POWER-TYPE ENDOMORPHISMS OF SOME CLASS 2 GROUPS

FRANKLIN HAIMO

- 1. Introduction. Abelian groups possess endomorphisms of the form $x \longrightarrow x^n$ for each integer n. In general, however, non-abelian groups do not possess such power endomorphisms. In an earlier note, it was possible to show [1] for a nilpotent group G with a uniform bound on the size of the classes of conjugates that there exists an integer $n \geq 2$ for which the mapping $x \longrightarrow x^n$ is an endomorphism of G into its center. We shall consider endomorphisms of some groups of class 2 which induce power endomorphisms on the factor-commutator groups. In particular, we shall show, under suitable uniform torsion conditions for the group of inner automorphisms, that such power-type endomorphisms form a ringlike structure. Let G be a group of class 2 for which Q, the commutator subgroup, has an exponent [2]. Then the relation [2] (xy, u) = (x, u)(y, u) shows that $x \longrightarrow (x, u)$ is an endomorphism of G into Q for fixed $u \in G$. Let n be any integer such that n(n-1)/2 is a multiple of the exponent of Q. Then the mapping $x \longrightarrow x^n(x, u)$ is a trivial example of a power-type endomorphism. If G/Qhas an exponent m, we shall show that the number of distinct endomorphisms of the form $x \longrightarrow x^{j}$, where x^{j} is in the center Z of G, divides m. In particular, a non-abelian group G of class 2 has 1 or p distinct central power endomorphisms if G/Q is an elementary p-group (an abelian group with a prime p as its exponent [2]).
- 2. Power-type endomorphisms. Let G be a group with center Z and commutator subgroup Q. We assume that $Q \in Z$ so that [2] G is a group of class 2. Further, suppose that there exists a least positive integer N for which $x \in G$ implies $x^N \in Z$. This means that G/Z, a group isomorphic to the group of inner automorphisms of G, is a torsion abelian group with exponent N. An endomorphism G of G will be called a power-type endomorphism if there exists an integer G induces the power endomorphism

$$\alpha^*(xQ) = x^nQ$$

Received August 20, 1953. This research was supported in part by the USAF under contract No. AF18(600)-568 monitored by the Office of Scientific Research, Air Research and Development Command.

Pacific J. Math. 5 (1955), 201-213

on G/Q; and conversely, any extension of a power endomorphism of G/Q to an endomorphism of G must be a power-type endomorphism of G. For α , above, there exist elements

$$q(x) = q(x; \alpha) \in Q$$

such that $\alpha(x) = x^n q(x)$. It is easy to show that if m and n are two possible values for $n(\alpha)$ then $m \equiv n \mod N$. We note that if N is taken to be the exponent for G/Q rather than for G/Z, then $n(\alpha)$ can be chosen least nonnegative, in fact, so that $0 \leq n(\alpha) < N$. We let [C] denote the class of all power-type endomorphisms of a fixed group G of class 2. Let $\iota(x) = x$ for every $x \in G$ be the identity map on G. We have $\iota \in [C]$ with $n(\iota) = 1$. If e is the identity element of G, let $\nu(x) = e$ for every $x \in G$ be the trivial map of G. We have $\nu \in [C]$; in fact, any endomorphism of G which carries G into G lies in G. Let the set of all such endomorphisms into the commutator subgroup be denoted by G. We have $\nu \in [C]$, If $\alpha \in [C]$ then $\sigma(\alpha) = 0$, and conversely (for $\alpha \in [C]$).

Suppose that α and β are in β . Then

$$\alpha \beta(x) = \alpha [x^{n(\beta)} q(x; \beta)] = [\alpha(x)]^{n(\beta)} \alpha [q(x; \beta)]$$
$$= [x^{n(\alpha)} q(x; \alpha)]^{n(\beta)} \alpha [q(x; \beta)].$$

Since $Q \in Z$, we have

$$\alpha\beta(x) = x^{n(\alpha)n(\beta)}[q(x;\alpha)]^{n(\beta)}\alpha[q(x;\beta)].$$

This shows that $\alpha \beta \in \mathcal{P}$ so that \mathcal{P} is closed under endomorphism composition. In fact,

$$n(\alpha\beta) \equiv n(\alpha)n(\beta) \mod N$$
.

