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1. Introduction. In 1872 Jordan [4] showed that a finite quadruply transi-

tive group in which only the identity fixes four letters must be one of the fol-

lowing groups: the symmetric group on four or five letters, the alternating group

on six letters, or the Mathieu group on eleven letters.

In this paper Jordan's theorem on quadruply transitive groups is generalized

in two ways. The number of letters is not assumed to be finite; and instead of

assuming that the subgroup fixing four letters consists of the identity alone,

we only assume it to be a finite group of odd order. The conclusion is essential-

ly the same as that of Jordan's theorem, the only other group satisfying the

hypotheses being the alternating group on seven letters.

2. Proof of the main theorem. The theorem is the following:

THEOREM 2.1. A group G quadruply transitive on a set of letters? finite

or infinite, in which a subgroup H fixing four letters is of finite odd order9 must

be one of the following groups: S49 S$9 A6, Ay or the Mathieu group on 11

letters.

Case 1. G on not more than seven letters. A quadruply transitive group on

4 or 5 letters must be the symmetric group. On six letters its order must be at

least 6 5 4 3, and hence it is A6 or 5 6 . On seven letters, its index is at

most 6 in Sj. As S7 does not have a subgroup of index 3 or 6, the only possi-

bilities are A7 and S7. In both S6 and S7 there are elements of order two fixing

at least four letters, and so these groups do not satisfy our hypothesis.

To treat the case in which G is on more than seven letters, we begin with

two simple lemmas.

LEMMA 2.1. Elements a9 b in a group, satisfying the relations

a2 = 1, b2 = 1, (ab)s = 1,
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generate the dihedral group of order 2s. If s - 2t - 1 is odd9 then a power of

γ = ab transforms a into b. If s - 2r is even, then a and b permute with yr.

Proof. With γ - ab$ we have

a2 = 1, ys — 1, b — ay = y" a.

If s = 2ί - 1, then

y'ιa yι - ay2t = b.

If s = 2r, then

ayr = y'r a = y Γ α.

LEMMA 2.2. If G is a k-ply transitive permutation group and P is a Sylow

subgroup of the finite subgroup H^ fixing k letters, then NQ ( P ) , the normalizer

in G of P is k-ply transitive on the letters fixed by P.

Proof. ( C o m p a r e [ 1 , p . 2 1 2 ; 6 , p . 2 5 9 ] . ) L e t a 1 ? , a^ a n d b i 9 , bk b e

l e t t e r s f i x e d b y P . T h e n i n G t h e r e i s a n e l e m e n t x t a k i n g a i 9 ••• 9 a^ i n t o

έ 1 ? ••• 9 bfo. H e r e x"ίPx-P/ i s a S y l o w s u b g r o u p of t h e g r o u p H£ f i x i n g

& ! , • • . , bfc B u t P a l s o f i x e s b i 9 ••• f 6&. T h u s P a n d P " a r e c o n j u g a t e i n

fl^ , a n d t h e r e w i l l b e a y f i x i n g bif , b^ w i t h

y-χP'y = P .

Hence 2 = xy is an element normalizing P and taking α t , , a^ into bγ ? ? ό .̂.

Trivially NG(P) takes the letters fixed by P into themselves. We note that P

need not be a Sylow subgroup of G.

From here on G will denote, as in Theorem 2.1, a group quadruply transitive

on more than seven letters, and H a subgroup of odd order m fixing four letters.

LEMMA 2.3. The group G contains elements of order 2, and all elements of

order 2 are conjugate. Either 1) every element of order 2 fixes two letters or

2) every element of order 2 fixes three letters.

Proof. By quadruple transitivity G contains an element

g = (12) ( 3 4 ) . . . .

Here g2 fixes 1, 2, 3, 4, and so belongs to H and will be of finite odd order mi
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Thus

* = / " ' = (12) ( 3 4 ) . •• ,

with x = 1. As H is of odd order, any element u of order two will fix at most

three letters, and hence displace at least four letters. With

u = (ah ) (cd ) *

there is a conjugate of u9

v =w'ιuw = (12) (34) . . . .

Either v — x9 or vx fixes four letters and is of odd order, whence, by Lemma 2.1,

v and x are conjugate. Thus all elements of order two are conjugate. On the

other hand, there is in G an element z = ( l ) ( 2 ) ( 3 4 ) , and either z or an

odd power of z is an element of order two fixing at least two letters. Hence

every element of order two fixes either two or three letters, since they fix at

least two and not as many as four.

Case 2. G on more than seven letters. Let

ax = {l) ( 2 ) ( 3 4 ) . .

be an element of order two and

6 = ( 1 2 ) ( 3 4 ) . . .

another element of order two. Then / = « ! & = ( 12 ) ( 3 ) ( 4 ) will be of even

order, and f2 will be of odd order mi. Hence f l = a3 is of order two and by

Lemma 2.1 will permute with σi Hence in G we have permuting elements of

order two, with #2 = α i α 3 :

α v = ( l ) ( 2 ) ( 3 4 ) . .

