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1. Introduction. It was J. von Neumann [ 7], [8] who first proved the minimax

theorem under quite general conditions. A little later, in establishing a general-

ization of Brouwer's fixed-point theorem, S. Kakutani [3] gave a simple proof

of this result.

In the present paper, we shall give an alternative proof of the theorem. We

believe the proof to be presented is of interest, in that it enables ύs to derive

this theorem, regardless of the dimensionality of strategy spaces, directly from

the classical Brouwer's theorem, without any use of further generalizations

[ l ] , [5] of Kakutani's theorem in infinite dimensional linear spaces.

It should also be noticed that the theorem to be proved can not always be

derived from such types of generalized fixed point theorems. We shall make a

remark concerning this point in § 6.

In this study, the author was greatly aided by many works on this subject,

especially by J* Nash's work [6] regarding the use of the fixed-point theorem.

2. Preliminaries. A linear space L over the field of real numbers R is said

to be topological, if a Hausdorff topology is given in it such that the mappings

L x L 3 [x, y]—*% + y G L

R x L 3 [ α , x] —*VLX G L

are all continuous.

We denote by C(A ) the convex closure of a subset A in L.

3. Statement of the theorem. Let K(x$ y) be a pay-off function defined on

the product space of X by Yf where X and Y are convex compact sets in topo-

logical linear spaces L and M respectively, and continuous in each variable for

any fixed value of the other. Throughout what follows, these conditions on
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K(x9 y) should be kept in mind

The function K(x9 y) will be called quasi-concave in x9 if the inequalities

K(xuy) > λ, K(x2,y) > λ

imply

K(aixί + a2x29 y) > λ

for any real numbers λ, (Xi9 and CX2> where

^l > 0> 0L2 > 0, and 0^ + CC2 = 1.

In other words, the quasi-concavity of K(x9 y) in x means therefore that the

complete inverse image of every half interval [ λ , + oc) in X is convex for any

fixed y.

Dually, K{x9 y) will be called quasi-convex in y if the inequalities

K{x9yχ) < μ, K(x, y2) < μ

imply

K(x,βιyι + β2y2) < μ

for any real numbers μ, βχ, and /32, where

)31 > 0, β2 > 0 and ) 8 1 + jS2 = 1.

We shall prove:

VON N E U M A N N ' S MINIMAX T H E O R E M : If K(χ, y) is quasi-concave in x

and quasi-convex in y, then

max min K(x9y)- min max K{x9y)
x£X yEY yEY

4. Proof of the theorem. To prove the theorem, we first consider the sets

Eχ = {x x e X K U , y) > λ f o r a n y y e Y\,

Fμ = \y y eY; K(x9 y) < μ f o r a n y x G X\9

where λ and μ are arbitrary real numbers.
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These sets are evidently closed (convex) subsets of X and Y respectively.

Next put

λ0 = sup λ μQ = inf μ,

where φ indicates the empty set. Then it follows from the compactness of X and

Y that

λ0 < + oo μQ > - oc.

Let x° and y° be any points of Eχ and Fμ , respectively; then we have, by

definition,

If we succeed in showing that λo = μo> the definition of E\ and Fμ yields

immediately

K ( x ° , y ) > λ o = K ( x ° , y ° ) = μ 0 > K { x , y ° )

for any x € X and any y G Y; that is, [*°, y°] is a saddle-point of" K (x, y).
Thus we have only to see that λ0 = μo

For this aim, let 6 be an arbitrary positive number. Then we have

The statement

implies the fact that for every x G X there exists some y G Y such that

(1) K(x,y) < λ0 + €= λ.

The statement

Fμn-e = Φ
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implies the fact that for every y G Y there exists some x G X such that

(2) K(x, y) > μQ - ε = μ.

Let us put

Uy = \x;x G X, K(x,y) < λ } ,

Vx =\y;y eY, K(x, y) > μ\.