This multiplication is associative. Suppose that $\alpha \in \mathcal{P}$ and that $\gamma \in \mathcal{H}$. Then it is easy to see that $\alpha \gamma$ and $\gamma \alpha \in \mathcal{H}$, since Q is admissible under every endomorphism of G.

Let \mathbb{R} be the set of all elements of \mathbb{R} with the property that $\alpha \in \mathbb{R}$ if and only if $N \mid n(\alpha)$. For endomorphisms α and β of G, we define a mapping $\alpha + \beta$, (not necessarily an endomorphism), by

$$(\alpha + \beta)(x) = \alpha(x)\beta(x)$$

for every $x \in G$. Then we have the following.

THEOREM 1. If $\alpha \in \mathcal{P}$, then $\alpha + \beta \in \mathcal{P}$ for every $\beta \in \mathcal{P}$ if and only if $\alpha \in \mathcal{R}$. If $\alpha + \beta \in \mathcal{P}$, then

$$n(\alpha) + n(\beta) \equiv n(\alpha + \beta) \mod N$$
,

and

$$q(x; \alpha + \beta) = q(x; \alpha)q(x; \beta).$$

Proof. Suppose that $\alpha + \beta \in \mathcal{P}$ for every $\beta \in \mathcal{P}$. Choosing $\beta = \iota$, we have

$$(\alpha + \iota)(xy) = [(\alpha + \iota)(x)][(\alpha + \iota)(y)] = \alpha(x)x\alpha(y)y.$$

On the other hand,

$$(\alpha + \iota)(xy) = \alpha(xy)xy = \alpha(x)\alpha(y)xy,$$

so that $\alpha(y)x = x\alpha(y)$ for every $x, y \in G$. This places $\alpha(y) \in Z$; but

$$\alpha(\gamma) = \gamma^{n(\alpha)} q(\gamma; \alpha)$$

where $q(y; \alpha) \in Q \subset Z$. Thus, $y^{n(\alpha)} \in Z$, for every $y \in G$, and $N \mid n(\alpha)$, placing $\alpha \in \mathbb{R}$. Remaining details are immediate.

For elements of β , addition is commutative whenever one of the sums involved is in β , and if all the sums involved are in β , then addition is associative. A like statement can be made for the distributive law of multiplication over addition. β is a ring with the two-sided ideal property in β in that if $\alpha \in \beta$, $\beta \in \beta$, then $\alpha\beta$ and $\beta\alpha \in \beta$. β likewise can be shown to be a ring which has the two-sided ideal property in β , therefore in β .

THEOREM 2. Let G be a non-abelian group of class 2 for which the group of inner automorphisms I has the exponent N. If G/Q is aperiodic, then N is a prime ideal in R.

Proof. Suppose that α , $\beta \in \mathbb{R}$ and that $\alpha\beta \in \mathbb{N}$. If G = Q, then $Q \subseteq Z$ implies that G is abelian. Hence we can find $x \in G$, $x \notin Q$ so that

$$\alpha\beta(x) = x^{n(\alpha)n(\beta)}q,$$

where both q and $\alpha\beta(x) \in Q$. Since G/Q is aperiodic, $n(\alpha)n(\beta) = 0$. We have really proved the prime ideal property of \mathbb{N} in \mathbb{P} . The exponent on J, (isomorphic

to G/Z) is required only to guarantee the existence of \Re . A related result is the following.

THE OREM 3. Let G be a non-abelian group of class 2 for which G/Q is a p-group with exponent p^j . Then N is a primary ideal in R. In particular, if G/Q is an elementary p-group [2], then N is a prime ideal in R.

