. The core of the von Neumann construction lies in showing that for each

x EX there is one and only one constant function in /£[#]. In fact, with the

addition of a boundedness condition which occurs naturally in that case, this

is sufficient.

L E M M A 4 . 1 . For each x EX and V β G t , K[V ( x ) ] C K[x].

Proof. Let y be in K[V (x)]. Then for any 6 > 0 there is a IF in Gx such

that
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e.

Hence there is a F ' G Gι, V'= WV, such that

| | F ' U ) - y | | < e.

Therefore y is in K[x].x

THEOREM 4.1. Suppose that:

(1) G is bounded by k;

(2) for any x G F and V G Gί, Vx G F

( 3 ) constant functions are fixed under G {and hence under G{), and F contains

a constant function jL θ;

(4) for each x G F there is just one constant function in K[x],

Then there is a bounded linear functional over X satisfying N and I. // the con-

stant functions satisfy Pi or F2 {in the obvious meaning) then the functional will

satisfy Y\ or P2 over F.

Proof. It will be convenient to denote the constant function in £ [ * ; ] , and

also its value, by ΛΓ. Then we note by (4) and (2) above, and Lemma 4.1, that

for each x G F and V €Glf

Define a function x* over F by

x*{x) -x.

We assert that for any finite collection {X{ \ of elements of F and any set of non-

zero real numbers { λj} (i - 1, 2, , n ),

(*)

To establish (*) , we proceed as follows. For #1, and for any 6 > 0, there

is a Vι G Gt such that

\ λ x \ .
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For x2 = V\X2 there is a V2 such that:

\ V 2 [ V ί ( x 2 ) ] ^ V ί x 2 \ \ = \ \ [ V 2 V ι ] ( x 2 ) - x 2 \ \ < e / n k \ λ 2 \ ,

and thus inductively for

there is a F; such that

Letting V = FΛ Vnm i Vγ , we get for any j :

< ke/nk | λj( = e/n | λj | .

Hence

l λ

accordingly,

iiXίU +

Since e > 0 was chosen arbitrarily, our assertion (*) is proved.

Therefore by a theorem of Banach [2, pp. 55- 56], ** can be extended to be

a linear functional over X, with
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11**11 < A.

Since F contains at least one nonzero constant function, x*(e ) = 1 by linearity.

We must show its invariance.

Let

Note that Y = X. For any y £ Y , and any V

Take any x G Y = X. Then for any 6 > 0 there is a y G Y such that

| | y - * | | < minU/2A;, e/2k2\.

Therefore

| * * ( y ) - * * ( * ) | < | |**| | | | y - * l l < e/2

and

μ * [ F ( y ) ] - % * [ F ( ^ ) ] | < | | % | | | | F | | . | | y ~ % | | < e / 2 .

Hence, s ince x*[ V ( y ) ] = x* ( y ) ,

Since € > 0 was chosen arbitrarily,

The remaining conditions are obviously satisfied.

LEMMA 4.2. For the existence of a bounded linear invariant functional ΛΓ*

it is necessary that:

(1) the functional is constant over K[x] for each x G X

(2) if x*(e) Φ 0, K[x] contains not more than one constant function.

The proof is immediate.
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THEOREM 4.2. If for each x G F9 K[x] contains a constant function^ and

there exists a bounded linear functional x* over X satisfying I and N, then it

is unique.

Proof. From the preceding lemma, for each x E Ff K[X] contains just one

constant function x. From property N we have, by the same lemma,

Thus the value is completely determined for any x G F by the value of x. By

linearity it is determined on Y; that is, any two functionals Λ;* and x* satisfying

3N and I must agree at least on Y. Take any x £ X. Then for any e > 0, there is

y G Y such that

| | * - y | | < m i n { e / 2 | | * * | | , e/2\\x*\\\.

Then

< ||*ίl| | | *-y | | < e/2.

Similarly,

\χ*(x)-x2(y)\ < e / 2 .

Since Λ;* (y ) = x* (y ), the conclusion follows.

5. In this section we establish conditions sufficient for K[%] to contain at

least one constant function. First we establish some properties of a bounded-

ness condition which occurs naturally in the von Neumann construction,

LEMMA 5.1. Let x G X satisfy the condition: 4

( A J for any t0 £ S,

sup [V(x)] (tQ) = sup x(t) and inf [ V (x )] (t0) = inf x (t).

