ON TWO PROBLEMS OF KUREPA

J. C. Shepherdson

We prove ${ }^{1}$:
Theorem l. There exists a denumerable ramified partially ordered set with the property that there is no chain meeting all maximal anti-chains and no antichain meeting all maximal chains.
(Here a chain (anti-chain) is a set of elements every pair of which are comparable (incomparable). A ramified partially ordered set S is one in which for each x in S the set of elements $\leq x$ forms a chain.)

Proof. We denote by F the set of all finite sequences $\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}\right)$ of integers. We use Greek letters α, β to denote elements of F, we denote by $l\left(c_{i}\right)$ the length of α (that is, the number of terms in the sequence α) and by α_{i} (for $i=1, \cdots, l(\alpha)$) the i th term in the sequence $\alpha ; i, k$ are used throughout as variables for positive integers. If n is an integer we denote by (α, n) the sequence $\left(\alpha_{1}, \ldots, \alpha_{l(\alpha)}, n\right)$ obtained by adding the term n to the sequence α. We define $\alpha \leq \beta$ to hold when conditions

$$
\begin{aligned}
& A: l(\alpha) \leq l(\beta) \\
& B: a_{i}=\beta_{i} \text { for } i=1, \cdots, l(\alpha)-1,
\end{aligned}
$$

and

$$
C: \alpha_{l(\alpha)} \leq \beta_{l(\alpha)},
$$

are all satisfied. It is easily seen that this relation ' \leq ' is a ramified partial ordering of F.

Now let L_{α} denote the chain of elements $\leq \alpha_{\text {, }}$, let C_{α} denote the set of

[^0]elements of the form (α, u), where u runs through all integer values, and let $L\left(C_{\alpha}\right)$ denote the set of elements less than all elements of C_{α}. Then we can easily prove
(i) C_{a} is a chain,
(ii) the elements of F which are comparable with all elements of C_{α} belong to $C_{a} \cup L\left(C_{a}\right)$,
(iii) $L\left(C_{\alpha}\right)=L_{\alpha}$,
and hence
(iv) $C_{\alpha} \cup L_{\alpha}$ is a maximal chain.

We now prove by reductio ad absurdum that no anti-chain meets all maximal chains. Suppose the anti-chain A meets all maximal chains. Clearly it has just one point in common with each maximal chain. It is easily seen that the set T_{0} of all elements (u) of length one is a maximal chain. Hence there exists a unique integer a_{1} such that $\left(a_{1}\right) \in A$. Take $n_{1}=a_{1}-1$. Then the chain C_{1} of elements $\leq\left(n_{1}\right)$ consists of all the elements (u) with $u<a_{1}$, and is therefore a subchain of T_{0} not meeting A. We now define for each positive integer k by induction on k an integer n_{k} such that the chain C_{k} of elements $\leq\left(n_{1}, \cdots, n_{k}\right)$ does not meet A. We have just disposed of the case $k=1$. Suppose then that $k>1$ and that n_{1}, \cdots, n_{k-1} are already defined so that the chain C_{k-1} of elements $\leq\left(n_{1}, \cdots, n_{k-1}\right)$ does not meet A. By (iv) the set $T_{k-1}{ }^{2}$ of all elements of the form ($n_{1}, \ldots, n_{k-1}, u$) together with C_{k-1} forms a maximal chain. By hypothesis this meets A and C_{k-1} does not; hence there exists a unique integer a_{k} such that $\left(n_{1}, \cdots, n_{k-1}, a_{k}\right) \in A$. Take $n_{k}=a_{k}-1$. Clearly C_{k} does not meet A. This completes the definition by induction of a sequence n_{1}, n_{2}, \ldots of integers such that for all positive integers k the chain C_{k} of elements $\leq\left(n_{1}, \cdots, n_{k}\right)$ does not meet A. Now

$$
\left(n_{1}, \cdots, n_{k}\right)<\left(n_{1}, \cdots, n_{k}, n_{k+1}\right)
$$

so $C_{k} \subseteq C_{k+1}$. Hence the set

$$
C=\sum_{k=1}^{\infty} C_{k}
$$

[^1]is a chain. Now let α be an element of F comparable with all elements of C. Then
$$
\alpha \ngtr\left(n_{1}, n_{2}, \cdots, n_{l(\alpha)+1}\right),
$$
so
$$
a \leq\left(n_{1}, n_{2}, \cdots, n_{l(\alpha)+1}\right) ;
$$
that is, $\alpha \in C_{l(\alpha)+1}$, so $\alpha \in C$. Hence C is a maximal chain. But C cannot meet A since none of C_{1}, C_{2}, \cdots meet A. Thus we have obtained a contradiction from the assumption that there exists an anti-chain meeting all maximal chains.