Proof. The proof begins as for Theorem 2. Since G/Q has exponent p^j , the latter is a divisor of $n(\alpha)n(\beta)$. If $\alpha \notin \mathbb{N}$, at least the first power of p would have to divide $n(\beta)$. For, G/Z has an exponent p^k where $1 \le k \le j$. Since $n(\beta^j) = [n(\beta)]^j$ we have $p^j \mid n(\beta^j)$ whence $\beta^j \in \mathbb{N}$. The ring \mathbb{R} exists since G/Z has an exponent. If G/Q is elementary, then j = k = 1 so that \mathbb{N} is a prime ideal.

3. Additive inverses. An element α of β is said to have an additive inverse $\alpha' \in \beta$ if $\alpha + \alpha' = \nu$. If such an additive inverse exists, it is unique, and

$$\alpha'(x) = x^{-n(\alpha)}q(x; \alpha)^{-1}.$$

A mapping with the structure of α' always exists, but it need not be, in general, an endomorphism, *ergo* not an additive inverse. If α' is an additive inverse of α , then α is the additive inverse of α' . We first prove the following.

Lemma 1. α has an additive inverse if and only if the $n(\alpha)$ -powers of G form a commutative set.

Proof. Whether the mapping α' is an endomorphism or not, we have

$$\alpha'(x) = [\alpha(x)]^{-1},$$

so that

$$\alpha'(xy) = \alpha'(y)\alpha'(x)$$

for every $x, y \in G$. Since $Q \subset Z$, the conclusion follows at once.

Let $\mathcal K$ be the set of all $\alpha \in \mathcal P$ with the property that $\ker \alpha \supset Q$.

LEMMA 2.

- (a) K has the ideal property in P.
- (b) X⊃R(⊃h).
- (c) $\alpha \in \mathcal{P}$ has an additive inverse if and only if $\alpha \in \mathcal{H}$.

(d) $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{K}$ implies that $\alpha + \beta \in \mathbb{K}$.

Proof. (a) and (d) are trivial. For $\alpha \in \mathbb{P}$, we have

$$\alpha(x^{-1}y^{-1}xy) = x^{-n}y^{-n}x^ny^n$$

where $n = n(\alpha)$. If, further, $\alpha \in \mathbb{R}$, then $x^n \in Z$ so that $\alpha(x, y) = e$, and (b) is established, since $(x, y) = x^{-1}y^{-1}xy$ is typical of the generators of Q. We have $\alpha \in \mathbb{R}$ if and only if $\alpha(x, y) = e$, that is, if and only if $x^n y^n = y^n x^n$. Lemma 1 now enables us to prove (c).

For fixed $\gamma \in \mathcal{K}$, we have $\gamma \alpha \in \mathcal{K}$ for every $\alpha \in \mathcal{P}$. Write $-\gamma \alpha$ for the additive inverse of $\gamma \alpha$; then $-\gamma \alpha \in \mathcal{K}$. Let j_i be 0 or 1, and suppose that $\alpha_i \in \mathcal{P}$, $i = 1, 2, \dots, m$. A mapping

$$\sum_{i=1}^{m} (-1)^{ji} \gamma \alpha_{i} = \sigma$$

is defined on G into G by

$$\sigma(x) = \prod_{i=1}^{m} x^{n(\gamma)(-1)^{j} i_{n}(\alpha_{i})} [q(x; \gamma)]^{(-1)^{j} i_{n}(\alpha_{i})}.$$

Call such a map a $\gamma - \Sigma$ map. It is clear that the sum of two $\gamma - \Sigma$ maps is a $\gamma - \Sigma$ map in the obvious way. The set of $\gamma - \Sigma$ maps is denoted by (γ) and will be called the *right principal ideal* generated by γ in $[\circ]$.

THEOREM 4. If $y \in \mathbb{K}$ then (y) is a ring, and $(y) \subset \mathbb{K}$.

