
SOME MINIMUM PROBLEMS IN THE
THEORY OF FUNCTIONS

D.R. SCHOLZ

1. Introduction. This paper is concerned with extremal problems of the type

(1.1) JJ \ f ' ( z ) I 2 dxdy - λ = minimum ,

σ{z)\f(z)\2 dxdy = 1 , σ(z) > 0,
D

where f(z) belongs to the class of analytic functions which are regular and

single-valued in a given domain D. A further slight restriction of this class is

necessary in order to exclude the trivial solution f (z) ~ constant.

While this problem has sufficient formal similarity to the classical eigen-

value problems of mathematical physics to make some of the classical results

applicable, it will be shown that it leads, on the other hand, to reproducing

kernels of a type analogous to those considered by Bergman [ l ] . With certain

peculiar restrictions it will be shown also that the solution of this problem is,

up to constants, the resolvent kernel K{z$ w; λ) of an integral equation

(1.2) f ( w ) = λ f [ κ ( z 9 w, a) f ( z ) d x d y

whose solution is identical with that of ( 1 . 1 ) . The kernel K(z9 w, a) of ( 1 . 2 ) ,

and hence both K{z, w; λ ) and the solution of ( 1 . 1 ) , are related to certain

canonical conformal mapping functions.

2. The eigenvalue problem. Let F(z) be analytic in a given finite, multiply

connected domain D. Among all analytic, single-valued functions, let f^iz) be

the function minimizing the area integral
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(2.1) JD(f) = / / \f'(z)\2dxdy

under the conditions

(2.2) HD(f) = J J σ ( z ) \ f ( z ) \ 2 dxdy = l, σ(z ) = | F (z ) \2 ,

and either

(2.3) / ( α ) = 0 , a e D

or

(2.4) II σ(z) f(z)dxdγ = 0 ,
JJD

and let λ i be the minimum value of ( 2 . 1 ) . Conditions of the type ( 2 . 3 ) or ( 2 . 4 )

are necessary in order to exclude the trivial solution f {z) - (X = const. , Cί ^ 0.

We denote by λ^ the success ive minima of ( 2 . 1 ) under the additional conditions

I(2.5) JJ σ{z) f{z) fk(z)dxdy = 0 U = 1, 2, ., τι - 1),

where f^iz) denotes the /cth eigenfunction.

The subsequent results will be stated principally for that class of functions,

denoted by L2 {a, D), for which (2.1) exists and (2.3) holds. In each situation,

however, one obtains a similar and generally somewhat simpler analysis and

result for the class of functions L2(D) satisfying (2.4).

Our eigenvalue problem presents many formal analogies to the classical

eigenvalue problems of mathematical physics [4] . There is, however, an essen-

tial difference between the two types of problems. While in the classical case

the class of functions competing in the minimum problem is very general and

is only restricted by certain homogeneous boundary conditions, we restrict

our attention at the outset to the class of analytic functions which are regular

and single-valued in D and are, moreover, of class L2 (a, D). By this procedure,

the existence problem can be disposed of by an appeal to a standard compact-

ness argument. The relation between these two types of eigenvalue problems

is quite similar to that between the method of the Dirichlet principle [3] and

the approach to the fundamental domain functions via the Bergman kernel func-

tion [ l ] .
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THEOREM 1. The eigenvalues λn and eigenfunctions fn(z) satisfy the

condition

(2.6) JJ [σ{z)fJ7)h{z)-λlιfΊ^~)h'{z)λdxdy

= h(a) JJ σ{z)JJΓ)dxdy9

where h(z) is any single-valued regular function in D.

Up t o a m u l t i p l i c a t i v e c o n s t a n t our problem i s e q u i v a l e n t t o t h a t of m i n i m i z -

ing t h e q u o t i e n t / # ( / )/Hp(f). H e n c e with a n y f u n c t i o n g(z) of t h e c l a s s

L 2 {a, D), and any e, f(z) = fι{z) + eg{z) i s a c o m p e t i n g f u n c t i o n for w h i c h

we h a v e t h e c o n d i t i o n

JJ \f;(z)+6g'{z)\2dxdy >L*iff σ(z)\f1(z) + eg(Z)\

or, in view of the relation JD {fχ ) = λ! Hrj (fί ) ,

e | 2

the right side being nonpositive. This inequality evidently holds for every com-

plex value of e only if

JJ [JΐU~)g'(z)-λισ(z)]JΓ)g(z)]dxdy = O.

