
THE NUMBER OF SOLUTIONS OF SOME SPECIAL EQUATIONS

IN A FINITE FIELD

L. CAR L I T z

1. Introduction. Let GF{q) denote a fixed finite field. If

f(χ) = / ( % ! , •• , XΓ)

is a polynomial with coefficients in GF(q), and CX. G GF(q), let

Nf(a) = N\f(ξι,...,ξr) = a,ξi eGFiq)}

denote the number of solutions of the equation / ( ζ) = Cί For certain polynomi-

als / we have

(1.1) Nf(oi) = Nf{l) (a £ 0 ) ;

that is, Nf (α) is fixed for all Ot £ 0. For example, if q is odd and

/ (x) = Q(x\ , , xΓ) 9

a quadratic form of discriminant 8 Φ 0 and r = 2s, then as is well known

(1.2) NQ(a) = q2s ι + qs-ιk(a)ψ((-l)sδ),

where

( 1 . 3 )
q-\ (OC = 0)

- 1 ( α ^ O ) ,

and ι//(θ() = O, + 1 , - 1 according as Cί = 0, a square or a nonsquare of GF(q)

Another example of (1.1) is furnished by the polynomial [2, Theorem 4]

s H

(1.4) g(x) = £ α, Π *f/;' = OC (a; £ 0)
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where the exponents a^j satisfy

(« i ι» ••• , airt) = 1 ( i = 1 , ••• , s)t

We now have

s
(1.5) Ng(a) = qr-1 +q-lk(a) Π ( / ' - q (q - I ) ' * " 1 ) ,

where r ~ rx + r2 + + rs .

An instance of a somewhat different kind is furnished by Δ (x) = | xq |,

the determinant of order x in the r indeterminates %j y. The number of solutions

of Δ ( ξ) = α is given by [ 5 ]

(1.6)

where again k(d) is defined by ( 1 . 3 ) . We shall show below that if P (x) de-

notes the Pfaffian in the r ( 2 r - 1) indeterminates xij, 1 < d < j <_ 2r, then

r-ι

(1.7)
(r'ι) (2Γ+ι) « /(r"l} Π ( ^ 2 i + l - 1)}

i = l J

in particular,

(1.8) /Vp(l) = g r ( r - ι ) ( q 3 - l ) ( ( 7 5 - l ) . . . C^27""1 - 1 ) .

The result (1.7) may of course be expressed in terms of Λ(s(cO, where S{x)

is the general skew-symmetric determinant of even order. The corresponding

result for symmetric determinants seems more difficult to obtain and will not be

discussed in the present note.

Returning to (1.1), we note that it is easy to show that if the polynomials

/ and g satisfy (1.1) then the same is true of

h ( χ , γ ) = f ( x ) + g ( γ ) ,

where the x's and y's are distinct. More precisely, if

Nf(a) =A + k(a)B, Ng (oc) = C + k(a)D,
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then

(1.9) Nh(OL) = q{AC + k(

By means of ( 1 . 9 ) and the other formulas stated above we may derive many

additional instances of ( 1 . 1 ) . To mention one example,

(1.10) /Vf/\U ( l ) ) + + P s U ( s ) ) = α i = ί 7

( r - l ) (

where each of the Pfaffians Pi contain r ( 2 r — l ) unknowns; the total number

of unknowns is rs (2r - 1 ) . We can also determine the number of solutions of the

equation S(ξ) + S'(η) = Oί, where 5 and S ' denote skew-symmetric determinants,

but the result is rather complicated. For a more general result of this kind see

Theorem 5 below.

Finally we determine the number of solutions of

where each F is homogeneous and irreducible and factors completely into linear

factors in some extended field GF{qm).

2. Pfaffians. For properties of the Pfaffian

P(*i2, ••• , * 2 r - i , 2 r ) = U , 2, 3, . . . , 2r)

see for example [6 , § 6 1 ] . We recal l in particular the recursion formula

( 2 . 1 ) ( 1 , 2, 3, . . . , 2 r ) = % 1 2 ( 3 , 4, . . . , 2 r ) + % 1 3 ( 4 , 5, . . . , 2 r , 2 )

+ + * i , 2 r ( 2 , 3, , 2r - 1 ) .

Now consider the equation

(2.2) PU)=oc (α ^ 0 ) .