Proof. As we saw above, (γ) is closed under addition. $\gamma \dot{\nu} = \nu$ so that (γ) has the zero element ν . If σ is defined as above, then

$$\sum_{i=1}^{m} (-1)^{j_i+1} \gamma \alpha_i = -\sigma \in (\gamma).$$

By its effect on $x \in G$ we see that $\sigma \in \mathcal{P}$. Since $-\sigma$ exists, $(\gamma) \in \mathcal{K}$ by Lemma 2(c). Now $(\gamma\alpha)(\gamma\beta) = \gamma(\alpha\gamma\beta)$, so that (γ) is closed under multiplication, once we recall that the distributive law is valid whenever the sums involved are in \mathcal{P} . A similar statement can be made for the associative laws, and we have proved that (γ) is a ring included in \mathcal{K} .

THEOREM 5. Let G be a non-abelian group of class 2, and let y be in K. If the ring (y) has a right multiplicative identity or a left multiplicative identity, then it has a (unique) two-sided multiplicative identity.

Proof. (γ) has a left (right) identity $\sigma \in (\gamma)$ if and only if $\sigma \in (\gamma)$ is a left (right) identity for the set of elements of (γ) of the form $\gamma\beta$. More, specifically, σ is a left identity if and only if $\sigma \gamma = \gamma$. A routine investigation shows that

$$\sigma \gamma(x) = x^{[n(\gamma)]^2} \sum_{i=1}^{m} (-1)^{j_i} n(\alpha_i) q^{n(\gamma)} \sum_{i=1}^{m} (-1)^{j_i} n(\alpha_i)$$

where q = q(x; y). Let

$$u = n(\gamma) \sum_{i=1}^{m} (-1)^{j} i_{n}(\alpha_{i}) - 1.$$

Then $\sigma y = y$ if and only if

$$x^{n(\gamma)u}q^u=e$$

for every $x \in G$. Hence (1) $\gamma(x^u) = e$ for every $x \in G$, (2) $G/\ker \gamma$ has an exponent dividing u and (3) $\gamma(G)$ has an exponent dividing u are conditions each equivalent to (4) σ is a left identity of (γ). If (5) σ is a right identity of (γ), (6) $\gamma \sigma = \gamma$. But one can readily verify that (6) and (1) are equivalent, so that if σ is a right identity, it is also a left identity, whence (γ) would then have a unique two-sided identity.

If σ is a left identity, then $\sigma \gamma = \gamma$ and

$$\gamma \beta \sigma(x) = [\gamma(x)]^{n(\beta)} = \gamma \beta(x)$$

for every $x \in G$. Thus σ is also a right identity, and we have proved that every left identity is a right identity.

COROLLARY. Let G be a non-abelian group of class 2 for which G/Q is an elementary p-group for an odd prime p. Let $\gamma \in \mathbb{X}$ have the properties (a) that $p \nmid n(\gamma) = n$ and (b) that there exists an integer m such that (b_1) mn = 1 mod p and (b_2) m - 1 and n - 1 are relatively prime. Then (γ) has an identity.

Proof. (m-1, n-1) = 1 implies that ((m-1)n, n-1) = 1 and that (mn-1, n-1) = 1 since mn-1 = (m-1)n + (n-1). Hence we can find an

integer r such that

(7)
$$n(n-1)r \equiv m(m-1) \mod (mn-1)$$
.

Form the mapping

$$\tau(x) = x^m [q(x; y)]^r.$$

Since G is a group of class 2, we have [2] the identity

$$(xy)^t = x^t y^t z^{v(t)},$$

where

$$z = (\gamma, x) = \gamma^{-1} x^{-1} \gamma x$$
 and $v(t) = t(t-1)/2$.

Since γ is an endomorphism, we have

$$q(x\gamma; \gamma)z^{v(n)} = q(x; \gamma)q(\gamma; \gamma).$$

Hence

$$\tau(xy) = x^m y^m z^{v(m)} [q(x;y)]^r [q(y;y)]^r z^{-rv(n)}.$$

Let us write the exponent of z as h/2 where h = m(m-1) - rn(n-1). By the choice of r we have $h \equiv 0 \mod (mn-1)$. But $mn-1 \equiv 0 \mod p$, so that $h \equiv 0 \mod p$. Since p is odd we obtain $h/2 \equiv 0 \mod p$.