Similarly obtained are the conditions

(2.7) ff[]jΰ)g'{z)-knσ(z)JJ7)g(z)]dxdy = 0 U = 2 , 3 , . . . ) ,

where g{z) is restricted by the hypothesis

0 (A = l , 2 , . . . , / ι - l ) .JJ

It is easily demonstrated that this restriction is unnecessary, however, and

consequently (2 .7) holds for any function g{z) of L2 (a, D). Final ly, ( 2 . 6 ) is
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obtained upon setting g(z) = h(z) — h(a)

The fact that the eigenfunctions of (2.1) are a complete set in L2 {a9 D)

follows as in the classical case. Although there are many such complete sets,

our eigenfunctions are distinguished by the following property:

THEOREM 2. The eigenfunctions fn(z) constitute a complete orthonormal

set of functions whose first derivatives are also orthogonal over D and complete

in the space of functions with single-valued integrals and finite norm. If the

eigenvalues are not multiple, this system is unique up to a factor of unit ab-

solute value.

Replacing g{z) with f^iz) in ( 2 . 7 ) yields the identity

(2.8) / / JJ{7) fζ{z) dxdγ = λn \]σ(z) fJΓ) fk{z) dxdy = 0,

which, combined with the property of completeness, implies that the first deriva-

tives of the eigenfunctions constitute a complete orthogonal set. Essentially

there is but one such system with given normalization whose derivatives are

also orthogonal, provided the eigenvalues are not multiple. Indeed, let \Fn{z)\

be another such system so ordered that μγ < μ2 < •• , where

\F^(z)\2 dxdy,

and let {fn(z)\ be the foregoing eigenfunctions. Expanding fχ(z) in a series

and noting that λχ < μι < μ2 < , we have

= μt > V

with equality holding only if α2 = a3 = = 0 and a± = e1^. Proceeding by

induction, we assume that
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is orthogonal to Fk( z ) (k = 1, , n - 1); consequently, since

CO

/"„<*>= Σ °mFm(z),
m~n

we obtain

fίD\fn'(z)\2dXdY ΣZ=n\am\2μm

279

[fDσ\fn(z)\2dXdy Σ ~ = n | α m | 2

with equality holding only if

= . . . = 0 and \an\ - 1.

In case multiple eigenvalues exist, however, the preceding proof is invalid and

there is no unique system.

3. Examples. Let G be a circle of radius r with center at the origin. If the

reference point a is also at the origin and σ = 1, a closed orthonormal system

f or L 2 ( 0, G ) is

rrc + l Ί

1 / 2 zn

— —(3.1)

The derivatives of this system are also orthogonal; consequently, in virtue of

Theorem 2, (3.1) is the set of eigenfunctions, the associated eigenvalues being

rcU + 1)

r2

An example of an orthonormal system in the class L2(D), that is, the func-

tions such that

fn(z) dx dy = 0,

- - u

is the set

/Az) = zn[(n + l)/π(R2n+2 - r2n+2)V/2 U = . . , - 2 ,



280 D. R. SCHOLZ

on the annulus r < \ z \ < R. This system is known to be complete, and the

system \f^(z)\ is orthogonal; thus, \fn{z)\ is the system of eigenfunctions

with the corresponding eigenvalues

λ B = n(n + 1) [(R2n - r2n)/{R2n + 2 - r2n+2)] (n ^ - 1 , 0 ) ,

λ.ι = (R2-r2)/2R2r2 log (R/r).

4. The integral equation. In this section we shall demonstrate that our

eigenvalue problem is equivalent to the solution of the homogeneous integral

equation

(4.1) f(w)=λ if σ(z)K(z,w,a)fΛz)dxdy,

where the kernel K(z9 w9 a) is intimately related to the classical domain func-

tions and has been the subject of previous investigations [2; 6] .

