POWER-TYPE ENDOMORPHISMS OF SOME CLASS 2 GROUPS

Franklin Haimo

1. Introduction. Abelian groups possess endomorphisms of the form $x \longrightarrow x^{n}$ for each integer n. In general, however, non-abelian groups do not possess such power endomorphisms. In an earlier note, it was possible to show [1] for a nilpotent group G with a uniform bound on the size of the classes of conjugates that there exists an integer $n \geq 2$ for which the mapping $x \longrightarrow x^{n}$ is an endomorphism of G into its center. We shall consider endomorphisms of some groups of class 2 which induce power endomorphisms on the factor-commutator groups. In particular, we shall show, under suitable uniform torsion conditions for the group of inner automorphisms, that such power-type endomorphisms form a ringlike structure. Let G be a group of class 2 for which Q, the commutator subgroup, has an exponent [2]. Then the relation [2] $(x y, u)=(x, u)(y, u)$ shows that $x \longrightarrow(x, u)$ is an endomorphism of G into Q for fixed $u \in G$. Let n be any integer such that $n(n-1) / 2$ is a multiple of the exponent of Q. Then the mapping $x \longrightarrow x^{n}(x, u)$ is a trivial example of a power-type endomorphism. If G / Q has an exponent m, we shall show that the number of distinct endomorphisms of the form $x \longrightarrow x^{j}$, where x^{j} is in the center Z of G, divides m. In particular, a non-abelian group G of class 2 has 1 or p distinct central power endomorphisms if G / Q is an elementary p-group (an abelian group with a prime p as its exponent [2]).
2. Power-type endomorphisms. Let G be a group with center Z and commutator subgroup Q. We assume that $Q \subset Z$ so that [2] G is a group of class 2. Further, suppose that there exists a least positive integer N for which $x \in G$ implies $x^{N} \in Z$. This means that G / Z, a group isomorphic to the group of inner automorphisms of G, is a torsion abelian group with exponent N. An endomorphism α of G will be called a power-type endomorphism if there exists an integer $n=n(\alpha)$ for which $\alpha(x) \equiv x^{n} \bmod Q$ for every $x \in G . \alpha$ induces the power endomorphism

$$
\alpha^{*}(x Q)=x^{n} Q
$$

Received August 20, 1953. This research was supported in part by the USAF under contract No. AF18(600)-568 monitored by the Office of Scientific Research, Air Research and Development Command.

Pacific J. Math. 5 (1955), 201-213
on G / Q; and conversely, any extension of a power endomorphism of G / Q to an endomorphism of G must be a power-type endomorphism of G. For α, above, there exist elements

$$
q(x)=q(x ; \alpha) \in Q
$$

such that $\alpha(x)=x^{n} q(x)$. It is easy to show that if m and n are two possible values for $n(\alpha)$ then $m \equiv n \bmod N$. We note that if N is taken to be the exponent for G / Q rather than for G / Z, then $n(\alpha)$ can be chosen least nonnegative, in fact, so that $0 \leq n(\alpha)<N$. We let ${ }^{\rho}$ denote the class of all power-type endomorphisms of a fixed group G of class 2. Let $\iota(x)=x$ for every $x \in G$ be the identity map on G. We have $\iota \in \ominus^{\rho}$ with $n(\iota)=1$. If e is the identity element of G, let $\nu(x)=e$ for every $x \in G$ be the trivial map of G. We have $\nu \in P^{P}$; in fact, any endomorphism of G which carries G into Q lies in ${ }^{\rho}$. Let the set of all such endomorphisms into the commutator subgroup be denoted by n. We have $\nu \in \cap$. If $\alpha \in \bigcap$ then $n(\alpha)=0$, and conversely (for $\alpha \in P$).

Suppose that α and β are in ${ }^{\rho}$. Then

$$
\begin{aligned}
\alpha \beta(x)=\alpha\left[x^{n(\beta)} q(x ; \beta)\right] & =[\alpha(x)]^{n(\beta)} \alpha[q(x ; \beta)] \\
& =\left[x^{n(\alpha)} q(x ; \alpha)\right]^{n(\beta)} \alpha[q(x ; \beta)] .
\end{aligned}
$$

Since $Q \subset Z$, we have

$$
\alpha \beta(x)=x^{n(\alpha) n(\beta)}[q(x ; \alpha)]^{n(\beta)} \alpha[q(x ; \beta)] .
$$

This shows that $\alpha \beta \in{ }^{\rho}$ so that ${ }^{\rho}$ is closed under endomorphism composition. In fact,

$$
n(\alpha \beta) \equiv n(\alpha) n(\beta) \bmod N
$$

This multiplication is associative. Suppose that $\alpha \in{ }^{D}$ and that $\gamma \in \Lambda$. Then it is easy to see that $\alpha \gamma$ and $\gamma \alpha \in \cap$, since Q is admissible under every endomorphism of G.

