AN EXAMPLE CONCERNING UNIFORM BOUNDEDNESS OF SPECTRAL MEASURES

Shizuo Kakutani

1. Introduction. Let $\mathfrak{X}=\{x\}$ be a Banach space with a norm $\|x\|$. A bounded linear operator E which maps \mathfrak{X} into itself is called a projection if $E^{2}=E$. We do not require that $\|E\| \leq 1$, where

$$
\|E\|=\sup _{\|x\| \leq 1}\|E x\| .
$$

Let $B=\{\sigma\}$ be a Boolean algebra with a unit element 1 . We denote the zero element of B by 0 , and two fundamental operations in B by $\sigma_{1} \cup \sigma_{2}$ and $\sigma_{1} \cap \sigma_{2}$. A family $\{E(\sigma) \mid \sigma \in B\}$ of projections $E(\sigma)$ of X into itself is called an \mathfrak{X} spectral measure on B if the following conditions are satisfied: (i) $E(0)=$ $0(=$ zero operator $)$, (ii) $E(1)=1$ ($=$ unit operator), (iii) $E\left(\sigma_{1} \cap \sigma_{2}\right)=E\left(\sigma_{1}\right) E\left(\sigma_{2}\right)$ for any $\sigma_{1}, \sigma_{2} \in \mathcal{B}$, (iv) $\sigma_{1} \cap \sigma_{2}=0$ implies $E\left(\sigma_{1} \cup \sigma_{2}\right)=E\left(\sigma_{1}\right)+E\left(\sigma_{2}\right)$. An X-spectral measure $\{E(\sigma) \mid \sigma \in B\}$ is said to be uniformly bounded if there exists a constant $K<\infty$ such that $\|E(\sigma)\| \leq K$ for all $\sigma \in \mathcal{B}$.

Let $B=\{\sigma\}, B^{\prime}=\left\{\sigma^{\prime}\right\}$ be two Boolean algebras with a unit element, and let $B^{*}=B \otimes B^{\prime}$ be the Kronecker product of B and B^{\prime}. Now B^{*} may be considered as the Boolean algebra of all open-closed subsets σ^{*} of S^{*}, where $S^{*}=S \times S^{\prime}$ is the topological Cartesian product of two Stone representation spaces S, S^{\prime} of B, B^{\prime}, respectively. Every element $\sigma^{*} \in B^{*}$ is expressible in the form:

$$
\sigma^{*}=\bigcup_{i=1}^{n} \sigma_{i} \times \sigma_{i}^{\prime},
$$

where $\sigma_{i} \in B, \sigma_{i}^{\prime} \in B^{\prime} \quad(i=1, \cdots, n)$.
Let $\{E(\sigma) \mid \sigma \in B\}$ and $\left\{E^{\prime}\left(\sigma^{\prime}\right) \mid \sigma^{\prime} \in B^{\prime}\right\}$ be two \mathfrak{X}-spectral measures on B, B^{\prime}, respectively, which are commutative with each other; that is,

$$
E(\sigma) E^{\prime}\left(\sigma^{\prime}\right)=E^{\prime}\left(\sigma^{\prime}\right) E(\sigma)
$$

Received March 4, 1953.
Pacific J. Math. 4 (1954), 363-372
for any $\sigma \in B, \sigma^{\prime} \in R^{\prime}$. Let us put

$$
\begin{equation*}
F\left(\sigma^{*}\right)=\sum_{i=1}^{n} E\left(\sigma_{i}\right) E^{\prime}\left(\sigma_{i}^{\prime}\right) \tag{1.2}
\end{equation*}
$$

if $\sigma^{*} \in B^{*}$ is of the form (1.1) and if $\sigma_{i} \times \sigma_{i}^{\prime}(i=1, \cdots, n)$ are disjoint. Then it is easy to see that $F\left(\sigma^{*}\right)$ is uniquely determined (although the expression (1.1) with disjoint $\sigma_{i} \times \sigma_{i}^{\prime}$ is not necessarily unique), and $\left\{F\left(\sigma^{*}\right) \mid \sigma^{*} \in B^{*}\right\}$ is an \mathfrak{X}-spectral measure on $\mathbb{B}^{*} ;\left\{F\left(\sigma^{*}\right) \mid \sigma^{*} \in \mathbb{Z}^{*}\right\}$ is called the direct product X-spectral measure of $\{E(\sigma) \mid \sigma \in B\}$ and $\left\{E^{\prime}\left(\sigma^{\prime}\right) \mid \sigma^{\prime} \in \mathcal{X}^{\prime}\right\}$.