(2 .1) α 2 = ( l 2 ) ( 3 4 ) . .

α 3 = ( l 2) ( 3 ) ( 4 ) . .

Now a2 as an element of order 2 fixes either two letters 5 and 6, or three

letters 5, 6, and 7. As at permutes with the element a2, it takes these letters

into themselves. But α t fixes 1 and 2 and at most one other letter. Hence we

have
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l 1 3 4 ) ( 5 6 ) ( 7 ) . .

( 2 . 2 ) α 2 = ( 1 2 ) ( 3 4 ) ( 5 ) ( 6 ) . . or a2 = ( 1 2 ) ( 3 4 ) ( 5 ) ( 6 ) ( 7 ) . . .

α 3 = ( 1 2 ) ( 3 ) ( 4 ) ( 5 6 ) . . . α 3 = ( 1 2 ) ( 3 ) ( 4 ) ( 5 6 ) ( 7 ) . . .

the f irst c a s e a r i s i n g if e l e m e n t s of order 2 a l l fix two l e t t e r s , the s e c o n d if a l l

fix t h r e e l e t t e r s . T h e e l e m e n t s a u a2? a3 of ( 2 . 2 ) and the i d e n t i t y form a four

group V. F u r t h e r l e t t e r s w i l l o c c u r in s e t s of four w h i c h wi l l be s e t s of t r a n s i -

t i v i t y for V :

θ ! = ( l ) ( 2 ) ( 3 4 ) ( 5 6 ) {7) {hi) (jk)--.

( 2 . 3 ) α 2 = ( 1 2 ) ( 3 4 ) ( 5 ) ( 6 ) ( 7 ) (Ay) (ik)---

Here it is understood that the 7 may not be present.

The order of the subgroup K taking A, i9 j9 k into themselves will be 24m,

and H = H (h? i9 j9 k) of order m will be normal in K There will be a subgroup

U, K D U 3 H9 in which h$ i, j9 k are permuted in the following way:

U)
(hi) (jk)

(hk) ap
(2.4)

(hjik)

(hkij)

Now U is of order 8m, and so a Sylow subgroup of V will be of order 8. The

elements taking h, it j , k into themselves in a particular way will be a coset of

H in U. As ll is normal in U, a group of order 8 in U will have one element from

each coset and be isomorphic to lί/U and hence faithfully represented by the

permutations on these letters. V will be contained in a Sylow subgroup of order

8 in U. This yields

(2.5) O ι = ( l ) (2) (3 4) (5 6) (7) (A i ) ( / f c ) . .

o 2 = ( 1 2 ) (3 4) (5) (6) (7) (h j) (ik)- .
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α 3 = ( 1 2 ) ( 3 ) ( 4 ) ( 5 6 ) ( 7 ) (hk)(ij)...

u = ( 1 ) ( 2 ) ( 3 5 4 6 ) ( 7 ) (hjik) .

α l t i = ( l ) ( 2 ) ( 3 6 4 5 ) ( 7 ) (A k i j ) . . .

a2u = {l2) ( 3 6 ) ( 4 5 ) ( 7 ) (hi) (/) (k) . . .

a3u=(l 2 ) ( 3 5 ) ( 4 6 ) ( 7 ) (h) ( ί ) ( jfc) . . .

or the same permuta t ions with 5 and 6 i n t e r c h a n g e d . T h e way in which the l a s t

four e l e m e n t s permute the l e t t e r s 1, , 7 i s determined by the r e l a t i o n s

z/2 = α l 3 u a2u — α 3 $ (a2u) = 1 .

Here u normal izes V and s o f ixes the only l e t t e r , 7, fixed by V9 if the 7 o c c u r s .

Also u must take the fixed l e t t e r s of a3 into those of a2 , whence

/ 3 4 . . \ / 3 4 . . \
u -1 I or u -1 I

\5 6 / \6 5 . . . /

but also u2 = α! , whence

M = ! ( 3 5 4 6 ) . . . or u = ( 3 6 4 5 ) . • • .

Finally, α must fix 1 and 2 or interchange them. But if u interchanges 1 and 2,

then a2u is of order 2 and fixes the letters 1, 2, /, k Thus

i t = ( l ) ( 2 ) ( 3 5 4 6 ) . or a = (1) (2) ( 3 6 4 5 ) ••• ,

and the rest follows.