Since, by ( 2 . 1 ) , P is l inear and homogeneous in %i2> #i3> •«« ,# i ,2r- i> it is

clear that P sat is f ies ( 1 . 1 ) . To determine Np(l), we consider the general

skew-symmetric determinant of even order
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Six) = \χi , 2r; */»'

and the bilinear form

2Γ

B (it,, V) =

It is familiar that, by applying the same nonsingular linear transformation to

the u's and v's, Z? (u9 v) can be reduced to normal form with matrix

(2.4)
/ 0 1'

- 1 0.

Now on the other hand a bilinear form with matrix (2.5) is invariant under a

group of order [4, § 115]

q

r 2 ( q

2 - l ) ( q 4 - l ) . . . ( q 2 r - l ) .

Since the total number of nonsingular matrices of order 2r is equal to

q * 2 r - ι H q - 1 ) ( q 2 - 1 ) ( q * - 1 ) ... ( < 7 2 Γ - 1 ) ,

i t f o l l o w s t h a t t h e n u m b e r of s k e w - s y m m e t r i c d e t e r m i n a n t s S(x)=a i s d e -

t e r m i n e d b y

Finally since Six) = P2(x) it follows that

(2.5)

Since

we get also

(α φ 0 ) .

1 = 2

Np(0) + (q-l)Np(l) =
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Γ

(2.6) /Vp(0) = / ( 2 r - ' > - / ^ γ[ {qii-1 - 1).

i~l

We may now s t a t e :

T H E O R E M 1 (q o d d ) . If P ( x ) denotes the general Pfaffian in r ( 2 r - l )

indeterminates, then the number of solutions of the equation P ( f ) = ( X is fur-

nished by ( 2 . 5 ) and ( 2 . 6 ) .

It is easily verified that ( 2 . 5 ) and (2 .6) imply ( 1 . 7 ) .

As for S {x ) we have:

THEOREM 2 (q odd) . If S(x) denotes the general skew-symmetric determi-

nant of order 2r$ then

(2.7) Λ's(α) = (1 + φ(a))NP(a),

where φ (α) = 0, +1, - 1 according as 0, = 0, a square or a nonsquare of GF{q).

3. Some general results. If the polynomial / (x) is such that

(3.1) Nf(O) = lo, W/ ( α ) = ί i ( α j έ O ) ,

then it is easily verified that

(3.2) Nf(a) = A + k(a)B,

where k{d) is defined by (1.3) and

(3.3) q A = l0 + ( q - l ) l l 9 q B = Z o - Z i .

Conversely (3.2) and (3.3) imply (3.1). (Compare [ 1, §9].)

We now prove:

THEOREM 3. The function k(d) satisfies

(3.4) £ A(£) = 0, Σ
ξ +77 =α f +77 =α

The first equality follows from
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To prove the second, we have first, for Oί = 0,

while for α Φ- 0,

Σ ) + Σ Hξ)k(a-ξ)

This evidently completes the proof of (3.4).

If we define the dot product of two functions k\9 k^ by means of

(3.5) *! . k 2 ( a ) = Σ k ι ( ξ ) k 2 ( η ) ,

then (3.4) can be written as

(3.6) l A; = 0, k-k = qk,

where the function 1 is defined by 1 (OC) = 1 for all (X. The product is associative

and commutative.

Returning to (3.2), let / and g be polynomials such that

(3.7) N f ( a ) = A + k ( a ) B , N g ( a ) = C + k ( a ) D .

Also let

(3.8) h ( x , y ) = f ( x ι , , x r ) + g ( y i t , y s ) ,

where the Λ 'S and y's are distinct indeterminates. We prove that

(3.9)
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Clearly we have

Σ, N f { β ) N g ( γ ) = Σ, ( A + k { β ) B ) { C
β+y=a /3+y=α

by (3.4). We now state:

THEOREM 4. // the polynomials f9 g satisfy ( 3 . 7 ) , and h is defined by

(3.8), then /V/>(α) is determined by (3.9).

In terms of (3.5) we may state that the functions of the form (3.2) are

closed with respect to dot multiplication. (Compare [3, §3].)

As an immediate corollary of Theorem 4 we see that if

h ( x ω , . . . , x{s)) = at/1 ( * ( l ) ) + + as f {x{s)\ (<χ, £ 0 ) ,

where / satisfies (3.2), then

(3.10) Nh(a) = qs'ι(As +k(a)Bs).