We assume henceforth that D is a finite domain whose boundary C consists

of n closed analytic curves C^ (k = 1, , n). In the formulas to follow we set

σ = 1 as no generalization accrues otherwise.

The equivalence of the solutions of our eigenvalue problem to those of (4.1)

is established by means of the fundamental condition (2.7) and an auxiliary

extremal problem. Consider therefore the minimum of the integral

(4.2) JJ \g'(z)\2dxdy

for those functions of L2(a, D) for which g(w)- 1. It is easi ly establ ished

that the minimizing function K(z,w9 a)/K(w9w9 a) is Hermitian; that i s ,

K ( z , w9 a ) = K{w9 z 9 a ) ,

and (for any function g(z) such that ( 4 . 2 ) is finite) has the reproducing proper-

ty

(4.3) g(w)-g(a)= I] K'{z9w9 a) g'(z)dxdy.

K(z9 w9 a) is closely related to the Bergman kernel function K{z9 w) with the

characteristic reproducing property [ l ]
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= jϊ K{z, )g'{z)dxdy.

Indeed, differentiating. (4.3) with respect to w, we find

d2 K(z, w, a)
K{z> w) » _ ;

dz dw

that is,

(4.4) K(z,w,a)= / K(z9w)dzdw.

Ja Ja

It is well known [6] that

2πK(z, w9 a) = P (z, w9 a) - Q(z$ w, a ) ,

where P(z9w?a) and Q{z9w^a) are, respectively, the logarithms of two uni-

valent functions the first of which maps D on the whole complex plane slit along

concentric circular arcs around the origin, whereas the second maps D on the

full plane furnished with rectilinear slits directed towards the origin. In each

case the point w G D is mapped onto the origin, while the point a of D, where

the residue of the simple pole is 1, corresponds to the point at infinity.

The desired integral equation now follows; for, since K{z9w9 a) belongs to

the class L2 (a9 D), the reproducing property (4.3) in conjunction with (2.7)

yields

(4.5) /•„(">)= JJ K'(z,w, a)f'n{Z)dxdγ

JJD

K{z9 w9 a) fn(z) dx dy.

Thus the solutions of the extremal problem are among those of the integral

equation (4.5). That the converse is true can be seen as follows. First, the

fundamental identity (2.7) can be obtained by forming the scalar product of the

derivative of any function g(z) G L2 {a9 D) with the derivative

(4.6) fn^
w^λnJJ K'(w, z,a)fn(z)dxdy
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of (4.5). Then in view of (4.3) we obtain

(4.7) JJ f'n{w) g'{w)dudv

JJD [JJD 'n

= λn JJ ]jj) [ JJ K'(w,z,a)g'(w) dudv\ dxdy

Now, if fn(z) and fm(z) are two solutions of the integral equation (4.1),

and λn and λm are the corresponding eigenvalues, it follows from the Hermitian

character of K{z9wfa) that

(4.8) (λn-λ~m)

Setting g(z) = fn(z) in ( 4 . 7 ) , we obtain

= λn /jf \fn(z)\2dxdy,

which shows that all eigenvalues are positive. Hence (4.8) yields

(4.9) ]fDfn(z)JΊJ)dxdy = 0

if λn φ λm. In view of (4.7) this entails

(4.10) // f'(z)ΓΊj) dxdy = 0.
D

But, by Theorem 2, (4.9) and (4.10) characterize, up to multiplicative con-

stants, the solutions of the eigenvalue problem treated in § 2 Summing up, we

have:

THEOREM 3. The eigenvalues and eigenfunctions of the extremal problem
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JfD\f(z)\2dxdy
= λ = minimum, /(α) = 0,

are identical with those of the integral equation

(4.11) f(w) = λ jj K(z9w9a)f(z)dxdy9

where the Hermitian kernel K(z9w9a) is constructed from the Bergman kernel

function by means of (4.4).