Let R be the set of all elements of P with the property that $\alpha \in R$ if and only if $N \mid n(\alpha)$. For endomorphisms α and β of G, we define a mapping $\alpha+\beta$, (not necessarily an endomorphism), by

$$
(\alpha+\beta)(x)=\alpha(x) \beta(x)
$$

for every $x \in G$. Then we have the following.
Theorem l. If $\alpha \in \rho^{P}$, then $\alpha+\beta \in \rho^{P}$ for every $\beta \in P^{P}$ if and only if $\alpha \in R$. If $\alpha+\beta \in{ }^{\rho}$, then

$$
n(\alpha)+n(\beta) \equiv n(\alpha+\beta) \bmod N,
$$

and

$$
q(x ; \alpha+\beta)=q(x ; \alpha) q(x ; \beta)
$$

Proof. Suppose that $\alpha+\beta \in P^{P}$ for every $\beta \in P$. Choosing $\beta=\iota$, we have

$$
(\alpha+\imath)(x y)=[(\alpha+\imath)(x)][(\alpha+\imath)(y)]=\alpha(x) x \alpha(y) y .
$$

On the other hand,

$$
(\alpha+\imath)(x y)=\alpha(x y) x y=\alpha(x) \alpha(y) x y,
$$

so that $\alpha(y) x \neq x \alpha(y)$ for every $x, y \in G$. This places $\alpha(y) \in Z$; but

$$
\alpha(y)=y^{n(\alpha)} q(y ; \alpha)
$$

where $q(y ; \alpha) \in Q \subset Z$. Thus, $y^{n(\alpha)} \in Z$, for every $y \in G$, and $N \mid n(\alpha)$, placing $\alpha \in R$. Remaining details are immediate.

For elements of ρ, addition is commutative whenever one of the sums involved is in ${ }^{\rho}$, and if all the sums involved are in ${ }^{\rho}$, then addition is associative. A like statement can be made for the distributive law of multiplication over addition. R is a ring with the two-sided ideal property in ρ in that if $\alpha \in P, \beta \in R$, then $\alpha \beta$ and $\beta \alpha \in R$. n likewise can be shown to be a ring which has the two-sided ideal property in ρ, therefore in R.

Theorem 2. Let G be a non-abelian group of class 2 for which the group of inner automorphisms J has the exponent N. If G / Q is aperiodic, then η is a prime ideal in R.

Proof. Suppose that $\alpha, \beta \in R$ and that $\alpha \beta \in \eta$. If $G=Q$, then $Q \subset Z$ implies that G is abelian. Hence we can find $x \in G, x \notin Q$ so that

$$
\alpha \beta(x)=x^{n(\alpha)_{n}(\beta)} q
$$

where both q and $\alpha \beta(x) \in Q$. Since G / Q is aperiodic, $n(\alpha) n(\beta)=0$. We have really proved the prime ideal property of η in ρ. The exponent on J, (isomorphic
to $G / Z)$ is required only to guarantee the existence of R. A related result is the following.

The orem 3. Let G be a non-abelian group of class 2 for which G / Q is a p-group with exponent p^{j}. Then \bigcap is a primary ideal in R. In particular, if G / Q is an elementary p-group [2], then \bigcap is a prime ideal in R.

Proof. The proof begins as for Theorem 2. Since G / Q has exponent p^{j}, the latter is a divisor of $n(\alpha) n(\beta)$. If $\alpha \notin \eta$, at least the first power of p would have to divide $n(\beta)$. For, G / Z has an exponent p^{k} where $1 \leq k \leq j$. Since $n\left(\beta^{j}\right)=[n(\beta)]^{j}$ we have $p^{j} \mid n\left(\beta^{j}\right)$ whence $\beta^{j} \in \cap$. The ring \bar{R} exists since G / Z has an exponent. If G / Q is elementary, then $j=k=1$ so that \bigcap is a prime ideal.
3. Additive inverses. An element α of ρ is said to have an additive inverse $\alpha^{\prime} \in P$ if $\alpha+\alpha^{\prime}=\nu$. If such an additive inverse exists, it is unique, and

$$
\alpha^{\prime}(x)=x^{-n(\alpha)} q(x ; \alpha)^{-1}
$$

A mapping with the structure of α^{\prime} always exists, but it need not be, in general, an endomorphism, ergo not an additive inverse. If α^{\prime} is an additive inverse of α, then α is the additive inverse of α^{\prime}. We first prove the following.