T h e n :

( 1 ) for a n y V G Gt ,

s u p x { t ) ^ s u p [ V ( x ) ] ( t ) and i n f x ( t ) < i n f [ V ( x ) ] ( t )

I am indebted to the referee for the simplification of this condition to the above form.
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( 2 ) for each VeGl9O[V(x)]<O[x];

( 3 ) for each V G Gt, | | F ( * ) | | < \\x\\;

( 4 ) V {x) = x for all V G G\ if and only if x is a constant function;

(5) for a n y y G K [ x \ i n f x ( t ) < i n f y ( t ) < s u p γ ( t ) <_ s u p x ( t ) ,

therefore \\y\\ < 11 * 11.

Proof. Conditions (1), (2), and (3) are trivial. If x is a constant function,

then

sup x(t) - i n f # ( i ) ,

giving equality throughout in (1), whence V(x) = x. Conversely, let V(x) = x

all V E Gι. Then, for any t0 G S,

s u p [ V ( x ) ] ( t o ) = i n f ί V ( x ) ] ( t o ) = x ( t o ) .

But by Ai, V can be found so that [ F ( Λ ) ] ( ί 0 ) approaches as close as we like

to either sup x ( t) or inf x ( t ) . Hence

s u p x ( t ) = i n f x ( t ) = x ( t 0 ) .

Thus ( 4 ) is proved. To prove ( 5 ) , take y in K[x] Let inf Λ;(ί) = c. Suppose

there is a t0 £ S such that γ(to) = d < c. Then there is a F G GL such that:

c
| y | f o r a l l ί G S .

Then

[ f U ) ] ( ( o ) - i . < \[V(χ)} ( ί o ) - y ( t o ) | < ^ ~

Hence

[ F ( Λ ) ] (ίo) < c = inf * ( t ) .

This contradicts A l f and therefore

inf x (ί ) < inf y (t) .

Similarly we prove
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sup % ( ί ) >. sup y (t ) .

THEOREM 5. Let S be compact, G bounded by k. For a given x, let x and

V (x) be lower (upper) semi-continuous and satisfy Aι for all V G £ 1 # Suppose

also that:

( A 2 ) K[x] is compact.

Then K[x] contains a constant function xf such that if x(t) >_ 0 all t G S, then

x >_ 0. If x and V(x) are lower semi-continuous for all V G Gί9 with x(t) ^ 0 all

t G S, and x ^ θ, then Ίc is positive.

We shall first prove the following lemma

LEMMA 5.2. Under the above hypothesis9 (omitting A 2 ) , if % is not a con-

stant function, then there is a W G Gγ such that

'mix(t) < inί[V(x)] (t) < sup [W (x)] (t) < supx(t)

(for lower semi-continuity), or

'mίx(t) < inf [W(x)] (t) < sup [W (x)] (t) < supx(t)

(for upper semi-continuity), and hence in either case:

0[W(χ)] < O[χ].

Proof of Lemma 5 .2 . A s s u m e V (x) lower s e m i - c o n t i n u o u s for a l l V G G\ L e t

b - inf x (t) < sup x ( t ) - d.

Take c so that b < c < d. Then the open set bounded on the left by c contains

an image point of x. For each V G Gx define the set Mv in S, open by lower

semi-continuity:

Mv = {t\[V(x)](t) > c\.

The collection \MV \, V EGi, is an open covering of S. For, if t be any point

in S, by A t there is a Vt G Gι such that

[Vt(x)](t)> c;

t is therefore in MVt. Under the compactness of S, let
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\MV.\ ( i = l , 2,

be a finite subcovering. Take

Then W ^(Gί)ι - G l β By Lemma 5.1 we have

s u p O U ) ] ( t ) < s u p x ( t ) = d.

Also, for any ί0 and each Vι,

[ V i ( x ) ] ( t 0 ) > i n f [ V i i x ) ] ( t ) > i n ί x ( t ) =

But for each t0 we have, for at least one of the selected F/'s,

[Vi(x)] (t0) > c.