It is worth noting that

// // \K(z9w9a)\2 dxdy dudυ < oo,
JJD JJD

and therefore that K (z, ws a), unlike the Bergman kernel K(zsw)9 is a regular

kernel in the sense of the Hubert theory of integral equations. We also point

out that if D is bounded by closed analytic curves, the eigenfunctions fn(z) are

regular in the closure of D. In this case K{z9w9a) is, as a function of w9

regular in a domain D' which contains D and whose boundary has no points in

common with that of Zλ The right side of (4.11-) represents the function f{w)

for w G D and another analytic function-say f ^{w )-for w G D' ~ D. If w crosses

the boundary C of D and z G D9 K(z9w^a) remains regular; if z is a point of

C, the singular behavior of K(z$w,a) on crossing C is essentially that of

log (w' — ~z)9 where w' £ D iί w £ D9 and w' and w become symmetric points

if a suitable section of C is conformally mapped onto a linear segment [ cf. 6]

From these properties of K{z9w9a) it is easily inferred that the right side of

(4.11) is a continuous function of w if w crosses C and if w varies along C.

Hence f{w) and fχ(w) are analytic continuations of the same analytic function,

and f(w) is thus regular on C.

5. Examples. The Bergman kernel function for the annulus 0 < r < | z \ < 1

is

1 - ;

the prime indicating that m ^ 0 in the summation. The integral equation charac-

terizing the solutions of our problem is then
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(5.1) />) // Z
m Γ T o o m(l-r2 m)

With the substitutions

ω t = iπ> <x>2 - log r, and 7 = exp (i

the kernel in (5.1) can be expressed in closed form with the help of the Weier-

strass ^-function; namely,

1
K{z, w9 a) = —[£(log aw ) - ς(log zw) + ς(log z a) - £(log a a) J.

77

For the circle | z \ < r the Bergman kernel is

r 2

ττ(r2-zw)2

consequently, by (4.4) we obtain

[(z/r)n-(a/r)n][(w/r)n-(a/r)n]

or, in closed form,

1
K(z,w;,α) = - log

77 " ( Γ

2 _ w z ) ( r

2 _ α α )

If the origin of the circle is taken as the reference point, it is easily verified

that the characteristic functions and constants of the equation

_λ
(5.2) 4 ( M ; ) = = \Z

JJ log(l-wz)fn(z)dxdy

are, respectively,

4 ( 2 ) = zn[(n + l)/π]ι/2 (n = 1, 2, . . )

and
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λ n = n(n + 1).

From the known transformation law for the Bergman kernel [1] it is easily

ascertained that K (z^w9a) is a conformal invariant; consequently, the integral

equation for the characteristic functions and constants of any simply connected

domain can be derived from (5.2).

β. Variation of the domain functions. Let D*, a domain with the same de-

gree of connectivity as D9 be obtained from D by shifting each boundary point

z (s ) along the exterior normal by an amount δn = ηv(s), where v(s) is a

continuous function on C and η is sufficiently small.

The corresponding first-order variation of the Bergman kernel function was

found by Schiffer [10] to be

(6.1) δK(z,w) = - J K{t,z) K(t,w)8nds.

Combining (6.1) with (4.4) we obtain the formula

( 6 . 2 ) 8K(z,w,a)=- / K'{t,w,a)K'(t,z,a) δnds,
JC

expressing the variation of the kernel of (4.11),

Using this variational formula we may obtain corresponding variation formulas

for the eigenfunctions and eigenvalues of (4.11). Since we are not going to

employ these formulas in the sequel, we shall content ourselves with a formal

derivation of the variation formula for the eigenvalues, omitting the rather

lengthy discussion required to make the proof entirely rigorous.

We first note that, since fn(z) is regular on C, it follows from (6.2) that

6.3) jj j](6 3W7 JJ SK(z,w,a)fΛw)f(z)dxdγdudυ
q

K'(t,w,a)fq(w)dudv\ [JJ K'(t,z,a)fm(z)dxdγ\δnds

λqλm

We next assume that D* D D. If the quantities belonging to D* are denoted

by asterisks, we have then, in view of (4.11),
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(6.4) f*(w)-fn(ιv)= jj [λ*K*(z,ιv,a)f*(z)-λnK(z,w,a)fn(z)]dxdy

+ K JJ K*{ziwίa)f*{z)dxdy.