It was asked by N. Dunford [2] whether the uniform boundedness of $\{E(\sigma) \mid$ $\sigma \in B\}$ and $\left\{E^{\prime}\left(\sigma^{\prime}\right) \mid \sigma^{\prime} \in B^{\prime}\right\}$ implies that of $\left\{F\left(\sigma^{*}\right) \mid \sigma^{*} \in \mathbb{R}^{*}\right\}$. This question was answered in the affirmative by J. Wermer [5] in case \mathfrak{X} is a :iilbert space. The main purpose of this note is to show that the answer is negative if \mathcal{X} is a general Banach space; that is, we want to prove the following proposition:

Proposition. There exists a Banach space \mathfrak{X} and a commutative pair of
 measure is not uniformly bounded.

Such an example will be given in $\S 3$. In our example, the Banach space \mathcal{X} is given as a cross product space $C(S) \circledast C\left(S^{\circ}\right)$ of two Banach spaces of continuous functions which will be defined in $\S 2$. This Banach space is not reflexive and hence it remains open to decide whether the answer to the question is positive or negative in case \mathfrak{X} is a reflexive Banach space.
2. The Banach space $C(S) \circledast C\left(S^{\prime}\right)$. Let $S=\{s\}, S^{\prime}=\left\{s^{\prime}\right\}$ be two compact Hausdorff spaces. Let $C(S), C\left(S^{\prime}\right)$ be the Banach spaces of all complex-valued continuous functions $y(s), z\left(s^{\prime}\right)$ defined on S, S^{\prime} with the norms

$$
\|y\|_{\infty}=\max _{s \in S}|y(s)|, \quad\|z\|_{\infty}=\max _{s^{\circ} \in S^{\prime}}\left|z\left(s^{\prime}\right)\right|
$$

Let

$$
S^{*}=S \times S^{\prime}=\left\{s^{*}=\left(s, s^{\prime}\right) \mid s \in S, s^{\prime} \in S^{\prime}\right\}
$$

be the topological Cartesian product of S and S^{\prime}, and let $C\left(S^{*}\right)$ be the Banach space of all complex-valued continuous functions

$$
x\left(s^{*}\right)=x\left(s, s^{\prime}\right)
$$

defined on S^{*} with the norm

$$
\|x\|_{\infty}=\max _{s^{*} \in S^{*}}\left|x\left(s^{*}\right)\right| .
$$

Now $C(S), C\left(S^{\prime}\right)$ may be considered as closed linear subspaces of $C\left(S^{*}\right)$ by identifying $y(s) \in C(S), z\left(s^{\prime}\right) \in C\left(S^{\prime}\right)$ witti $x\left(s, s^{\prime}\right) \in C\left(S^{*}\right)$ defined by

$$
x\left(s, s^{\prime}\right)=y(s), x\left(s, s^{\prime}\right)=z\left(s^{\prime}\right),
$$

respectively.
Consider $C\left(S^{*}\right)$ as a normed ring with the norm $\|x\|_{\alpha}$. Then $C(S)$ and $C\left(S^{\prime}\right)$ are closed subrings of $C\left(S^{*}\right)$. Let $C(S) \otimes C\left(S^{\prime}\right)$ be the subring of $C\left(S^{*}\right)$ algebraically generated by $C(S)$ and $C\left(S^{\prime}\right)$; that is, the set of all functions $x\left(s, s^{\prime}\right) \in C\left(S^{*}\right)$ of the form:

$$
\begin{equation*}
x\left(s, s^{\prime}\right)=\sum_{i=1}^{n} y_{i}(s) z_{i}\left(s^{\prime}\right), \tag{2.1}
\end{equation*}
$$

where $y_{i}(s) \in C(S), z_{i}\left(s^{\prime}\right) \in C\left(S^{\prime}\right) \quad(i=1, \cdots, n)$. From the Stone-ifeierstrass theorem it follows that $C(S) \otimes C\left(S^{\prime}\right)$ is dense in $C\left(S^{*}\right)$.