Since G/Q has the exponent p, $Q \subset Z$ implies that G/Z has an exponent t where $t \mid p$. Since G is non-abelian we have t = p. In [1], we proved that if G/Z has the exponent p then the mutual commutator group (G, Z_2) has an exponent t' which divides p. Here Z_2 is the second member of the ascending central series of G. Since G is of class 2 we have $Z_2 = G$, and $(G, Z_2) = Q$. If t' = 1, then G is abelian, a contradiction with hypothesis. Hence t' = p and $z^{h/2} = e$, since $z \in Q$ and $p \mid (h/2)$. As a result, $\tau(xy)$ reduces to $\tau(x)$ $\tau(y)$, so that τ is a power-type endomorphism with $n(\tau) = m$ and

$$q(x; \tau) = [q(x; \gamma)]^r.$$

Then

$$u = n(\gamma) n(\tau) - 1 = mn - 1$$
.

Since p is the exponent of G/Q we have $x^u \in Q$ for every $x \in G$. But $y \in \mathcal{X}$ so that $y(x^u) = e$. Using the theorem and (1) and (4) above, we see that $y\tau$ is the required identity of (y).

4. Some mappings into Q. Let \mathcal{E} be the set of all $\alpha \in \mathcal{P}$ which are extensions both of the identity map on Q and of the identity map on G/Q. That is, $\alpha \in \mathcal{E}$ if and only if $\alpha(x) = xq(x;\alpha)$ for every $x \in G$ and $\alpha(q) = q$ for every $q \in Q$. It can readily be verified that the elements of \mathcal{E} are automorphisms of G and that, under automorphism composition, they form an abelian group with unity ι . For $\alpha, \beta \in \mathcal{E}$ and $x, y \in G$, it follows at once that

$$q(xy; \alpha) = q(x; \alpha)q(y; \alpha)$$

and that

$$q(x; \alpha \beta) = q(x; \alpha) q(x; \beta).$$

Let θ_x be a mapping defined on \mathcal{E} into Q such that $\theta_x(\alpha) = q(x; \alpha)$ for every $\alpha \in \mathcal{E}$. It is immediate that the θ_x are homomorphisms. We can define an addition in the set \mathcal{D} of mappings θ_x by

$$(\theta_x + \theta_y)(\alpha) = \theta_x(\alpha)\theta_y(\alpha)$$

for every $\alpha \in \mathcal{E}$. Likewise define mappings ϕ_{α} on G into Q by $\phi_{\alpha}(x) = q(x; \alpha)$. Here, too, in the set δ of mappings ϕ_{α} , mappings which are also homomorphisms, an addition is given by

$$(\phi_{\alpha} + \phi_{\beta})(x) = \phi_{\alpha}(x)\phi_{\beta}(x)$$

for every $x \in G$. Let F be the set of elements of G which are the fixed points held in common by the elements of E. Then we obtain the following.

THEOREM 6.

- (a) $\Im \cong G/F$.
- (b) &= % and $\%\cong \mathcal{E}$.
- (c) \mathbb{N} and \mathbb{S} are dual additive abelian groups in the sense that each can be represented faithfully as a set of homomorphisms on the other into Q.

Proof. It is easy to verify that $\theta_x + \theta_y = \theta_{xy}$, and it follows that \Im is an additive abelian group with unity θ_e . Let F_α be the subgroup of all $x \in G$ with $\alpha(x) = x$. For $\alpha \in \mathcal{E}$, each F_α , and hence $F = \bigcap F_\alpha$, is a normal subgroup of G.

 $\alpha \in \text{kern } \theta_x \text{ if and only if } x \in F_\alpha.$ $\theta_x = \theta_y \text{ if and only if } x \equiv y \mod F.$ The mapping θ on G into G given by $\theta(x) = \theta_x$ is a homomorphism onto G with kernel F. We have established (a).