D*-D

Assuming, without proof, that / ( z ) * and λ^ differ from f (z) and λ^, respec-

tively, only by quantities of order 77, we find the last integral to be of the form

λ n / K ( t , w f a ) f i t ) δ n d s + 0 ( 7 7 ) ,
C

whence (6.4) leads to

8K(z,w,a)fn(z)dxdγ + λnjj K(z,w, a) 8fn(z) dxdy

ff Γ ^
+ δ λ ^ // K ( z 9 ι v , a ) f ( z ) d x d γ - \ - λ n I k ( t , w , a ) f ( t ) δ n d s ,

where terms of order 0(17) have been neglected. We now multiply this identity

by fn(
w) and integrate over D. Simplifying the result by means of (4.10) and

(6.3), we obtain

= T ~ } c \ f ή { t ) \ 2 d n d s + JJDfn{z)δfn^)dxdy

+ - J l \L(w)\2 dudv + \f(t)\28nds.

l\ηn U VJ

Hence, if fn(z ) is normalized by the condition

we arrive at the following result:

THEOREM 4. If the domain D is made subject to a first-order normal varia-

tion δn9 the corresponding variation of the eigenvalues λm is given by

(6.5) δ ( λ m ) = j
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where fm(z) is the eigenfunction associated with λm.

The extension of this result from the case D* D D to the general case is

easily carried out by means of the artifice employed by Hadamard for a similar

purpose in the derivation of his variation formula for the Green's function [ 8 ] ,

Formula (6.5) shows that no general monotonicity property of the eigen-

values can be expected. For with the notation

AU)= ι / ; ω ι 2 - λ m | / m ω ι 2 ,

we have

n
A{z)dxdγ =ί

which shows that Λ(t) takes both positive and negative values in D. If we

write (6 .5) in the form

δ ( λ m ) = J A(t)8nds9

it is thus clear that the assumption δn >̂  0 (or δn < 0) for t E C cannot guar-

antee a definite sign for the corresponding variation of λm .

7. The resolvent kernel. Consider now the inhomogeneous equation

( 7 . 1 ) f{w) = h{w) + λ \ \ K{z,w,a)f{z)dxdy
JJD

and its associated resolvent kernel

- L(z)fAw)
7.2) ΛU,«,;λ)= Σ, \ \

We shall show first that K(z9w;λ) can be characterized by means of a

minimum problem and constructed directly from a complete system of complex

orthogonal functions. Thus, consider the following extremal problem: in the

class L2(a,D) determine the function g(z), regular in D with g(w)= 1 at a

fixed point w of D, which minimizes the integral

= JJ7.3) / λ ( g ) = JJ [ \ s ' ( z ) \ 2 - X \ g ( z ) \ 2 ] d x d y ,
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λ being less than the smallest eigenvalue of the extremal problem (1.1). For

this class of functions we have

ffD\g'(z)\2dxJy
> λ t > λ;

ffD\%(z)\2dxdy

hence,

g.l.b. Jλ(g) = A > 0 .

Finally, this class of functions is compact, and therefore a function g(z ) exists

such that JJg) = A.

Now orthonormalize a closed system of functions \pn{z)\ so that the con-

ditions

are satisfied. The associated kernel

K =

converges uniformly and absolutely in every closed subdomain of D and pro-

vides the minimum of (7 .3) when normalized. Moreover, it is easily verified

that K reproduces according to the formula

ί(7.4) h(w)= [K'h'(z)-λKh{z)]dxdy.

The uniqueness of a kernel K with the reproducing property (7.4) follows from

the definiteness of the expression (7.3) by a standard argument. Also it is

easy to see that K is identical with the resolvent kernel K (z9w; λ) and that,

consequently, the solution of the inhomogeneous equation (7.1) is

= JJ K'(z,w;
* " n

Indeed, the functions

f(tυ)=JJ K'{z,w;λ) !ι'(z) dxdy.
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where fn(z) and λn are the nth eigenfunction and eigenvalue of our original

extremal problem, are normalized in the sense of the above metric; that is,

Therefore9 the kernel is

K = K(z,w;λ) = £ pn(z)pn(w)

which is identical with (7.2).