Hence

ίW(x)] ( ί o ) = ^ l [ F i ( * ) ] ( t o ) > U ~ 1 ) 6

n — n

Therefore

(n- l)b + c
mί[W(x)](t) > >b = inίx(t).

The proof of the lemma for upper semi-continuous functions is completely ana-

logous.

Proof of Theorem 5. If x is a constant function, K[%] consists of x alone,

and the conclusion is satisfied. If x is not constant, let

r * = inf O[V(x)].
VEGi

We must show that rx = 0. Let

Wi\ (i = 1,2, . . . )

be a sequence in Gγ such that 0[V((x)]—¥ rx. By the compactness of X[#]

there is a subsequence { Wι \ and ay & K[x] such that
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Wi(χ)—*γ and 0 [Wt (x )] —» rx .

Take any e > 0. For i sufficiently large,

(1) ll*ϊ(*)-yll < e/3,

(2) \0[Wi(x)]-rx\ < e/3.

From (1), in standard fashion, we get

| s u p γ(t)-a\φ[Wi(x)] ( t ) \ < e/3,

\in{[Wi(x)] ( ί ) - i n f y ( ί ) | < e/3 9

whence

\O[y]-O[Wi(x)]\ < 2e/3.

Adding this to the inequality ( 2 ) above, we obtain | O [ y ] - r ^ | < €• Since
6 was arbitrary, 0 [y ] = rx.

Now assume rx > 0. Since the convergence of W((x) to y is uniform, the
latter has the same kind of semi-continuity and satisfies A l β Hence by Lemma

5.2 there is a V G Gx such that

<O[y] = rx .

Let

(3) rx - O[F(y)] = δ > 0.

Take i sufficiently large, so that

| | y - l F i ( * ) | | < S/3A.

Then

\\V(y)-[VWi](x)\\ <\\V\\. | | y - l F , U ) | |

As before, we get

O[VWi{x)]-O[V(y)] 1 \O[VWi(y)]-O[V(y)]\ < 2S/3.

Subtracting from equality (3), we get

rx-O[VWi(x)] > 8-28/3=8/3.
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Therefore

O[VWi(x)] < r*-£/3 < rx.

But this contradicts the definition of rx, since VW{ is in Gχ Hence rx - 0, and

γ is the required function.

Now suppose x(t) > 0? for all t G S. Then by Lemma 5.1 (5) ,

y = ΛΓ> 0.

If also # and F ( Λ ) are lower semi-continuous for all V G G\ and x j£ θ , then

by Lemma 5.2 there is a W G G t such that

0 < i n f x ( t ) < i n ί [ W ( x ) ] ( t ) .

By the foregoing there i s a c o n s t a n t funct ion y = W (x) in X [ J F ( # ) ] . By L e m m a

5 . 1 ( 5 ) ,

γ ( t ) > i n f [ W ( x ) ] ( t ) > i n ί x ( t ) > 0 .

By Lemma 4.1, y E K[x], and this satisfies the last statement of the theorem.

If S is a compact, uniform space 5 (or a compact Hausdorff, and hence uni-

formizable space), and K[x] C C(S), then A2 may be replaced by a condition

which enables us to obtain a suitable equicontinuous family of functions, where-

upon Ascoli's theorem may be applied [3, Chapter 10]. This is the situation

in von Neumann's construction, where the transforms of x under Gx are indeed

uniformly equicontinuous.

COROLLARY 5. Let S be a compact uniform space, Π its uniform structure.

Then in Theorem 5, if K[x] C C ( S ) , A 2 may be replaced by:

(A 2 ' ) For each V β Gγ there is a W E Gx such that for any e > 0, t G S,

and φ Gil, there is a 8 > 0 for which, if 0[x] < 8 over ψ{t) then

0[WV(x)] < eoverφ(t).

In the proof of the theorem we need only replace the first sequence Fj with

WiVi, the Wi's having been determined in accordance with A 2 . By At and Lemma

5.1 (2), O[Vi(x)] —» rx implies O[Wi Vi {x)] —* rx. The new sequence

[WiVi] (x) being equicontinuous and uniformly bounded, Ascoli's theorem

applies and it has a limit y in K[x]

5The terminology and notation in the remainder of this section are those of [3,
Chapter II] .
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6. The foregoing is not sufficient to obtain a unique constant function in

K[x].