Let us now introduce a new norm on $C(S) \otimes C\left(S^{\prime}\right)$ defined by

$$
\begin{equation*}
\left\|\|x\|=\inf \sum_{i=1}^{n}\right\| y_{i}\left\|_{\infty} \cdot\right\| z_{i} \|_{\infty} \tag{2.2}
\end{equation*}
$$

where inf is taken for all possible representations of $x\left(s, s^{\prime}\right) \in C(S) \otimes C\left(S^{\prime}\right)$ in the form (2.1).

It is easy to see that $\|x\| \|$ is a norm on $C(S) \otimes C\left(S^{\prime}\right)$ and satisfies

$$
\|x\|_{\infty} \leq\|x\|
$$

for all $x\left(s, s^{\prime}\right) \in C(S) \otimes C\left(S^{\prime}\right)$. Let $C(S) \circledast C\left(S^{\prime}\right)$ be the completion of $C(S) \otimes C\left(S^{\prime}\right)$ with respect to the norm $\left\|\|x\|\right.$. The completion $C(S) * C\left(S^{\prime}\right)$ is obtained from $C(S) \otimes C\left(S^{\prime}\right)$ by means of Cauchy sequences in $C(S) \otimes C\left(S^{\prime}\right)$ with respect to the norm $\|\|x\|\|$. Since a Cauchy sequence with respect to $\|\|x\|\|$ is a Cauchy sequence with respect to $\|x\|_{\infty}$, we may consider $C(S) \circledast C\left(S^{\prime}\right)$ as a subset of $C\left(S^{*}\right)$:

Lemma 1. Let $C(S) \circledast C\left(S^{\prime}\right)$ be the set of all functions $x_{0}\left(s^{*}\right) \in C\left(S^{*}\right)$ for which there exists a sequence $\left\{x_{n}\left(s^{*}\right) \mid n=1,2, \cdots\right\}$ of functions from
$C(S) \otimes C\left(S^{\prime}\right)$ with the following properties:
(i) $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{0}\right\|_{\infty}=0$, that is $\lim _{n \rightarrow \infty} x_{n}\left(s^{*}\right)=x_{0}^{*}(s)$ uniformly on S^{*};
(ii) $\quad \lim _{m, n \rightarrow \infty}\| \| x_{m}-x_{n} \| \mid=0$, that is, $\left\{x_{n} \mid n=1,2, \cdots\right\}$
is a Cauchy sequence with respect to the norm. \|\|x\||.

If we put

$$
\left\|\mid x_{0}\right\|=\lim _{n \rightarrow \infty}\| \| x_{n}\| \|,
$$

then $C(S) \circledast C\left(S^{\prime}\right)$ is a Banach space with respect to the norm $\|\|x\|$ and contains $C(S) \otimes C\left(S^{\prime}\right)$ as a dense subset.

The proof is easy and so it is omitted. It is interesting to observe that $C(S) \circledast C\left(S^{\prime}\right)$ is a normed ring with respect to the norm \|\|x\|\|.
$C(S) \circledast C\left(S^{\prime}\right)$ is called the minimal cross product Banach space of $C(S)$ and $C\left(S^{\prime}\right)$. It is easy to see that the minimal cross product Banach space $\because 刃$ of any two Banach spaces $\because 3$ and β can be defined in a similar way. $\because \int_{5} \because$ is one of the cross product Banach spaces defined and discussed by R. Schatten and J. von Neumann [3; 4].
3. Construction of an example. Let us now consider the case when both S and S^{\prime} are Cantor sets. Let $S=S^{\prime}$ be the set of all real numbers s of the form

$$
\begin{equation*}
s=2\left\{\frac{\epsilon_{1}(s)}{3}+\frac{\epsilon_{2}(s)}{3^{2}}+\cdots+\frac{\epsilon_{n}(s)}{3^{n}}+\cdots\right\}, \tag{3.1}
\end{equation*}
$$

where $\epsilon_{n}(s)=0$ or $1(n=1,2, \ldots)$. I et $B=\{\sigma\}$ be the Boolean algebra of all open-closed subsets σ of S.

Let $S^{*}=S \times S$ be the Cartesian product of S with itself, and let $B^{*}=\left\{\sigma^{*}\right\}$ be the Boolean algebra of all open-closed subsets σ^{*} of S^{*}. It is clear that $B^{*}=$ $B \otimes B$; that is, B^{*} consists of all subsets σ^{*} of S^{*} which are expressible in the form (1.1), where $\sigma_{i}, \sigma_{i}^{\prime} \in B(i=1, \cdots, n)$.