In view of their reproducing properties, as well as in other aspects, it ap-

pears that the resolvent kernel is closely allied to the eigenfunctions of (1.1).

More precisely, we have:

THEOREM 5. Let {fn(z)\ and λn be the system of eigenfunctions and

eigenvalues associated with the class L2{D); that is9

fn(z) dxdy = 0.

If Fn(z) and μn9 respectively,, represent the nth eigenfunction and eigenvalue

associated with a point w E D and such that ff Fn(z) dxdy ^ 0, then

fί

where

c~ι = JJ dx dy,

K{z9w;μn) is the resolvent kernel
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- T fp{z)fp{w)

p— 1 r n

and μn is determined as the nth root (in order of magnitude) of

(7.5) μnK(w$w;μn) = c.

Proof. L e t g(z) be a n y r e g u l a r f u n c t i o n a n d s e t

h(z)=g(z)~Mc,

where

M = \\ g(z)dxdy.

Accordingly, h(z) is a function of the c lass L2(D) reproduced by the resolvent

kernel K(z9w; μ), μ £ λn; namely,

h(w)= \\ [T'h'(z)-μKh(z)]dxdγ.
JJD

Now with

we obtain the identity

(7.7)

= ff \[c-μnK][h(z) + Mc]-μn

l[-μnT']h'(z)

= Mc2 II dxdγ-μ Me 11 K dx dγ + c II h(z)dxdyJJD

 Γn JJD JJD

+ [f [K~'h'(z)-μΈh(z)]dxdy

= Me + h(w) = g{w).
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Setting, in particular, g (z ) = Fm (z ), we obtain

if — —
(7.8) // (HnFm- μ"1 HήFm)dxdy = F

On the other hand, it follows from (2.6), (7.5), and (7.6) that

ff — ff
(7.9) // (HnFm-μ'1 H^F^)dxdy^Hn(w) // Fmdxdy = 0.

Combining this with (7.8), we obtain

(7.10) / ! \ 1/ HjF^ dxdy = 0;
\ u a JJD

that is, either μn coincides with one of the eigenvalues μ1? μ , , or else

JJ M^m dxdy = 0 (m = 1, 2 , . . . ) .

In view of (7.8), the latter alternative would mean

J]DtUFm dxdy = 0 (m = 1,2, . . . ) ;

but this is impossible s ince the functions Fι(z)9 F2(z)9 «•• form a complete

orthonormal se t in L (w,D)9 and Hn{z) φ 0. This proves that all solutions

of ( 7 . 5 ) coincide with eigenvalues μ .

To prove that, conversely, all eigenvalues are solutions of ( 7 . 5 ) , we re-

mark that the reproducing property ( 7 . 7 ) remains valid even though μ is not a

solution of ( 7 . 5 ) . If we write

H(z) = c - μK{z,w; μ ) ,

we have H(w) φ 0, and the right side of (7.9) will not vanish since we have

assumed

ff Fm(z)dxdy jί 0.

Formula (7.10) will therefore be replaced by
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--—) II R
μ μmt JJD

0 ,

which shows that μ cannot coincide with any value μm* We have thus proved

that, except for the case in which

ί Fm dxdy = 0,
D

the set of eigenvalues coincides with the set of solutions of (7.5).

That the functions Hn(z) are, except for constant factors, identical with

the eigenfunctions Fn(z) follows now from the completeness of the eigenfunc-

tions and the observation that, by (7.8) and (7.10), Hm(z) is orthogonal to

all Fn(z), n Φ m.

The spectrum of eigenvalues consists of the roots of the transcendental

equation

~ \fn(«,)\*

λ n — μ

For 0 <_ μ <_λi, the function G(μ) varies from c to -co; similarly in any in-

terval λn.i <. μ <_ λn, G(μ) varies monotonically from +oo to -oo. Thus, if the

problem does not entail multiple eigenvalues, we have proved:

THEOREM 6. Let \λn\ be the set of eigenvalues of (1.1) for the class

L2{D)9 while {λn(w)\ are those associated with the class L (w9 D). Then

setting λ 0 = 0, we have

λΛ-ι < λπ(u>) < λn

for all w £ D and for every n9 n >_ 1.