EXAMPLE 6. Let S = [0 1], F = X = C{S). Let G consist of the trans-

formations indexed by S:

[Ts (x)] (t) = x(s ) (s arbitrarily chosen in S ) .

Each x satisfies At andA2' since for any V £ Gγ the oscillation of V(x) over

any neighborhood is bounded by that of x But for each value in the range of x

there is a constant function in X[#].

Thus it is necessary to use some additional condition to ensure uniqueness.

The following theorem is an example of a restriction which provides uniqueness

of the constant function in /£[#]•

THEOREM 6.1. Let G be bounded by k and let the constant functions be

fixed under G, Let x satisfy the following condition:

(Bi ) For each T G G and e > 0 there is a 8 > 0 such that if V E G\ and

0 [ F ( % ) ] < δ, then for each t E S there is at' with

\[VT(x)](t)-[V(x)}{t')\ < e .

Then K[x] contains at most one constant function.

Proof. Suppose x and y are constant functions in # [ # ] . Take e > 0. There

is a

with

| | P ( * ) - * | | < e/3A.

For each T(, let e/3 be the £ and δ; be the corresponding δ of Bi Take W £ G\

such that

| | V ( * ) - y | | < min{ε/3, δ /2} (i = 1,2, . . . n ) .

Then 0[W(x)] < δj for each i. For an arbitrarily fixed t and for each T{ there

is a t? such that
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\[WTi(x)](t)-[W(x)] (tf)\ < 6 / 3 ,

B u t

\ ί W ( x ) ] ( f . ' ) - y ( ί ) | = | [ J F ( * ) ] ( t f ) - y i t f ) \ < \ \ W ( x ) - y \ \ < e / 3 .

Hence by addition,

| [ I F 7 i U ) ] ( ί ) - y ( t ) | < 2e/3.

Since t was arbitrarily chosen,

\\WTi(x)-^\\ < 2e/3

and

\\WV(x)-y\\ = \\WΣλiTi(x)- Σ λ j y | | < Σ λ ; | | IF7fU) -y | | < 2e/3.

But

| | I P F ( * ) - * | | = | | W ( * ) - I F G ϊ ) | | 1 | |IF | | | | V(x)-x\\ < e/3.

Adding again, we get 11 x — y 11 < 6, whence Λ; = γ.

It is possible to find examples of the von Neumann case which do not satisfy

B l y when S is a non-abelian finite group in the discrete topology. A theorem of

Eberlein [6, p 230] applies more directly, and although it is not of the type we

are seeking, we state it here for completeness. 6

THEOREM 6.2 [Eberlein]. Let G and G2 be bounded semi-groups that

commute elementwise (that is, if 7\ GG1 and T2 GG2 then Tx T2 = T2Tγ) and

let every fixed point of G1 be a fixed point of G2, and conversely. Then the

fixed points of K [ x ] and K [x] reduce to a common, unique fixed point.

In the von Neumann construction, the G 1 and G 2 are the transformations by

multiplication on the left and right in S. Since G ι and G 2 each satisfy A t and

A 2 , the constant functions are the only fixed points for both, and for each x,

K [x] and K2[x] have one in common.

Alaoglu and Birkhoff give the following theorem [ 1, p. 300]: If G is bounded,

and if for any x the means of its transforms have the Moore-Smith property, then

6With the exception of Theorems 6.4 and 6.7, the actual nature of X, other than its
being a normed linear space, is not considered in the remainder of this section.
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&[Λ;] contains not more than one fixed point. With their definition of order for

Gχ(x), this is equivalent to: Given any x € X, G bounded; if, for any V, W in

Gi there exist V'9 IF' in Gγ such that

then K[x] contains not more than one fixed point. The hypothesis here can be

weakened a little, since only an arbitrarily close approach is needed, rather

than equality.

THEOREM 6.3. If G is bounded by k9 and x satisfies:

(B 2 ) for any e > 0 and any V9 W in Gι there exist V'f W in Gγ such that

\\vv(x)-w'w(x)\\ < e,

then K[x] contains not more than one fixed point.

Proof. Let y and z be fixed points in K[x]. Take e > 0. Then there are

V, W in Gi such that

| | y - P U ) | | < e/3k and \\W(x)~^\\ < e/U.