For each $\sigma \in \mathbb{B}$, let $\phi_{\sigma}(s)$ be the characteristic function of σ, and put

$$
E(\sigma) x\left(s, s^{\prime}\right)=\phi_{\sigma}(s) x\left(s, s^{\prime}\right), E^{\prime}(\sigma) x\left(s, s^{\prime}\right)=\phi_{\sigma}\left(s^{\prime}\right) x\left(s, s^{\prime}\right)
$$

It is clear that $E(\sigma), E^{\prime}(\sigma)$ are projections of $\mathfrak{X}=C(S) \circledast C\left(S^{\prime}\right)$ into itself, and that $\{E(\sigma) \mid \sigma \in \mathbb{B}\},\left\{E^{\prime}(\sigma) \mid \sigma \in \mathcal{B}\right\}$ are \mathfrak{X}-spectral measures on \mathcal{B}. Both of these spectral measures are uniformly bounded since $E(\sigma), E^{\prime}(\sigma)$ have norm 1 for any $\sigma \in \mathbb{B}$ with $\sigma \neq 0$. Since

$$
E(\sigma) E^{\prime}\left(\sigma^{\prime}\right)=E^{\prime}\left(\sigma^{\prime}\right) E(\sigma)
$$

for any $\sigma, \sigma^{\prime} \in B$, we can consider the direct product \mathfrak{X}-spectral measure $\left\{F\left(\sigma^{*}\right) \mid \sigma^{*} \in B^{*}\right\}$, defined on $B^{*}=B \otimes B$. We shall show that $\left\{F\left(\sigma^{*}\right) \mid \sigma^{*} \in B^{*}\right\}$ is not uniformly bounded.

Let us define a sequence of functions $\left\{\rho_{n}\left(s^{*}\right) \mid n=0,1,2, \cdots\right\}$ defined on $S^{*}=S \times S$ as follows: $\rho_{0}\left(s^{*}\right) \equiv 1$ on S^{*}, and

$$
\begin{equation*}
\rho_{n}\left(s^{*}\right) \equiv \rho_{n}\left(s, s^{\prime}\right)=(-1)^{\sum_{k=1}^{n} \epsilon_{k}(s) \epsilon_{k}\left(s^{\prime}\right)} \tag{3.2}
\end{equation*}
$$

where $\epsilon_{k}(s)$ is the k th coefficient in the expansion (3.1) of s. It is easy to see that $\rho_{n}\left(s^{*}\right)$ takes only the values ± 1 and belongs to $C(S) \otimes C\left(S^{\prime}\right)$ for $n=0,1$, $2, \cdots$. Let us put

$$
\sigma_{n}^{*}=\left\{s^{*} \mid \rho_{n}\left(s^{*}\right)=1\right\} \quad(n=0,1,2, \cdots)
$$

Then $\sigma_{n}^{*} \in B^{*}$ for $n=0,1,2, \cdots$, and it is easy to see that

$$
\rho_{n}=\left(2 F\left(\sigma_{n}^{*}\right)-I\right) \rho_{0} \quad(n=0,1,2, \cdots)
$$

Thus, in order to prove the proposition of $\S 1$, it suffices to prove the following lemma:

Lemma 2. Let S be the Cantor set. Let $\left\{\rho_{n}\left(s^{*}\right) \mid n=1,2, \cdots\right\}$ be a sequence of functions defined on $S^{*}=S \times S$ by (3.2). Then

$$
\lim _{n \rightarrow \infty}\| \| \rho_{n}\| \|=\infty
$$

where the norm $\left\|\left\|\rho_{n}\right\|\right\|$ of ρ_{n} is defined by (2.2).
In order to prove this lemma, let us put

$$
\begin{equation*}
\tau(s)=\frac{\epsilon_{1}(s)}{2}+\frac{\epsilon_{2}(s)}{2^{2}}+\cdots+\frac{\epsilon_{n}(s)}{2^{n}}+\cdots \tag{3.3}
\end{equation*}
$$