8. A boundary relation. The Bergman kernel function and several of its

analogues give rise to certain boundary relations existing between pairs of

analytic functions [7] Likewise somewhat similar developments are possible

in the case of the kernels which appeared in the preceding sections.

Our point of departure in the derivation of these boundary relations is the

reproducing properties (2.6) and (7.4). However, since the procedure involves

integration, and since, in the case of multiply connected domains, the eigen-

functions of (1.1) do not in general lie in the class of derivatives of single-
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valued functions, we reformulate our extremal problem for functions of this

class, taking σ = 1. Thus let f^(z) and λ^ denote the nth eigenfunction and the

min max, respectively, of the quotient

ff \f"(z)\2dxdy
(8.1) —

ff I /' ( z ) I 2 dx dy

with the conditions

J] f'(z) :ψ^) dxdγ = 0 (; = l , 2 , . . . , n - l ) ,

and either

if f'{z)dxdy = 0.
JJD

If D is simply connected, (8.1) is, of course, identical with (1.1). Using the

abbreviation

%(z)dxdy,

we see that the immediate analogue of (2.6) is

(8.2) Tnh'(a)= // lJϊh'-λ"n

ίT7h''

Now it was shown above that f^(z) is regular in the closure of D. Hence, if

we restrict our attention to functions h(z) such that h"{z) i s continuous in

D + C, we may apply Green ' s formula to ( 8 . 2 ) . This yields

_ l r _
An h'{a)= — J (fn h'- λ-n

l f'n h") dz

= ^r f h'[fn+λ-n

ιz'2ζ']dz, z'=dz/\dz\.
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It follows that

(8.4) / h'(z) B(s)dz = 0 ,
Jc

where

(8.5) B{o)-π[f i A;/ z'2 f " ] A n

and s is the length parameter on C.

Integrating (8.4) by parts, we obtain

f dB
J h(z) — ds = 0 ,JC ds

or

(8.6) / h{z)[z'dB/ds~]dz=ΰ.

This identity holds for any single-valued and regular function h{z) in D for

which the integral exis ts ; it is evident that the restr ict ion that h"(z) be con-

tinuous in D + C can now easi ly be removed by means of an approximation

argument.

It follows [ 7 ] from ( 8 . 6 ) that z'dB/ds coincides with the boundary values

of an analytic function G(z) which is regular and single-valued in D; that i s ,

Ί' dB/ds - G ( z ) , z e C .

Hence, if zx and z2 are two points on the same boundary components C^ of C,

and sl9 s2 are the corresponding values of s, then

G{z)dz.

Since B is single-valued on C^, we have

G{z)dz = 0

for every C^, w h i c h s h o w s t h a t G ( z ) i s the d e r i v a t i v e of a s i n g l e - v a l u e d
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f u n c t i o n , s a y g{z). T h u s

B ( s 2 ) - B{sι) = g{z2)-g{zι), zif z2 G Ck ,

or, what amounts to the same thing,

B(s) = g{z) + cm, z e Cm,

w h e r e cm i s a c o n s t a n t . U s i n g t h e d e f i n i t i o n ( 8 . 5 ) of B{s), w e a r r i v e a t t h e

fo l lowing r e s u l t .