By the hypothesis, there exist V, W in Gx such that

\\V'V(x)-WW(x)\\ < β/3.

But

Similarly,

\\W'W(x)-Ί\\ < e/3.

Hence, by addition,

\\y-l\\ < e.

Since e > 0 is arbitrary, y = z.

COROLLARY 6.1. // G is bounded and abelian with respect to a given x9

then K[x] contains not more than one fixed point.
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Proof. Clearly, x satisfies B 2 with F ' = IF and W'= V.

If the constant functions are fixed points, B 2 can be further weakened to

get a similar conclusion about constant functions.

THEOREM 6.4. // G is bounded by k and the constant functions are fixed

points9 and x satisfies the following condition:

(B 3 ) for any e > 0 and any V, W9 in Glf there are V\ V> in Gι and tίf

t2 in S such that

| [ F ' F ( x ) ] ( ί 1 ) - [ » " J F ( x ) ] ( ί 2 ) | < e,

then X[%] contains not more than one constant function.

Proof. As in Theorem 6.3 we obtain V, W$ such that

| | y - F ' F ( * ) | | < e/3 and \\W'W(x)-Ί\\ < e/3

for any V\ W in G1 # From the hypothesis there exist V\ W', tχ9 t2, such that

\[V'V{x)] ( O - t l T f F U ) ] ( ί 2 ) | < e/3.

For any t £S9 we have from the first inequalities,

\ y U ) - l V e V ( x ) ] ( . t ι ) \ = \ y ( t ι ) - [ V f V ( x ) ] ( t ι ) \ < \\ y - V V { x ) \ \ < e / 3

a n d

\[W'W(xmt2)-Ί(t)\ = \[W'W(x)](t2)-J(t2)\ < \\W'W(x)-Ί\\ < e / 3 .

Adding the three last inequalities we get our conclusion.

It can be seen that the von Neumann case satisfies B 3 although to show it

would amount to a proof of the theorem.

With a somewhat stronger conclusion of Theorem 6.3, B 2 becomes a neces-

sary condition*

THEOREM 6.5. Let G be bounded by k. For a given x G X, suppose that

K [x ] and, for any V£Gi9 K[V {x)] each have just one fixed point. Then

B 2 holds.

Proof. Take any V, W in Gί9 e > 0. We have shown in Lemma 4.1 that
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K[V(x)] and A'[If (%)] are both contained in K[x]. Hence by the hypothesis

they contain a common, unique fixed point %. There exist V% W in Gx such

that

\\V'Vίx)-τ\\ < e/2 and | | ϊ~~ W W (x ) \\ < e/2,

whence the conclusion follows by addition.

Combining these results we get:

COROLLARY 6.2. // G is bounded, and for each x E F, K[x] contains a

fixed point and V (x) E F for any V E Gi$ then a necessary and sufficient con-

dition that it be unique is that for each x E F9 B 2 holds.

The next condition that we consider, while stronger that B 2 , has the ad-

vantage of relating to a T EG and a W GG\ instead of two transformations in

G ι# It also has an affinity to Theorem 6.8, since it exhibits a sort of commuta-

tivity

THEOREM 6.6. Let G be bounded. If xEλ satisfies the following con-

dition:

( B 4 ) for each T E G and 9 E Gx and any e > 0, there is a Z E G t such

that

then B 2 holds for x.

Proof. Take

n

V, W in Gx, β > 0, V = 2 1 λ£ Ίi (TiEG
1

For each Ί{ we have a Z j E G\ such that

| |W7' fU)-Z iIFU)| | < e .

Hence

\\[W(^λiTi)](χ)-[(ΣλiZi)\n(χ)\\

<Σ,[λi\\WTi(x)-ZiW(x)\\~l<Σλie =

Letting
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we have

\\V'V{x)-W'W(x)\\ < e.

To summarize the main results thus far:

THEOREM 6.7. Let G be bounded by k, S compact. Suppose for each x G F:

(1) x is lower or upper semi-continuous,

(2) x satisfies At andA2,

(3) for each VeGl9 V (x) £ F and each V {x) has the same kind of semi-

continuity as x9

(4) x satisfies B t or B 2 or B 3 or B4, or G is abelian over x9

(5) F contains a nonzero constant function.