Lemma 1. α has an additive inverse if and only if the $n(\alpha)$-powers of G form a commutative set.

Proof. Whether the mapping α^{\prime} is an endomorphism or not, we have

$$
\alpha^{\prime}(x)=[\alpha(x)]^{-1},
$$

so that

$$
\alpha^{\prime}(x y)=\alpha^{\prime}(y) \alpha^{\prime}(x)
$$

for every $x, y \in G$. Since $Q \subset Z$, the conclusion follows at once.
Let \nless be the set of all $\alpha \in P$ with the property that kern $\alpha \supset Q$.
Lemma 2.
(a) Æ has the ideal property in P.
(b) $れ \supset R(\supset れ)$.
(c) $\alpha \in \underbrace{ค}$ has an additive inverse if and only if $\alpha \in \notin$.
(d) $\alpha \in R$ and $\beta \in \notin$ implies that $\alpha+\beta \in \notin$.

Proof. (a) and (d) are trivial. For $\alpha \in P$, we have

$$
\alpha\left(x^{-1} y^{-1} x y\right)=x^{-n} y^{-n} x^{n} y^{n}
$$

where $n=n(\alpha)$. If, further, $\alpha \in R$, then $x^{n} \in Z$ so that $\alpha(x, y)=e$, and (b) is established, since $(x, y)=x^{-1} y^{-1} x y$ is typical of the generators of Q. We have $\alpha \in \mathscr{\not}$ if and only if $\alpha(x, y)=e$, that is, if and only if $x^{n} y^{n}=y^{n} x^{n}$. Lemma 1 now enables us to prove (c).

For fixed $\gamma \in \mathcal{F}$, we have $\gamma \alpha \in \mathcal{W}$ for every $\alpha \in P$. Write $-\gamma \alpha$ for the additive
 $i=1,2, \cdots, m$. A mapping

$$
\sum_{i=1}^{m}(-1)^{j_{i}} \gamma \alpha_{i}=\sigma
$$

is defined on G into G by

$$
\sigma(x)=\prod_{i=1}^{m} x^{n(\gamma)(-1)^{j_{i}} i_{n}\left(\alpha_{i}\right)}[q(x ; \gamma)]^{(-1)^{j_{i}} i_{n}\left(\alpha_{i}\right)}
$$

Call such a map a $\gamma-\Sigma$ map. It is clear that the sum of two $\gamma-\Sigma$ maps is a $\gamma-\Sigma$ map in the obvious way. The set of $\gamma-\Sigma$ maps is denoted by (γ) and will be called the right principal ideal generated by γ in ${ }^{\mathrm{P}}$.

Theorem 4. If $\gamma \in \notin$ then (y) is a ring, and $(y) \subset \notin$.
Proof. As we saw above, (γ) is closed under addition. $\gamma \dot{\nu}=\nu$ so that (γ) has the zero element ν. If σ is defined as above, then

$$
\sum_{i=1}^{m}(-1)^{j_{i}+1} \gamma \alpha_{i}=-\sigma \in(\gamma)
$$

By its effect on $x \in G$ we see that $\sigma \in P$. Since $-\sigma$ exists, $(\gamma) \subset \not \subset$ by Lemma 2 (c). Now $(\gamma \alpha)(\gamma \beta)=\gamma(\alpha y \beta)$, so that (γ) is closed under multiplication, once we recall that the distributive law is valid whenever the sums involved are in P. A similar statement can be made for the associative laws, and we have proved that (γ) is a ring included in \nVdash.

Theorem 5. Let G be a non-abelian group of class 2, and let γ be in $\mathfrak{j l}$. If the ring (γ) has a right multiplicative identity or a left multiplicative identity, then it has a (unique) two-sided multiplicative identity.

