ORTHONORMAL CYCLIC GROUPS

Paul Civin

In an earlier paper [1] a characterization was given of the Walsh functions in terms of their group structure and orthogonality. The object of the present note is to present a similar result concerning the complex exponentials.

Theorem. Let $\left\{A_{n}(x)\right\}(n=0, \pm 1, \cdots ; 0 \leq x \leq 1)$ be a set of complexvalued measurable functions which is a multiplicative cyclic group. A necessary and sufficient condition that $\left\{A_{n}(x)\right\}$ be an orthonormal system over $0 \leq x \leq 1$ is that the generator of the group admit a representation $\exp (2 \pi i c(x))$ almost everywhere, with $c(x)$ equimeasurable with x.

As the sufficiency is immediate, we present only the proof of the necessity. Let the notation be chosen so that the generator of the group is $A_{1}(x)$, and

$$
A_{n}(x)=\left(A_{1}(x)\right)^{n} \quad(n=0, \pm 1, \ldots)
$$

The normality implies $\left|A_{1}(x)\right|=1$ almost everywhere. Hence there is a measurable $a(x), 0 \leq a(x)<1$, such that

$$
A_{1}(x)=\exp (2 \pi i a(x))
$$

almost everywhere. Let $b(x)$ be a function [2, p. 207] monotonically increasing and equimeasurable with $a(x)$. Also let

$$
c(x)=m\{u: 0 \leq u \leq 1, b(u) \leq x\} \quad(-\infty<x<\infty) .
$$

The orthonormal condition becomes

$$
\delta_{0, n}=\int_{0}^{1} \exp (2 \pi n i b(x)) d x=\int_{-\infty}^{\infty} \exp (2 \pi n i y) d c(y),
$$

where the latter integral is a Lebesgue-Stieltjes integral. Thus for any $\epsilon>0$,

$$
\begin{aligned}
& \delta_{0, n}=\int_{b(0)-\epsilon}^{b(1)} \exp (2 \pi n i y) d c(v) \\
&=\int_{b(0)}^{b(1)} \exp (2 \pi n i y) d c(y)+\exp (2 \pi n i b(0)) m\{x: b(x)=b(0)\},
\end{aligned}
$$

and the latter integral is interpretable as a Riemann-Stieltjes integral.
Integration by parts yields

$$
\begin{equation*}
\delta_{0, n}=\exp (2 \pi n i b(1))-2 \pi n i \int_{b(0)}^{b(1)} c(y) \exp (2 \pi n i y) d y . \tag{1}
\end{equation*}
$$

If $f(y)=y, 0<y \leq 1$, and $f(y+1)=f(y)$, a direct calculation shows that

$$
\begin{equation*}
\delta_{0, n}=\exp (2 \pi n i b(1))-2 \pi n i \int_{0}^{1} f(y-b(1)) \exp (2 \pi n i y) d y \tag{2}
\end{equation*}
$$

Formulas (1) and (2), and the completeness of the complex exponentials, imply the existence of a constant k such that for almost all $y, 0<y \leq 1$,

$$
f(y-b(1))+k= \begin{cases}0, & 0<y \leq b(0) \\ c(y), & b(0)<y \leq b(1) \\ 0, & b(1)<y \leq 1\end{cases}
$$

Since the supremum of $c(y)$ is one, and $f(y)$ has no interval of constancy, one infers that $k=0, b(0)=0$, and $b(1)=1$. Thus $c(y)=y, 0<y \leq 1$, which is equivalent to the proposition that was asserted.

References

1. P. Civin, Multiplicative closure and the Walsh functions, Pacific J. Math. 2 (1952), 291-296.
2. N. J. Fine, On groups of orthonormal functions, Pacific J. Math. (to appear).
3. On groups of orthonormal functions, II, Pacific J. Math. (to appear).
4. D. Jackson, Proof of a theorem of Haskins, Transa. Amer. Math. Soc. 17 (1916), 178-180.
5. A. Zygmund, Trigonometrical series, Warsaw-Lvov, 1935.