Then:

(I) There exists a unique bounded linear functional over X, invariant with

respect to G9 and with x* (e ) = 1,

(II) Pί holds over F,

(III) if for each x E F9 x is lower semi-continuous, then P 2 holds over F.

Proof. By (1), (2), and (3), x satisfies the conditions for Theorem 5.

Hence there is a constant function in K[x], for each x 6 F. By Lemma 5.1 the

constant function in F is a fixed point, and hence by linearity all constant

functions in X are fixed points. With (4) each x € F satisfies the appropriate

theorem in § 6 to provide the uniqueness of the constant function. With (3) and

(5) the conditions for Theorem 4.1 are satisfied, yielding the normalized in-

variant functional, and Theorem 4.2 makes it unique. Theorems 5 and 4.1 also

yield II and HI of our conclusion.

COROLLARY 6.3. / / F = X C C(S) and (2) and (4) hold, then there is an

invariant integral over X. If S is also uniform, A2 may be replaced by A2' in

(2) .

In concluding this section we shall change our viewpoint somewhat. Suppose,

in Theorem 6.7, all conditions up to and including (3) are satisfied, and
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suppose in addition there exists any nonzero invariant bounded linear functional

y* over X. By Theorem 5 there is a constant function in each £ [ # ] , for each

x e F. Hence by Lemma 4.2,

y * ( e ) = a φ 0.

For if y* (e) = 0, then y** (~x) = 0 for any constant function, and therefore every-

where on F; thus by linearity and continuity y*(x) = 0 everywhere on X. So we

can obtain a bounded linear functional

1
#* = — y*

a

satisfying I and ΓS, and by Theorem 4.2 it is unique. Hence any additional con-

dition which produces a nonzero invariant bounded linear functional replaces (4)

and (5) in Theorem 6.7. For example, in a paper by B. Yood [lO], several

conditions are given, under each of which such a functional exists over a normed

linear space X, provided G is bounded (actually less than this is assumed) and

satisfies the following necessary condition:

(D) There exists an % EX such that inf | | T(x)\\ > 0.

TβG

(This condition is fulfilled by the constant functions in our case.) Some of the

results may be summarized:

A nonzero invariant bounded linear functional exists if G is bounded, satis-

fies condition (Ώ)$ and

1) G is an abelian semi-group? or

2) G is a solvable group, or

3) G is a finite group.

The first is covered in Theorem 6.7. The last uses a strong group property

(existence of inverse) and cannot be extended to semi-groups. However, at his

suggestion we were able to extend the second to semi-groups, using a defi-

nition somewhat similar to one of M. M. Day [4, p. 285].

DEFINITION 6.1. H £ G is a left commutator sub-semi-group of G if:

(1) H is a semi-group,

(2) for each T, £/, in G there is a V e H such that TV = VUT.

DEFINITION 6.2. G is a left solvable semi-group if there is a sequence
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such that Gι ι is a left commutator sub-semi-group for G\ and Gn is abelian.

THEOREM 6.8. Let G - G° be a left solvable semi-group. For each i, let

Gι satisfy the following relaxed boundedness condition'. There is a k(i) > 0

such that for each V G Gι

γ there is a W G Gι

γ with

\\W\\ <k(i) and \\WV\\ < k(i).

Assume further that condition ( D ) is satisfied. Then there is a nonzero in-

variant bounded linear functional over X.

The proof essentially follows the lines of Professor Yood's paper.

7. In section 5, and hence in Theorem 6.7 and its Corollary 6.3, the com-

pactness of S played an important part. This can be relaxed at the expense of

limiting F. In this section, S will be a noncompact Hausdorff space. For any

x G X the following conditions are equivalent. 7

( L t ) There is a finite number rx such that for any e > 0 there is a compact

set Iίε C S with \rx - x(t)\ < e for all t E (S - Re ). (S - R€ = complement of

R€ inS.)

(L2 ) For each e > 0 there is a compact set R€ C S such that 0[x] < € on

S-Rε.

It is clear that Li implies L 2 . For the converse, take €j = ί/i (i = 1, 2, ).

For ι = l , let S! = /?! be the corresponding compact set under the hypothesis.