Then $t=\tau(s)$ is a mapping of S onto the closed unit interval

$$
I=\{t \mid 0 \leq t \leq 1\}
$$

which is one-to-one except for a countable set. I.et

$$
\mu(\sigma)=m(\tau(\sigma))
$$

be a measure defined on $B=\{\sigma\}$ which corresponds to the Lebesgue measure m on I. L.et us consider the L^{2}-space $L^{2}(S ; \mu)$ on S with respect to the measure μ, where the norm is given by

$$
\begin{equation*}
\|y\|_{2}=\left\{\int_{S}|y(s)|^{2} \mu(d s)\right\}^{1 / 2} \tag{3.4}
\end{equation*}
$$

Let $\sigma_{i}^{(n)}$ be the open-closed subset of S consisting of all $s \in S$ such that
(3.5) $\frac{\epsilon_{1}(s)}{2}+\cdots+\frac{\epsilon_{n}(s)}{2^{n}}=\frac{i-1}{2^{n}} \quad\left(i=1, \cdots, 2^{n}\right)$.

We observe that

$$
\mu\left(\sigma_{i}^{(n)}\right)=2^{-n} \quad\left(i=1, \cdots, 2^{n}\right)
$$

and that $\rho_{n}\left(s, s^{\prime}\right)$ is constant $\left(=\epsilon_{i j}^{(n)}= \pm 1\right)$ on each $\sigma_{i}^{(n)} \times \sigma_{j}^{(n)}(i, j=1, \cdots$, 2^{n}). Further, if we put

$$
\begin{equation*}
\rho_{j}^{(n)}(s)=\rho_{n}\left(s_{\imath} s^{\prime}\right) \tag{3.6}
\end{equation*}
$$

for $s \in S$ and $s^{\prime} \in \sigma_{j}^{(n)} \quad\left(j=1, \cdots, 2^{n}\right)$, that is, $\rho_{j}^{(n)}(s)=\epsilon_{i j}^{(n)}$ if $s \in \sigma_{i}^{(n)}$, then the functions $\rho_{j}^{(n)}(s) \quad\left(j=1, \cdots, 2^{n}\right)$ form an ortho-normal set in $L^{2}(S ; \mu)$. Consequently, by Bessel's inequality,

$$
\begin{align*}
& \int_{S}\left|\int_{S} \rho_{n}\left(s, s^{\prime}\right) y(s) \mu(d s)\right|^{2} \mu\left(d s^{\prime}\right) \tag{3.7}\\
& \quad=\frac{1}{2^{n}} \sum_{j=1}^{2^{n}}\left|\int_{S} \rho_{j}^{(n)}(s) y(s) \mu(d s)\right|^{2} \\
& \quad \leq \frac{1}{2^{n}}\|y\|_{2}^{2}
\end{align*}
$$

for any $y(s) \in L^{2}(S ; \mu)$. From this it follows that
(3.8) $\left|\int_{S} \int_{S} \rho_{n}\left(s, s^{\prime}\right) y(s) z\left(s^{\prime}\right) \mu(d s) \mu\left(d s^{\prime}\right)\right|^{2}$

$$
\begin{aligned}
& \leqq\left\{\int_{S}\left|\int_{S} \rho_{n}\left(s, s^{\prime}\right) y(s) \mu(d s)\right| \cdot\left|z\left(s^{\prime}\right)\right| \mu\left(d s^{\prime}\right)\right\}^{2} \\
& \leqq \int_{S}\left|\int_{S} \rho_{n}\left(s, s^{\prime}\right) y(s) \mu(d s)\right|^{2} \mu\left(d s^{\prime}\right) \cdot \int_{S}\left|z\left(s^{\prime}\right)\right|^{2} \mu\left(d s^{\prime}\right)
\end{aligned}
$$

$$
\leqq \frac{1}{2^{n}} \cdot\|y\|_{2}^{2} \cdot\|z\|_{2}^{2}
$$

$$
\leqq \frac{1}{2^{n}}\|y\|_{\infty}^{2} \cdot\|z\|_{\infty}^{2}
$$

for any $y(s), z(s) \in C(S)$. From (3.8) it follows further that
(3.9) $\left|\int_{S} \int_{S} \rho_{n}\left(s, s^{\prime}\right) x\left(s, s^{\prime}\right) \mu(d s) \mu\left(d s^{\prime}\right)\right| \leqq \sqrt{\frac{1}{2^{n}}} \cdot\| \| x \| \mid$
for any $x\left(s, s^{\prime}\right) \in C(S) \otimes C\left(S^{\prime}\right)$. Since