Then Uy and F% are open sets in X and Y, respectively. Furthermore, in view of

(1) and (2 ), we have

X c U ί/y Y c U F*.

yeγ xex

Then, by virtue of the compactness of X and Y, there exist two systems of

finite numbers of points {α; i - 1, 2, , s } and { bj / = 1, 2, , t} such

that

X C ϋ Ubj YC U Va.;
7 = 1 ι=i

these relations imply

(3)

(4)

min K (x9 bj) <

max K(a(9 y) >
i

Put now

(5)

(6)

Then

and,

Φi(y)

φj(x)

, by definition,

by virtue of (3 ) and (4 ),
s

Σ Φ>t

λ

μ

= max (0,

= max (0,

[ y ) > 0,

y) > 0;

K(ai,

~λ-K

t

Δ^ V]

y ) - μ ) ,

>o,

(x) > 0.

for any x

for any y

ex,

e y.
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We consider the following mapping:

X x Y 3 [x, y] x x y.

This mapping is clearly a continuous mapping from -Y x Y into itself.

Denote by A and δ the finite point-sets ί a£-! and I bj ! respectively. Then

C(A) x C ( δ ) is continuously mapped into itself by the above mapping. Since

C(A) x C ( δ ) is homeomorphic to a convex compact set in a Euclidean space,

Brouwer's fixed-point theorem applies to it. Thus there exists a pair [x, γ] in

C U ) x C(fl) C X x y such that

Λ

y =

A N ,

Now, by the definition of φ (y), we have K (αj s y) > μ for ί such that ^ ? (y) > 0;

hence the quasi-concavity of K(x9 y) yields

(7) K(x,y) > μ.

On the other hand, by the definition of φ(x), we have K(x9 bj) < λ for / such

that \!>Xχ) > 0; hence the quasi-convexity of K (x, y) yields

( 8 ) K(x,y)<λ.

Therefore (7) and (8) imply μ < λ, which means

(9) μQ < λ 0 + 2 6 .

Thus the arbitrariness of e implies μQ < λo Hence we have, together with the

fact previously established, λ 0 = μQ, which was to be shown.

As a special case of this theorem, we obtain the generalized J. Ville's

theorem: Let f{x$ y) be a continuous real-valued function defined on the pro-

duct space of a compact Hausdorff space G by a space of the same category H.

Let further P and Q be the totalities of all regular Borel probability measures on

G and H respectively. Then we have

JJ fix, y)dξdη = min max JJ f{x9y)dξdη.max min
ξ GP r?GC GxH 7 ? G ρ ^ G P GxH
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5. Approximating finite strategy spaces. Let X9 Y9 and K(x9 γ) be the same

as before* Let further S and T be finite point-sets in X and Y respectively. By

virtue of the theorem just proved, the game with the same payoff is determined,

even if C(S) and C(T) are employed as strategy spaces. Denote by σ and r the

values of the original game and the game mentioned above respectively.

Then C(S) and C(T) will be called £-approximating finite strategy spaces

provided | σ - r | <C e.

We shall next establish their existence for any £ > 0. But, to establish

this fact, we do not need a new discussion. Indeed, just C (A ) and C(B) in the

preceding section serve as £-approximating finite strategy-spaces.

In fact, putting λ 0 = μQ = σ, we obtain, in view of (3 ) and (4),

(10) r = max min K (x, y) < max min K{x9 y) <^σ + £,
() yec(B) x£X yEC(B)

(11) τ = min max K(x9 y) > min max K{x9 y) > σ - £.
ec(B) x£C(A) y£Y x£C(A)

This proves that | σ — τ\ < £; (10) means moreover that the minimizing player

can, by choosing an appropriate strategy from C(B), secure for himself a gain

>_ — (σ + £), irrespective of what the opponent does within X And (11) means

that the maximizing player can, by choosing an appropriate strategy from C (A ),

secure for himself a gain > σ — £, irrespective of what the opponent does within

Y.