 ϕ_{α} is an endomorphism of G into Q with kern $\phi_{\alpha} = F_{\alpha}$. For $\gamma \in \mathbb{N}$, let Γ be a mapping of G into G given by $\Gamma(x) = x\gamma(x)$. Since $\mathbb{N} \subset \mathbb{R} \subset \mathbb{M}$, we have $\Gamma(q) = q\gamma(q) = q$ for every $q \in Q$, so that $\Gamma \in \mathbb{E}$. Also, $\phi_{\Gamma} = \gamma$. Hence $\mathbb{N} \subset \mathbb{M}$. Trivially, $\mathbb{M} \subset \mathbb{N}$. The unity of \mathbb{N} as a group is ν which can be represented as ϕ_t . The mapping ϕ given by $\phi(\alpha) = \phi_{\alpha}$ on \mathbb{E} onto $\mathbb{M} = \mathbb{N}$ turns out to be an isomorphism, whence (b).

The mappings c_x on \mathbb{N} into Q given by

$$c_{x}(\gamma) = \theta_{x} \phi^{-1}(\gamma)$$

for every $\gamma \in \mathbb{N}$ are homomorphisms, $\gamma \in \ker c_x$ if and only if $x \in \ker \gamma$. We can introduce an addition into the set \mathbb{C} of mappings c_x by

$$(c_x + c_y)(\gamma) = c_x(\gamma)c_y(\gamma)$$

for every $\gamma \in \mathbb{N}$. There is a homomorphism ψ of G onto \mathbb{C} with kernel equal to

$$U = \bigcap \text{ kern } \gamma$$
.

where the cross-cut is taken over all $\gamma \in \mathbb{N}$; and $\psi(x) = c_x$. A trivial argument shows that U = F. One can verify that the correspondence $\theta_x \leftrightarrow c_x$ is one-to-one and is an isomorphism of \mathbb{S} with \mathbb{C} . Hence \mathbb{S} is represented faithfully as a set of homomorphisms on \mathbb{N} into Q.

Just as there are homomorphisms c_x on $\mathbb N$ into Q, so there are homomorphisms b_α on $\mathbb S$ into Q for each $\alpha \in \mathbb E$, given by $b_\alpha(\theta_x) = \phi_\alpha(x)$. Here, kern b_α consists of all θ_x with $x \in F_\alpha$. The mapping b_α is single-valued; for $\theta_x = \theta_y$ if and only if there exists $r \in F$ with y = xr, and $\phi_\alpha(xr) = \phi_\alpha(x)$. We can introduce an addition into the set $\mathbb B$ of such b_α by

$$(b_{\alpha} + b_{\beta})(\theta_x) = \phi_{\alpha}(x) \phi_{\beta}(x).$$

Now $b_{\alpha} + b_{\beta} = b_{\alpha\beta}$, and, under this addition, β becomes an abelian group with unity b_t . The correspondence $b_{\alpha} \leftrightarrow \phi_{\alpha}$ is one-to-one and is an isomorphism of β with β , so that β is represented faithfully as a set of homomorphisms on β into β , and β is established.

Further, there is an isomorphism ω on \mathcal{E} onto \mathcal{B} given by $\omega(\alpha) = b_{\alpha}$. The mapping

$$\theta_x \omega^{-1} = \delta_x$$

is a homomorphism on β into Q with kernel consisting of all b_{α} with $x \in F_{\alpha}$. For every $\alpha \in \mathcal{E}$, let ζ_{α} be a mapping defined on C into Q by

$$\zeta_{\alpha}(c_x) = \phi_{\alpha}(x).$$

It is clear that ζ_{α} is a homomorphism with kernel consisting of all c_x where $x \in \ker \phi_{\alpha}$. We summarize these results as follows.

COROLLARY.

$$\theta_{x} = \delta_{x} \, \omega = c_{x} \, \phi$$

on ε into Q, and dually,

$$\phi_a = \zeta_a \psi = b_a \theta$$

on G into Q.