Proof. (γ) has a left (right) identity $\sigma \in(\gamma)$ if and only if $\sigma \in(\gamma)$ is a left (right) identity for the set of elements of (γ) of the form $\gamma \beta$. More, specifically, σ is a left identity if and only if $\sigma \gamma=\gamma$. A routine investigation shows that

$$
\sigma \gamma(x)=x^{[n(\gamma)]^{2}} \sum_{i=1}^{m}(-1)^{j_{i}} n\left(\alpha_{i}\right) q^{n(\gamma)} \sum_{i=1}^{m}(-1)^{j_{i}} n\left(\alpha_{i}\right)
$$

where $q=q(x ; \gamma)$. Let

$$
u=n(\gamma) \sum_{i=1}^{m}(-1)^{j_{i}} n\left(\alpha_{i}\right)-1
$$

Then $\sigma \gamma=\gamma$ if and only if

$$
x^{n(\gamma) u} q^{u}=e
$$

for every $x \in G$. Hence (1) $\gamma\left(x^{u}\right)=e$ for every $x \in G$, (2) $G / \operatorname{kern} y$ has an exponent dividing u and (3) $\gamma(G)$ has an exponent dividing u are conditions each equivalent to (4) σ is a left identity of (γ). If (5) σ is a right identity of (γ), (6) $\gamma \sigma=\gamma$. But one can readily verify that (6) and (1) are equivalent, so that if σ is a right identity, it is also a left identity, whence (γ) would then have a unique two-sided identity.

If σ is a left identity, then $\sigma \gamma=\gamma$ and

$$
\gamma \beta \sigma(x)=[\gamma(x)]^{n(\beta)}=\gamma \beta(x)
$$

for every $x \in G$. Thus σ is also a right identity, and we have proved that every left identity is a right identity.

Corollary. Let G be a non-abelian group of class 2 for which G / Q is an elementary p-group for an odd prime p. Let $\gamma \in \notin$ have the properties (a) that $p \nmid n(\gamma)=n$ and (b) that there exists an integer m such that $\left(b_{1}\right) m n=1$ $\bmod p$ and $\left(b_{2}\right) m-1$ and $n-1$ are relatively prime. Then (γ) has an identity.

Proof. $(m-1, n-1)=1$ implies that $((m-1) n, n-1)=1$ and that $(m n-1, n-1)=1$ since $m n-1=(m-1) n+(n-1)$. Hence we can find an
integer r such that

$$
\begin{equation*}
n(n-1) r \equiv m(m-1) \bmod (m n-1) \tag{7}
\end{equation*}
$$

Form the mapping

$$
\tau(x)=x^{m}[q(x ; y)]^{r}
$$

Since G is a group of class 2 , we have [2] the identity

$$
(x y)^{t}=x^{t} y^{t} z^{v(t)}
$$

where

$$
z=(y, x)=y^{-1} x^{-1} y x \text { and } v(t)=t(t-1) / 2 .
$$

Since γ is an endomorphism, we have

$$
q(x y ; \gamma) z^{v(n)}=q(x ; \gamma) q(y ; \gamma) .
$$

Hence

$$
\tau(x y)=x^{m} y^{m} z^{v(m)}[q(x ; y)]^{r}[q(y ; \gamma)]^{r} z^{-r v(n)} .
$$

Let us write the exponent of z as $h / 2$ where $h=m(m-1)-r n(n-1)$. By the choice of r we have $h \equiv 0 \bmod (m n-1)$. But $m n-1 \equiv 0 \bmod p$, so that $h \equiv 0$ $\bmod p$. Since p is odd we obtain $h / 2 \equiv 0 \bmod p$.

Since G / Q has the exponent $p, Q \subset Z$ implies that G / Z has an exponent t where $t \mid p$. Since G is non-abelian we have $t=p$. In [1], we proved that if G / Z has the exponent p then the mutual commutator group $\left(G, Z_{2}\right)$ has an exponent t^{\prime} which divides p. Here Z_{2} is the second member of the ascending central series of G. Since G is of class 2 we have $Z_{2}=G$, and $\left(G, Z_{2}\right)=Q$. If $t^{\prime}=1$, then G is abelian, a contradiction with hypothesis. Hence $t^{\prime}=p$ and $z^{h / 2}=e$, since $z \in Q$ and $p \mid(h / 2)$. As a result, $\tau(x y)$ reduces to $\tau(x) \tau(y)$, so that τ is a power-type endomorphism with $n(\tau)=m$ and