$$
\rho_{n}\left(s, s^{\prime}\right) \in C(S) \otimes C\left(S^{\prime}\right) \text { and }\left(\rho_{n}\left(s, s^{\prime}\right)\right)^{2}=1
$$

on $S \times S^{\prime}$, we obtain, by setting $x\left(s, s^{\prime}\right)=\rho_{n}\left(s, s^{\prime}\right)$ in (3.9), that

$$
\begin{equation*}
\left\|\rho_{n}\right\| \geq \sqrt{2^{n}} \quad(n=1,2, \cdots) \tag{3.10}
\end{equation*}
$$

and hence $\lim _{n \rightarrow \infty}\| \| \rho_{n} \|=\infty$.
4. Remarks. Let us consider the bounded linear operators T, T^{\prime} defined on $C(S) \circledast C\left(S^{\prime}\right)$ by

$$
\begin{align*}
T x\left(s, s^{\prime}\right) & =f(s) x\left(s, s^{\prime}\right) \tag{4.1}\\
T^{\prime} x\left(s, s^{\prime}\right) & =f\left(s^{\prime}\right) x\left(s, s^{\prime}\right) \tag{4.2}
\end{align*}
$$

where $f(s)$ is a continuous function defined on S by

$$
\begin{equation*}
f(s)=3\left\{\frac{\epsilon_{1}(s)}{4}+\frac{\epsilon_{2}(s)}{4^{2}}+\cdots+\frac{\epsilon_{n}(s)}{4^{n}}+\cdots\right\} \tag{4.3}
\end{equation*}
$$

It is easy to see that T, T^{\prime} are spectral operators of scalar type and are given by

$$
\begin{align*}
T & =\int_{S} f(s) E(d s) \tag{4.4}\\
T^{\prime} & =\int_{S} f\left(s^{\prime}\right) E^{\prime}\left(d s^{\prime}\right)
\end{align*}
$$

where $\{E(\sigma) \mid \sigma \in B\}$ and $\left\{E^{\prime}(\sigma) \mid \sigma \in \mathcal{B}\right\}$ are a commutative pair of uniformly bounded spectral measures defined in $\S 3$.

It is possible to show that $T+T^{\prime}$ is not a spectral operator of scalar type. In order to show this we first observe that the range $S^{* *}$ of $f(s)+f\left(s^{\prime}\right)$ on $S^{*}=S \times S^{\prime}$ is a totally disconnected set. Let B_{0}^{*} be the Boolean algebra of all open-closed subsets σ^{*} of S^{*} os the form:

$$
\sigma^{*}=\left\{s^{*}=\left(s_{s} s^{\prime}\right) \mid f(s)+f\left(s^{\prime}\right) \in \sigma^{* *}\right\}
$$

where $\sigma^{* *}$ is an open-closed subset of $S^{* *}$. It suffices to show that the family of projections $\left\{F\left(\sigma^{*}\right) \mid \sigma^{*} \in B_{0}^{*}\right\}$ is not uniformly bounded.

For each n, let $\left\{\eta_{i}^{(n)} \mid i=1,2, \cdots\right\}$ be a sequence of period 2^{n}; thus

$$
\eta_{i+2^{n}}^{(n)}=\eta_{i}^{(n)} \quad(i=1,2, \cdots)
$$

Further, let the sequence consist only of +1 and -1 such that $\left(\eta_{i}^{(n)}, \ldots\right.$, $\eta_{i+n-1}^{(n)}$) runs through all 2^{n} different sequences of length n consisting of +1 and -1 as i runs through $1, \cdots, 2^{n}$. The existence of such a sequence was proved by N. G. de Bruijn [1]. Let us put

$$
\begin{equation*}
\pi_{n}\left(s^{*}\right)=\pi_{n}\left(s, s^{\prime}\right)=\eta_{i+j-1}^{(n)} \tag{4.6}
\end{equation*}
$$

if $s \in \sigma_{i}^{(n)}, s^{\prime} \in \sigma_{j}^{(n)} \quad\left(i, j=1, \cdots, 2^{n}\right)$. Then $\left\{\pi_{n}\left(s^{*}\right) \mid n=1,2, \cdots\right\}$ is a sequence of functions from $C(S) \otimes C\left(S^{\prime}\right)$ taking only the values +1 and -1 such that the set

$$
\sigma_{n}^{*}=\left\{s^{*} \mid \pi_{n}\left(s^{*}\right)=+1\right\} \in \mathbb{B}_{0}^{*} \quad \text { for } n=1,2, \cdots
$$