5. Some enumerations of mappings.

Theorem 7. The elements of $^{\circ}$ are in one-to-one correspondence with the ordered pairs (n, λ) , where n is an integer, λ is a mapping of G into Q and n and λ satisfy

(A)
$$\lambda(x)\lambda(y) = \lambda(xy)z^{v(n)}$$

for every $x, y \in G$, where z = (y, x) and v(n) = n(n-1)/2.

Proof. If $\alpha \in \mathbb{P}$, then $q(x; \alpha) = \lambda(x)$ and $n(\alpha) = n$. Conversely, if λ and n are given, and if (A) holds, define α on G into G by $\alpha(x) = x^n \lambda(x)$ for every $x \in G$. Condition (A) and the fact that

$$(xy)^n = x^n y^n z^{v(n)}$$

show that α is an endomorphism and is therefore in β .

COROLLARY. If Q has the exponent m, and if n is an integer for which $m \mid v(n)$, then $x \longrightarrow x^n$ is a power endomorphism of G.

Proof. If we let $\lambda(x) = e$ for every $x \in G$ then the pair (n, λ) satisfies (A) since, here, $z^{v(n)} = e$.

THEOREM 8. For $\alpha, \beta \in \mathcal{P}$, a necessary and sufficient condition that $n(\alpha) = n(\beta)$ is that there exists a $\gamma = \gamma_{\alpha,\beta} \in \mathcal{N}$ such that $\alpha = \beta + \gamma$.

Proof. Suppose that $n(\alpha) = n(\beta)$. Define a mapping γ by

$$y(x) = q(x; \alpha)[q(x; \beta)]^{-1}$$
.

We have

$$(\beta + \gamma)(x) = \beta(x)\gamma(x) = x^{n(\beta)}q(x;\beta)q(x;\alpha)[q(x;\beta)]^{-1}$$
$$= x^{n(\alpha)}q(x;\alpha) = \alpha(x),$$

so that $\beta + \gamma = \alpha$. Now

$$\gamma(xy) = q(xy; \alpha)[q(xy; \beta)]^{-1};$$

hence if we apply (A) to each of the q's and simplify, it turns out that $\gamma(xy) = \gamma(x)\gamma(y)$, so that γ is an endomorphism lying in \mathbb{N} .

COROLLARY. Let M be the cardinal of \mathbb{N} . Then \mathbb{P} decomposes into partition classes, each of cardinal M, in such a way that α and β are in the same partition class if and only if $n(\alpha) = n(\beta)$.

Examples of such partition classes are \mathbb{N} (where n=0) and \mathbb{E} (where n=1). Nontrivial \mathbb{E} and $\mathbb{E} \cong \mathbb{N}$ along with an exponent on Q imply, by the Corollary of Theorem 7, the existence of an infinite number of partition classes.

Let I_N denote the group of integers, modulo N.

Theorem 9. Let G be a group of class 2 with exponent N on G/Z. Then there exists a nontrivial mapping τ on $^{[i]}$ into I_N which preserves addition and multiplication (whenever they are defined on $^{[i]}$). $^{[i]}$ $^{[i]}$ $^{[i]}$ $^{[i]}$ $^{[i]}$

Proof. Let j_N denote the residue class, modulo N, to which the integer j belongs. Let $\tau(\alpha) = (n(\alpha))_N$. Then $\tau(\iota) = 1_N$, so that τ is nontrivial. The remaining statements are apparent. Note, however, that if N is the exponent of G/Q, then kern $\tau = \mathbb{N}$.

It should be noted that a well known lemma of Grün leads to nontrivial \mathbb{N} and hence to nontrivial elements of \mathbb{P} . For, by this lemma, the mappings of the type $x \longrightarrow (x, u)$ for each fixed $u \in G$, $u \notin Z$ are in \mathbb{N} for groups of class 2.