Each further transitive constituent of V such as h, i$ j^ k yields a group S

such as that in (2.5). The elements

(12) ( 3 6 ) ( 4 5 ) and (12) (35) (46) .

in each of these groups fix two letters of the constituent. Since an element of

order two cannot fix four letters, each constituent yields a different element

permuting the first six letters in the way (12) (36) (45). But there are at most

m elements with this effect on the first six letters. Thus if there are t such

constituents, ί < m is finite and G is a group on τz = 4ί + 6 or 4ί + 7 letters.

If G is on 10 or 11 letters we have t = 1.

There is no quadruply transitive group on 10 letters (except of course Λί0

and SIQ ). For the normalizer of a cycle of length 7 by Lemma 2.2 is S3 on the
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remaining three letters; and so this normalizer, which is the subdirect product

of S 3 and the normalizer on the letters of the 7-cycle, will pair a 3-cycle with

the identity. Hence G contains a 3-cycle, and, being quadruply transitive, all

3-cycles and so contains Aί0 .

On 11 letters G is of order 11 10 9 8m, and even without assuming m

odd, consideration of normalizers of Sylow subgroups fixing four letters shows

that we must have m = 1. The group of order 8 fixing three letters contains a

single element of order 2 [3, p. 311], and so is the cyclic or quaternion group.

The cyclic group, having only 4 automorphisms, could not have a normalizer

triply transitive on the remaining three letters, for then G would contain a

3-cycle. Hence the subgroup fixing three letters must be the quaternion group

Q Then G will be a transitive extension of Q, and the methods of T. C. Holyoke

[3] readily enable us to construct from Q not only the quadruply transitive

Mathieu group on 11 letters, but the quintuply transitive group on 12 letters.

We shall now show that t > 1 conflicts with the hypothesis that H is of

odd order, and thus complete the proof of our theorem. If w9 x9 y9 z is another

transitive constituent of V9 we have

a2u = (12) (36) (45) (7) (hi) (/) U ) •••

from (2.5) and will have another element

α 2 u ' = ( 12) (36) (45) (7) (ivx) (y) ( z ) . . .

Each of these elements permutes with aι and transforms a2 into α 3 and α 3 into

α 2 . Their product is an element q fixing the first six (or seven) letters and so

of odd order. Also q centralizes V. By Lemma 2.1 a power of q transforms a2u

into ci2u', and so takes the fixed letters j9 k of a2u into the fixed letters γ9 z of

a2u'. Centralizing F, this element must take the entire constituent hijk into

wxyz. Hence there is a group C in G which fixes the first six (or seven)

letters, centralizes F, and is transitive on the t remaining constituents of V,

An element of C taking a constituent of V into itself, being of odd order, must

fix all four letters. Thus the transitive constituents of C are (1) (2) (3) (4)

(5) (6) (7) T}19 Ί{9 Tj9 Tfs, the last four sets of t each, the letters h9 i9 j9 k

being in different constituents of C.

Let p be a prime dividing t. (Here we use the assumption t > 1.) Let P be

the corresponding Sylow subgroup of C Then P displaces all 4ί letters which

C displaces, since a subgroup of C fixing a letter is of index t = 0 (mod p) and

cannot contain such a Sylow subgroup. Now let Pi be a Sylow subgroup of H,
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the subgroup fixing 1, 2, 3, 4, which contains P. Then Pi displaces the 4ί

letters of C and no others, unless possibly we have the case

p = 3, t = 3^, rz = 4 ί + 7,

where Pi might be on 4ί + 3 letters. This possibility will be considered later.

With Pί on 4ί letters, by Lemma 2.2, the group NQ ( P I ) is quadruply transitive

on the first six or seven letters and so contains A6 or A7 on these letters. But

the subgroup taking the first six (or seven) letters into themselves also con-

tains the element u of (2.5) which is not in the alternating group on these

letters. Thus in G we have the full symmetric group on the first six or seven

letters and hence some element fixing the first four letters and interchanging

the fifth and sixth. This conflicts with the hypothesis that H is of odd order.

Finally, consider the possibility that

t = 3w, w = 4ί + 7,

and that Pi displaces 5, 6, 7 as well as the 4ί letters of P. If w > 1, then

surely 5, 6, 7 are a transitive constituent of Pι and there is an element

z = ( l ) ( 2 ) ( 3 ) ( 4 ) ( 5 6 7 ) . .

in G. If w = 1, then P is of order 3, and even if, in Pi9 5, 6, 7 are in a constit-

uent with 8, 9, 10 and 11, 12, 13 of P, since there is an element (5) (6) (7)

(8, 9, 10) (11, 12, 13), there will also be one such as z fixing 8, 9, 10. But with

z = ( l ) (2) (3) (4) ( 5 6 7 ) . .

and u of (2.5) we have

( 2 ϋ ) 3 = ( l ) ( 2 ) ( 3 5 ) ( 4 ) ( 6 ) ( 7 ) . . ,

contradicting the assumption that a subgroup H fixing 4 letters is of odd order.
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