$$
q(x ; \tau)=[q(x ; \gamma)]^{r} .
$$

Then

$$
u=n(\gamma) n(\tau)-1=m n-1
$$

Since p is the exponent of G / Q we have $x^{u} \in Q$ for every $x \in G$. But $\gamma \in \mathcal{H}$ so that $\gamma\left(x^{u}\right)=e$. Using the theorem and (1) and (4) above, we see that $\gamma \tau$ is the required identity of (γ).
4. Some mappings into Q. Let ε be the set of all $\alpha \in{ }^{\rho}$ which are extensions both of the identity map on Q and of the identity map on G / Q. That is, $\alpha \in \mathcal{E}$ if and only if $\alpha(x)=x q(x ; \alpha)$ for every $x \in G$ and $\alpha(q)=q$ for every $q \in Q$. It can readily be verified that the elements of ε are automorphisms of G and that, under automorphism composition, they form an abelian group with unity ι. For $\alpha, \beta \in \mathcal{E}$ and $x, y \in G$, it follows at once that

$$
q(x y ; \alpha)=q(x ; \alpha) q(y ; \alpha)
$$

and that

$$
q(x ; \alpha \beta)=q(x ; \alpha) q(x ; \beta) .
$$

Let θ_{x} be a mapping defined on \mathcal{E} into Q such that $\theta_{x}(\alpha)=q(x ; \alpha)$ for every $\alpha \in \mathcal{E}$. It is immediate that the θ_{x} are homomorphisms. We can define an addition in the set ${ }^{\eta}$ of mappings θ_{x} by

$$
\left(\theta_{x}+\theta_{y}\right)(\alpha)=\theta_{x}(\alpha) \theta_{y}(\alpha)
$$

for every $\alpha \in \mathcal{E}$. Likewise define mappings ϕ_{α} on G into Q by $\phi_{\alpha}(x)=q(x ; \alpha)$. Here, too, in the set δ of mappings ϕ_{α}, mappings which are also homomorphisms, an addition is given by

$$
\left(\phi_{\alpha}+\phi_{\beta}\right)(x)=\phi_{\alpha}(x) \phi_{\beta}(x)
$$

for every $x \in G$. Let F be the set of elements of G which are the fixed points held in common by the elements of ε. Then we obtain the following.

Theorem 6.

(a) $\quad \mathrm{J} \cong G / F$.
(b) $\&=n$ and $n \cong \varepsilon$.
(c) n and ${ }^{r}$ I are dual additive abelian groups in the sense that each can be represented faithfully as a set of homomorphisms on the other into Q.

Proof. It is easy to verify that $\theta_{x}+\theta_{y}=\theta_{x y}$, and it follows that I is an additive abelian group with unity θ_{e}. Let F_{α} be the subgroup of all $x \in G$ with $\alpha(x)=x$. For $\alpha \in \mathcal{E}$, each F_{α}, and hence $F=\cap F_{a}$, is a normal subgroup of G.
$\alpha \in \operatorname{kern} \theta_{x}$ if and only if $x \in F_{\alpha} . \theta_{x}=\theta_{y}$ if and only if $x \equiv y \bmod F$. The mapping θ on G into \mathcal{J} given by $\theta(x)=\theta_{x}$ is a homomorphism onto J with kernel F. We have established (a).
ϕ_{α} is an endomorphism of G into Q with kern $\phi_{\alpha}=F_{\alpha}$. For $\gamma \in \Lambda$, let Γ be a mapping of G into G given by $\Gamma(x)=x y(x)$. Since $\eta \subset R \subset \not \subset$, we have $\Gamma(q)=q \gamma(q)=q$ for every $q \in Q$, so that $\Gamma \in \mathcal{E}$. Also, $\phi_{\Gamma}=\gamma$. Hence $\eta \subset \otimes$. Trivially, $\delta \subset \eta$. The unity of n as a group is ν which can be represented as ϕ_{ι}. The mapping ϕ given by $\phi(\alpha)=\phi_{\alpha}$ on ε onto $\delta=n$ turns out to be an isomorphism, whence (b).

The mappings c_{x} on η into Q given by

$$
c_{x}(y)=\theta_{x} \phi^{-1}(\gamma)
$$

for every $\gamma \in \Pi$ are homomorphisms. $\gamma \in \operatorname{kern} c_{x}$ if and only if $x \in \operatorname{kern} \gamma$. We can introduce an addition into the set C of mappings c_{x} by

$$
\left(c_{x}+c_{y}\right)(\gamma)=c_{x}(\gamma) c_{y}(\gamma)
$$

for every $y \in \cap$. There is a homomorphism ψ of G onto C with kernel equal to

$$
U=\cap \operatorname{kern} \gamma,
$$

where the cross-cut is taken over all $\gamma \in \eta_{\text {; }}$ and $\psi(x)=c_{x}$. A trivial argument shows that $U=F$. One can verify that the correspondence $\theta_{x} \leftrightarrow c_{x}$ is one-to-one and is an isomorphism of \mathcal{J} with C. Hence \bar{J} is represented faithfully as a set of homomorphisms on n into Q.