Let G/Q have exponent n, so that G/Z has exponent $t \mid n$. By [1, Lemma,

p. 370], the mutual commutator group (G, G) = Q has an exponent $k \mid t$. If t is odd, then $k \mid v(t)$, and $(xy)^t = x^t y^t$, whence $x \longrightarrow x^t$ is a central endomorphism of G. If t is even, then $x \longrightarrow x^{2t}$ is a central endomorphism. Since $x^n \in Q$, and since k is the exponent of Q, we have $x^{kn} = e$ for every $x \in G$. Now t is the exponent of G/Z, so that t must generate the ideal of exponents of central power endomorphisms of G in case t is odd. The central power endomorphisms are then all

$$x_i \longrightarrow x^{jt}$$
 $(j = 0, 1, 2, \cdots (kn/t) - 1).$

If kn is not the exponent of G but only an integral multiple thereof, then the number of distinct central power endomorphisms will be reduced (in proportion) to a submultiple of kn/t.

If t is even, then the generator t' of the ideal of exponents of central power endomorphisms of G must have the property $t \mid t' \mid 2t$. Hence t' = t or t' = 2t. If t' = t then the kn/t mappings $x \longrightarrow x^{jt}$ include all the central power endomorphisms (with possible repetitions). In fact, if k is odd, then $k \mid t/2$, and t' = t. If t = t', then $k \mid v(t)$. It follows readily that $k \equiv 0 \mod 2^r$ implies $t \equiv 0 \mod 2^{r+1}$. Thus $k \equiv 0 \mod 2^r$ and $t \not\equiv 0 \mod 2^{r+1}$ imply t' = 2t. Whenever t' = 2t, there are, at most, kn/2t central power endomorphisms of G. Since, in any event, a submultiple of kn/t or of kn/2t is a submultiple of n, we have proved the following.

THEOREM 10. Let G be a group of class 2 for which G/Q has exponent n. Then the number of central power endomorphisms of G divides n.

The above is a generalization of the following: Let G be an abelian group with exponent n. Then there are precisely n power endomorphisms of G; for, $x^{n+m} = x^m$.

COROLLARY. Let G be a non-abelian group of class 2 for which G/Q is an elementary p-group [2] for an odd prime p. Let G have at least one nontrivial element of order \neq p. Then G has precisely p central power endomorphisms. If p = 2, then G has only the trivial central power endomorphism.

Proof. Since G is non-abelian we have $k \neq 1$, and $k \mid n = p$ implies k = p, so that $k \mid t \mid n$ leads to t = p. Likewise, $kn = p^2$. The exponent of G is not p, since there exists $y \in G$ with $y^p \neq e$. Hence the exponent of G must be p^2 . If p is odd, then there are precisely kn/t = p central power endomorphisms. The set of these endomorphisms is generated by the endomorphism $x \longrightarrow x^p$ under

endomorphism composition. If p=2 then $x \longrightarrow x^2$ is not an endomorphism; for, if it were, $(xy)^2 = x^2y^2$ would imply yx = xy, whence G would be abelian. Since $x^4 = e$, G has only the one trivial central power endomorphism, $x \longrightarrow x^4 = e$.

In a hon-abelian group of class 2, as in the Corollary above, we can find an element of \mathcal{K} for which the corresponding right principal ideal does not have a unity. Let $\eta(x) = x^p$ so that $n(\eta) = p$. Since k = p we have $\eta \in \mathcal{K}$. If (η) had an identity, then there would exist mappings $\alpha_i \in \mathcal{P}$, $i = 1, 2, \dots, m$, with

$$p \sum n(\alpha_i) \equiv 1 \mod p^2$$
,

by the proof of Theorem 5, item (3), and the fact that p^2 is the exponent of $G \supset \eta(G)$. But the congruence $p \xi \equiv 1 \mod p^2$ has no solution ξ .

REFERENCES

- 1. F. Haimo, Groups with a certain condition on conjugates, Canadian J. Math., 4 (1952), 369-372.
 - 2. H. Zassenhaus, Gruppentheorie, Leipzig and Berlin, 1937.

WASHINGTON UNIVERSITY SAINT LOUIS, MISSOURI