THEOREM 7. Let the boundary C of D consist of m analytic components

Cm. For f^(z) and λn9 the nth eigenfunction and eigenvalue, respectively, of

(8.1), the boundary relation

(8.3) π[fn{z) + knl * ' 2 £ ' U ) ] = An/{z-a) + g{z)

holdsf where cm is constant on Cm, g(z) is regular in D9 and

Differentiating the boundary relation (8.3) with respect to s, we obtain

18.4) [f'n (z ) + λn1 2 z " / • „ " ( * > + λ ^ z'2 f'n"{z ) ] dz

-A:ίn
π(z-a)2

This identity can be used, in some c a s e s , for the effective computation of the

functions / ( z ) It is well known that the Bergman kernel function K{z,a) of

D can be uniquely characterized by the existence of a boundary relation of the

form

— 1
K(z,a)dz = | — ~—- + p'(z)] dz,

where p(z) is regular and single-valued in D [ l j . Comparing this with ( 8 . 4 ) ,

we find that in those cases in which both z'2 and z " coincide with the bound-

ary values of regular and single-valued analytic functions, the function
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ΊJJ ( y I f* ( y I / A
Tl V ^ / — / V <" / / * * n

will be a solution of the differential equation

(8.5) z ' 2 u / ' ( z ) + 2 Z " M / (Z ) + λΛ wn(z ) = λΛ /̂  (z9 a),

if z / 2 and z ' ' are replaced by the analytic functions in question.

If D is the unit circle, we have

z / 2 = - z2 and z " = ~ z

The Bergman kernel is in this case of the form

K(z,a) = 77(1 - az ) " 2 .

Hence (8.5) yields the differential equation

2 A,, -λ Λ

(8.6) w? + -wi wn = .

The solution of the corresponding homogeneous equation is c± za + c 2 2^, where

1 /I
(8.7) α = - - β = / - + λn .

If α , β are not integers, a solution of (8.6) is

(8.8) Wn(z) = Zh T

If α, β are integers-that is, in view of (8.7), ii λn= n{n + I), where n is an

integer-this solution will contain a logarithmic term unless a = 0. Since wn(z)

must be regular in | z \ < 1, we must have for a £ 0,

λΛ ^ n(n + 1 ) .

In this case both za and z^ are not regular at z = 0, and the eigenfunctions are

therefore given by (8.8), while the eigenvalues are determined by the condition

wn(a) = 0; that is,
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- U .

p=o [ p ( p + l ) — λΓ iJ

If a - 0, the general solution of (8 .6) is Cγ za + c2 z@ + π"1, and we shal l thus

have a regular solution only if λn -n{n + 1) and c2 = 0 (oc > /3 ). Thus, the

eigenvalues are in this case the numbers n{n + 1) in agreement with the re-

sults of § 3.

Similarly, if K (z , a) is the Bergman kernel function of any domain D bounded

by s l i t s which are parts of the same circle about the origin, the differential

equation, like ( 8 . 6 ) , is

2 λ —λ
w"(z)+ -w'(z) w(z)= K(z,a).

z2 z2

On the annulus r < \z \ < R the solution for an arbitrary point a of D is

most easily obtained by a direct application of Theorem 5. The eigenvalues and

eigenfunctions, respectively, associated with the space L2(D) are

U + i ) 1 1 / 2 , .

π(R

and

n(n+l)(R2n-r2n)
K =

Λ5

R2-r2

2R2r2 log(/?/r)

Hence the resolvent kernel is

K(z,w;μ) = R2r2/πzw[R2-r2 2μR2r2 log (R/r)]

Ί ° ° ( l W — \p
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Thus, for the rath eigenfunction Fn(z) we have

= -μnR
2r2/πzw[R2-r2-2μnR

2r2\og(R/r)]

_ ^ ~ (P + l)(zw)P ( ^

" R 2 P ( 2 R 2 ) 2 P ( 2 2) ?

with the condition Fn(a) = 0 determining the eigenvalues.

Another case to which (8.5) can be applied is that of a domain bounded by

parallel rectilinear slits. Taking, for simplicity, these slits to be horizontal,

we have

z ' 2 = 1 and z" = 0,

both analytic functions of z regular in D. Hence (8.5) takes the form

w"(z) + λw(z) =λK{z9a),

F o r the half p l a n e cSjz} > 0, the Bergman kerne l i s -l/π(z -a)2; c o n s e q u e n t l y ,

the e igenfunct ions a re of the form

w (z ) = π~ι y λ c o s \ λ z I (z — a)"2 s i n y λ z dz
Ja

- π"ι y λ sin y λ z I (z - a)'2 cos y λ z dz .
Ja
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