Let Z t =S — Sι. Since S is not compact, Z\ £ 0 . Select a ίj G Z l β Then for

all teZί9 \x(t)-x(tχ)\ < l = €i For i = 2, let R2 be the corresponding

compact set. Take S2=Si+/?2 (set union). S2 is compact. Let Z 2 = S ψ 0 .

Select t2 G Z 2 Z 2 = S - S2 = S - (Si + /?2 ) C S — S t = Z 1 # Hence Z 2 C Zi and

Z 2 CS — R2 From the second inclusion, | x (t) — x (t2 ) \ < 1/2 for all tEZ2

We now proceed with an inductive construction. Assume that S/, Z{ = S - Si,

and tι € S have been chosen for each i <_n, satisfying the four conditions:

(1) S{ is compact,

(2) ί i G Z i f

(3) Z Π C Z Π . 1 C . . . C Z ,

(4) | * ( ί ) - * U i ) | < 1A" all ί e Z j .
7 I f we d e f i n e θ[z] over S " C S a s s u p | z (tx ) - z (t2 )\ (tu t2 G S ' ) , t h e n t h e e q u i -

v a l e n c e of L i and L 2 h o l d s for a n y c o m p l e x - v a l u e d f u n c t i o n z de f ined on S.
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It then follows that for each i and p = 0, 1, , n - 1,

\x(ti)-x(tn.p)\ < τ .

For i — n + 1, let Rn + ι be the corresponding compact set. Take Sn+ι =Sn +Rn + ι

(1) 5^ + j is compact. Therefore we may take

(2) tn+ι in Z Λ + i = S - Sn + ι ,4 0 .

(3) Zn + ιCZn and Zn + ι C S - Rn + ι (as with Z 2 ), and therefore

(4) \x(t)-x(tn + x)\ < 1/U+ 1) for all ί G Z n + ι .

Thus we define a sequence of real numbers {77 } = {x {t()} such that for any i and

any p > 0,

ΓJ is then a convergent sequence. Call its limit rx Take any € > 0. For i suf-

ficiently great we have

I x (11) - τx I < — and — < —.

Then for any ί in Zj = S — S;,

| * ( ί i ) - r Λ I < - + - = 6.

With S{ -Re9 (L^) is established. We note also that for each x9 rx is unique.

Suppose rx and sx are limits for x. Then for any 6 > 0 there are compact sets

R€ and Se , such that

\x{t)-rx\ < - for t in S - R€ ,

and

\x(t)-sx\ <— for ί in S - S e .

But R€+S€ is compact and therefore Z = S ~ ( / ? e + S e ) is not empty. Hence
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take t E Z. Both inequalities hold for this t and we get

\rχ~ s%\ < I rx - x ( ί ) I + I x ( t) - s% | < e .

So rx = sx.

We now embed S in a compact space S_ by the addition of an ideal point z.

The topology of S is given by defining its closed sets as follows:

For each set C closed in S, C + z is closed in S. If C is also compact, then

C is closed in 5.

REMARK. With S embedded thus, the relative topology of S as a subset of

S is equivalent to its original topology. Since S is a Hausdorff space, compact

sets are closed in S. However, unless S is also locally compact, we cannot

conclude that S îs Hausdorff [7, pp. 20-23],

For the remainder of this section we shall assume that L t is satisfied by

each x G X. Corresponding to each x we define a function x_ over S:

x_(t) = x(t) (t e S),

xiz ) = rx.

Call the collection of functions so formed X.

L E M M A 7.1. If F CC(S) then XcC(S).

Proof. From the topology defined in §2, convergence in B(S) means uniform

convergence. Hence X is contained in C{S) if F is. Now take any x_ E X. By

definition and the above remark it is continuous at every point in S = S_— z. We

need only show that it is continuous at z. For any e > 0, there is a compact,

(and hence closed in S ) set C C S, such that

| % U ) - % ( ί ) | = \τx-x(t)\ < e

for all t ES — C, and so for all t £S_-C. But C is also closed in .S, whence

S_ - C is open in S Since it contains z9 x_ is thereby continuous at z, and

| C C ( 5 ) .

Suppose we have a G as before. Define G_— Ί_ operating on X_ by:

Ux) = T(x)

Then by a series of trivial verifications we get:
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LEMMA 7.2.