Thus, by the same reason as in $\S 3$, it suffices to show that

$$
\lim _{n \rightarrow \infty}\left\|\pi_{n}\right\|=\infty
$$

I.et us put

$$
\pi_{j}^{(n)}(s)=\pi_{n}\left(s, s^{\prime}\right)
$$

if $s^{\prime} \in \sigma_{j}^{(n)}$. Then $\left\{\pi_{j}^{(n)}(s) \mid j=1, \cdots, 2^{n}\right\}$ is a set of functions from $L^{2}(S ; \mu)$ such that

$$
\left\{\pi_{i}^{(n)}(s), \cdots, \pi_{i+n-1}^{(n)}(s)\right\}
$$

is an orthonormal system for $i=1, \cdots, 2^{n}-n+1$. This follows from the fact that

$$
j+1 \leqq k \leqq j+n-1
$$

implies

$$
\begin{align*}
& \int_{S} \pi_{j}^{(n)}(s) \pi_{k}^{(n)}(s) \mu(d s) \tag{4.7}\\
& \quad=\frac{1}{2^{n}} \sum_{i=1}^{2^{n}} \eta_{i+j-1}^{(n)} \cdot \eta_{i+k-1}^{(n)}=0 .
\end{align*}
$$

(The last equality holds because

$$
\eta_{i+j-1}^{(n)} \cdot \eta_{i+k-1}^{(n)}=+1
$$

happens 2^{n-1} times and

$$
\eta_{i+j-1}^{(n)} \cdot \eta_{i+k-1}^{(n)}=-1
$$

happens 2^{n-1} times as i runs through $1, \cdots, 2^{n}$.)
Thus, for any $y \in L^{2}(S ; \mu)$, Bessel's inequality

$$
\begin{equation*}
\sum_{j=i}^{i+n-1}\left|\int_{S} \pi_{j}^{(n)}(s) y(s) \mu(d s)\right|^{2} \leqq\|y\|_{2}^{2} \tag{4.8}
\end{equation*}
$$

holds for $i=1, \cdots, 2^{n}-n+1$, and hence

$$
\begin{align*}
& \int_{S}\left|\int_{S} \pi_{n}\left(s, s^{\prime}\right) y(s) \mu(d s)\right|^{2} \mu\left(d s^{\prime}\right) \tag{4.9}\\
&=\frac{1}{2^{n}} \sum_{j=1}^{2^{n}}\left|\int_{S} \pi_{j}^{(n)}(s) y(s) \mu(d s)\right|^{2} \\
& \leqq \frac{1}{2^{n}}\left(\left[\frac{2^{n}}{n}\right]+1\right)\|y\|_{2}^{2} \\
& \leqq\left(\frac{1}{n}+\frac{1}{2^{n}}\right)\|y\|_{2}^{2} \leqq \frac{2}{n}\|y\|_{2}^{2}
\end{align*}
$$

From this follows, exactly as in $\S 3$, that
(4.10) $\quad\left|\int_{S} \int_{S} \pi_{n}\left(s, s^{\prime}\right) x\left(s, s^{\prime}\right) \mu(d s) \mu\left(d s^{\prime}\right)\right| \leqq \sqrt{\frac{2}{n}}\||x|\|$
for any $x\left(s, s^{\prime}\right) \in C(S) \otimes C\left(S^{\prime}\right)$, and hence

$$
\begin{equation*}
\left|\left|\left|\pi_{n}\right| \| \geq \sqrt{\frac{n}{2}}\right.\right. \tag{4.11}
\end{equation*}
$$

for $n=1,2, \cdots$.

References

1. N. G. de Bruijn, A combinatorial problem, Nederl. Akad. Wetensch., Proc. 49, (1946), 758-764, Indagationes Math. 8 (1946), 461-467.
2. N. Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321-354.
3. R. Schatten and R. Schatten-J. von Neumann, The cross space of linear transformations I, II, III, Annals of Math. 47 (1946), 73-84, 608-630; 49 (1948), 557-582.
4. R. Schatten, A Theory of cross spaces, Annals of Math. Studies, No. 26, Princeton, 1950.
5. J. Wermer, Commuting spectral measures in a Hilbert space, Pacific J. Math. 4 (1954), 355-361.

Yale University