Applying (3.10) to Theorem 1 we immediately get (1.10). Similarly if we

apply (3.10) to (1.6) and put

(3.11)

we get the

(3.12)

result

Woe)-,'

Λ(*) = |

It is of course not necessary that the determinants in the right member of (3.11)

be of the same order.

Additional results like (3.12) as well as various mixed results using (1.2),

(1.5), (1.6), and (1.7) are readily obtained.

4. Another theorem. In view of (2.7) we consider functions of the form

(4.1) ; ( α ) = ( l +
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where as in ( 3 . 1 ) Z(0) = Zo, Z(α) = Zt for Cί φ 0. If / ' ( θ t ) = ( 1 + <//(θO)Z'(cc),

Z'(O) = Zό, Z'(cO = Z£ for Cί ^ 0, is a second function of the same kind, we

may compute

( 4 . 2 ) S = Σ, 1
ξ H

Indeed, for Cί = 0,

s = z(o)z(o)+ >2 ( i

while for α 5̂  0,

ξ +77 =α

But by (1.2),

Hence we get:

THEOREM 5. The sum (4.2) is evaluated by means of

(4.3) 5 = ( l + 0 ( α ) ) Z / / ( α ) + Z 1Z 1M^ + A ; ( α ) 0 ( - l ) ! ,

w Λere

/ - ( O ) = Z o Z o

/ - Z ι Z ί , Z ' / ( α ) = Z 0 Z ί + Z ί Z t - 2 Z t Z ί ( α ± 0 ) .
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Note that the right member of (4.3) is the sum of a function of the type (4.1)

and one of the type (3.1).

If we identify (4.1) with (2.7) we get the number of solutions of the equation

(4.4) S(ξ) + S'{η) = α ,

where S and S' denote skew-symmetric determinants in f. , η^ respectively.

It seems unnecessary to state the final formulas which are somewhat compli-

cated.

By means of Theorem 5 we may also obtain the number of solutions of such

equations as

(4.5) βQHx) +γQ'2(y) = OC (βγ^O),

where Q, Q' denote quadratic forms in an even number of unknowns.

As for the equation

(4.6) Δ U ) + S(γ) = <χ,

where Δ is a general determinant and S is skew-symmetric, the situtation is

somewhat simpler. It is now necessary to evaluate

(4.7) Σ, (l + Ψ(η)Uξ)l'(η).
ξ +7?=α

By means of a straightforward computation we find that (4.7) reduces to

[ Z 0 Z ί 4- (q-Dl^ί (<χ = 0 )
( 4 . 8 )

l ( / o / ί - / t / r ) ( l + 0 ( c ( ) ) + / ι ( Z o

/ + ( ^ - l ) / r ) ( α φ 0 ) .

In particular, substituting from (1.2) and (2.7) in (4.8), we get the number of

solutions of (4.6)

5. Factorable polynomials. Let F (x) = F {xx 9 •• 9 xr) denote a homo-

geneous polynomial of degree m that is irreducible but factors completely over

GF(qr). An example of such a polynomial is furnished by

r-i . t

( 5 . 1 ) F i x ) = Π ( % ι + α<? X2 + . . . + α ( r β l ) ^ x Γ ) ,
i=0
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where Oί is a primitive number of GF (qΓ ). In general we may put

(5.2)
r-i

i = 0

« * r ) ,

where (X{. is of degree fi and r is the least common multiple of f2 , , fr we

also assume that the determinant

l α « ••• α« 0.

(5.3) NF(a) =

I t f o l l o w s w i t h o u t d i f f i c u l t y t h a t t h e n u m b e r o f s o l u t i o n s o f F ( x ) = OC i s

1 « x = 0 )

{ q

r - l ) / ( q - I ) (α £ 0).

may rewrite (5.3) as

. . / " ' - 1
(5.4) k(a).

Hence applying Theorem 4 we get the following result.

THEOREM 6. Let F( denote polynomials of the type (5.2), deg F{ « r̂ .

Then the number of solutions of

=α (OCf jέ 0 )

is determined by

(5.5) N = q s-l Jl +••• /'"'-I

ϋ^-TT

It is easily verified that for r/ = 2, i = 1, , s, (5.5) is in agreement with

(1.2).
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