We now prove by reductio ad absurdum that no chain meets all maximal antichains. Suppose C is a chain meeting all maximal anti-chains. We note first that the lengths of the elements of C are unbounded. To prove this it is clearly enough to show that for each positive integer k there are maximal anti-chains all of whose elements are of length greater than k. It is easily seen that a set A_{k} with this property may be defined as follows: Denote by S_{k} the set of all elements of F of length k, and by N the set of elements ($\alpha_{1}, \ldots, \alpha_{n}$) of F all of whose terms $\alpha_{1}, \cdots, \alpha_{n}$ are <0. Let A_{k} be the set of all elements of the form $(\alpha, 0)$ for $\alpha \in S_{k}$ together with all elements of the form $(\alpha, \beta, 0)$ for $\alpha \in S_{k}, \beta \in N .\left(\operatorname{Here}(\alpha, \beta, 0)\right.$ stands for $\left(\alpha_{1}, \cdots, \alpha_{l(\alpha)}, \beta_{1}, \cdots, \beta_{l(\beta)}, 0\right)$.)

We note secondly that it follows easily from the definition of ' \leq ' that since C is a chain, all elements of C of length $>i$ have the same i th term.

In view of these two observations, it follows that we may define a unique sequence $n_{1}, n_{2}, n_{3}, \ldots$ of integers by putting n_{i} equal to the common i th term of the elements of C of length greater than i. Now let A be the set consisting of all sequences α such that $\alpha_{i} \leq n_{i}$ for $1 \leq i<l(\alpha)$ and $\alpha_{l(\alpha)}=n_{l(\alpha)}+1$. This set A is easily seen to be a maximal anti-chain, so by hypothesis there exists an element α belonging to C and A. Let β be any element of C of greater length than α. Since $\alpha, \beta \in C$ they are comparable, so, since $l(\beta)>l(\alpha)$, we must have $\alpha<\beta$. From the definition of n_{1}, n_{2}, \cdots, we have $\alpha_{i}=n_{i}$ for $i<l(\alpha)$ and, since $\alpha<\beta$,

$$
\alpha_{l(\alpha)} \leq \beta_{l(\alpha)}=n_{l(\alpha)}
$$

(since $l(\beta)>l(\alpha))$. Hence

$$
\alpha<\left(n_{1}, n_{2}, \cdots, n_{l(\alpha)-1}, n_{l(\alpha)}+1\right) ;
$$

but both these are elements of the anti-chain A and so are incomparable. So our hypothesis that there exists a chain meeting all maximal anti-chains leads to a contradiction; this completes the proof of Theorem 1 .

By using the same sort of argument as Kurepa one can use the example of Theorem 1 to show, by means of the axiom of choice:

Theorem 2. A sufficient condition for a nonvoid set S to be finite is that in every ramified partial ordering of S there exists a chain meeting all maximal anti-chains (or, '... there exists an anti-chain meeting all maximal chains').

By Kurepa's result both these conditions are also necessary conditions for S to be finite.

University of Bristol

[^0]: ${ }^{1}$ This answers two questions posed by Kurepa (Pacific J. Math. 2 (1952), 323-326). Answers to these questions were found independently by Wustin; see the reviews in Math. Rev. 14 (March, 1953), p. 255 by W. Gustin, and in Zentralblatt für Math., 64 (1953), p. 52, by J. C. Shepherdson.

 Received March 25, 1953, and in revised form on May 25, 1953.
 Pacific J. Math., 4 (1954), 301-304

[^1]: ${ }^{2}$ With the previous notation $T_{k-1}=C_{\left(n_{1}, \cdots, n_{k-1}\right)}, C_{k-1}=L_{\left(n_{1}, \cdots, n_{k-1}\right)}$.