( 1 ) GCB[X]9and

( 2 ) the mappings i(x) - x_ and j ( T) = Ί_ are isomorphic and isometric.

We are now in a position to enquire to what extent conditions on G and X are

equivalent to those on G and X; for any functional on one defines a functional

on the other with the same properties, according to the isometries and isomor-

phisms. We have the following:

T H E O R E M 7.1.

(1) A i holds for G and x if it holds for G and x}

(2 ) A2 holds for G and x if and only if it holds for G and x.

Proof. F p r A x we will first show t h a t i n f ^ e s x{t) ~ inίtes ££.(*) f°Γ a H

x G X, The r e l a t i o n s h i p s on the sups go the same way. Since S C S$ we h a v e ,

for any x £ Xf

( 1 ) i n f x ( t ) < i n f x { t ) = i n f x ( t ) .

t e s _ ~~ t e s t e s

But for all t G S,

x ^ ( t ) = x ( t ) > i n f x { t ) .

~ tes

For any e > 0, there is a te in S such that

x(z) > x_{te) - e >_ inf x(t) - 6 β

"

H e n c e for a l l t G S>

£ ( ί ) > inf %

and thus

inf x(t) ^ inf %

Combining this with (1) above we get:

(2) i n f x(t) = i n f x ( t ) .

tes tes
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Now suppose that for each ί0 E.S,

inf [ F U ) ] ( ί o ) = inf x(t).

Then the corresponding equality holds for x and G and any t0 ES, by the inclu-

sion of S in .S and (2) above.

For A2 we have by the isometry of the mapping i{x) — x. that

if and only if

Hence convergence and closure in K [ # ] correspond to convergence and closure

in K [x]

As a counter-example to the converse of part (1) of the last theorem, take

S as the real line, X the bounded functions over S which approach equal limits

to the right and left, and G = { Ta i, a in S, with

Clearly A t is satisfied for S, X, and G, but for any_F € Gι ,

[ V ( x ) ] ( z ) m χ { z ) m l i m χ ( t ) .
\χ\ -»oo

In § 6 we were concerned with the conditions limiting the number of fixed

points in K[x] Our arguments did not depend on the compactness of S, and

we have shown that convergence and closure correspond. There remains the

following:

THEOREM 7.2. A point x is a fixed point under Gγ if and only if x. l 5 a

fixed point under Glm

Proof. Let F (%) = *. Then

for all t G S. For a given e > 0, let Re, R^ be the compact sets of Li for x and

V (x) respectively. As before, S — {R€ + /?£) is not empty, and we can choose
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a ί6 such that

| * U ) - * ( f e ) | = \rx-x(t€)\ < €,

and

\[V(x)](z)-xUe)\

= \lV(x)](z)-[V(x)](te)\ = \rVx-[V(x)]{te)\ < e .

Combining these inequalities, we get

| [ F ( * ) ] ( z ) - * ( z ) | < \ [ V ( x ) ] { z ) - x ( t e ) \ + \ x ( t e ) - x ( z ) \ < 2 e .

Hence, by the arbitrary nature of € > 0, we get equality at z and thus for all

ί 6 5 . The converse result follows by inclusion.

This completes the comparison of the main results, concerning semi-con-

tinuous functions over a compact space, with a restricted class of functions

over a Hausdorff space We now give one example (or rather, a family of ex-

amples) of some interest.

EXAMPLE 7. Let S be the real line in the usual topology. Let F = X be

the collection of continuous functions which approach equal limits to the left

and right. Let φ be any homeomorphism of S onto the open interval (0,1); φ can

be extended to map ^ onto R = [0, 1] with 0 and 1 identified. ""Ms is a compact

topological group under addition mod 1. If Y = C (R) we have the group G = { Ta\

of transformations on Y:

[Ta(γ)] ( r) = y ( r + α) (0 < a < 1 ) ,

with r + a being taken mod 1. Now φ induces a transformation Φ : X —» Y, where

[ Φ U ) ] ( r ) = x(φ'ιr).

For each such mapping φ, we have a group Gφ -\ϋa\ of transformations on

X as follows:

Gφ will have whatever properties G has toward the construction of a unique

invariant integral ΛΪ It is easy to see that
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where y* is the (von Neumann) invariant integral over Y.
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