6. Miscellaneous remarks. The implication of the assumption that K(x9 y)

is continuous in each variable for any fixed value of the other is a little deli-

cate. The Kakutani-type approach to the minimax theorem imposes only a very

weak algebraic restriction on K{x9 y): namely, Φ(x) of (12) as well as Ψ ( y )

of (13 ) should be convex sets. But it requires a rather strong topological con-

dition; the continuity of the payoff in the variable [x9 y ] . Our minimax theorem

sacrifices, on the contrary, the algebraic conditions to a certain degree for the

benefit of the weaker topological condition * on payoffs. This implicit result of

In case of bilinear, or convex, games [2, 5, 4], the topological condition on pay-
offs can be further weakened. As to the algebraic conditions, it should be noticed that
neither Fan's convexity concept [2] nor our quasi-convexity concept includes the other.
Since Fan's convexity premises no linear spaces, this quite general concept can not be
deduced from ours. On the other hand, one may point out, by means of the following ex-
ample, that our quasi-convexity is not always implied by Fan's convexity: K (x, y) =
— x /i(x — γ) + l] for — 1 < x, y < 1. This payoff is not convex in y in Fan's sense.
Indeed, there exists no y such that K(x, y) < [ K(x, 1) + K(x,-l)]/2 for all x. But it
is quasi-concave in x and quasi-convex in y.
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our theorem is clarified by means of an example.

K. Fan [ l ] has recently established, in generalizing Kakutani's fixed-point

theorem, the following result: Let L be a locally convex topological linear space

and X a convex compact subset of it. For any upper semi-continuous point-set

transformation, x—ϊΦ(x), where Φ(x) is a closed convex subset of X for

each x G X, there exists a point x such that x G Φ(x). Here, by upper semi-

continuity we understand: for any x and any neighborhood U of the null point

there exists a neighborhood V of x such that

Φ ( V ) C Φ ( x ) + U.

If, in our theorem, K{x9 γ) is continuous with respect to the variable

[x, γ] £ X x y, it is easily seen that the point-to-set transformations

(12) X B x —>Φ(x) ={y y e Y, min K(x, y ) = K(x, y ) \ ,
y

(13) Y 3 y _ > ψ ( y ) ={x ;X G X, m a x K ( x f y ) = K ( x , y ) } ,
x

are all upper semi-continuous. Thus any fixed point of the transformation,

X x y 3 [x, y] —>Ψ(y) x Φ ( * )

is a desired saddle-point of K{x9 y). However, our theorem can not always be

obtained by this method, even if the strategy-spaces are embedded in locally

convex spaces. We give here a simple example of K{x9 y) for which the trans-

formations (12), (13) are not upper semi-continuous, which however meets the

conditions of our theorem.

Let, indeed, (x9 y) he the inner product of an infinite dimensional separable

real Hubert space L. Denote by S the unit sphere of L. Then the game with

K(x,y) = (χ,y), X = Y = S

meets the conditions of our theorem, if viewed from the standpoint of the weak

topology. (Moreover, it is almost obvious that this game has only one saddle-

point: [0, 0].) But, for this payoff, the transformations (12) and (13) are not

upper semi-continuous. We shall show, for instance, that there exist two se-

quences {xn I, \yn\ in S, where

x n — » x 9

weakly and xn G Ψ (yn ), but x <£ Ψ ( y ) .
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Now, s ince

| y | | = max {x9 y ) ,
xES

it follows that

Ψ ( y ) - U ; | | * | | < l , . ( * . y ) - | | y | | l .

Let { zn \ be a complete orthonormal system. Next, let us put

Xn = λ/"2 yn; yn = zι/2 + zπ + ι/2; Λ; = V2 y, y = z t / 2 .

Then it is obvious that

11**11 = i» llyΛ II = VV^"» a n d * » - » * » yn —» y

weakly in S. Furthermore, * Λ G ψ ( y R ) , because (*„, y π ) = | | y Λ | | But x

s ince (Λ;, y ) j4 | | y | | .
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