Just as there are homomorphisms c_{x} on η into Q, so there are homomorphisms b_{α} on \mathcal{J} into Q for each $\alpha \in \mathcal{E}$, given by $b_{\alpha}\left(\theta_{x}\right)=\phi_{\alpha}(x)$. Here, kern b_{α} consists of all θ_{x} with $x \in F_{\alpha}$. The mapping b_{α} is single-valued; for $\theta_{x}=\theta_{y}$ if and only if there exists $r \in F$ with $y=x r$, and $\phi_{\alpha}(x r)=\phi_{\alpha}(x)$. We can introduce an addition into the set B of such b_{a} by

$$
\left(b_{\alpha}+b_{\beta}\right)\left(\theta_{x}\right)=\phi_{\alpha}(x) \phi_{\beta}(x)
$$

Now $b_{\alpha}+b_{\beta}=b_{\alpha \beta}$, and, under this addition, B becomes an abelian group with unity b_{l}. The correspondence $b_{a} \leftrightarrow \phi_{a}$ is one-to-one and is an isomorphism of B with n, so that n is represented faithfully as a set of homomorphisms on J into Q, and (c) is established.

Further, there is an isomorphism ω on ε onto \mathcal{B} given by $\omega(\alpha)=b_{\alpha}$. The mapping

$$
\theta_{x} \omega^{-1}=\delta_{x}
$$

is a homomorphism on B into Q with kernel consisting of all b_{a} with $x \in F_{a}$. For every $\alpha \in \mathcal{E}$, let ζ_{α} be a mapping defined on C into Q by

$$
\zeta_{\alpha}\left(c_{x}\right)=\phi_{\alpha}(x)
$$

It is clear that ζ_{α} is a homomorphism with kernel consisting of all c_{x} where $x \in \operatorname{kern} \phi_{\alpha}$. We summarize these results as follows.

Corollary.

$$
\theta_{x}=\delta_{x} \omega=c_{x} \phi
$$

on \mathcal{E} into Q, and dually,

$$
\phi_{\alpha}=\zeta_{\alpha} \psi=b_{a} \theta
$$

on G into Q.

5. Some enumerations of mappings.

The orem 7. The elements of P are in one-to-one correspondence with the ordered pairs (n, λ), where n is an integer, λ is a mapping of G into Q and n and λ satisfy

$$
\begin{equation*}
\lambda(x) \lambda(y)=\lambda(x y) z^{v(n)} \tag{A}
\end{equation*}
$$

for every $x, y \in G$, where $z=(y, x)$ and $v(n)=n(n-1) / 2$.
Proof. If $\alpha \in{ }^{\rho}$, then $q(x ; \alpha)=\lambda(x)$ and $n(\alpha)=n$. Conversely, if λ and n are given, and if (A) holds, define α on G into G by $\alpha(x)=x^{n} \lambda(x)$ for every $x \in G$. Condition (A) and the fact that

$$
(x y)^{n}=x^{n} y^{n} z^{v(n)}
$$

show that α is an endomorphism and is therefore in P.
Corollary. If Q has the exponent m, and if n is an integer for which $m \mid v(n)$, then $x \longrightarrow x^{n}$ is a power endomorphism of G.

Proof. If we let $\lambda(x)=e$ for every $x \in G$ then the pair (n, λ) satisfies (A) since, here, $z^{v(n)}=e$.

Theorem 8. For $\alpha, \beta \in \mathrm{P}$, a necessary and sufficient condition that $n(\alpha)=n(\beta)$ is that there exists a $\gamma=\gamma_{\alpha, \beta} \in \bigcap$ such that $\alpha=\beta+\gamma$.

Proof. Suppose that $n(\alpha)=n(\beta)$. Define a mapping γ by

$$
\gamma(x)=q(x ; \alpha)[q(x ; \beta)]^{-1} .
$$

We have

$$
\begin{aligned}
(\beta+\gamma)(x)=\beta(x) \gamma(x) & =x^{n(\beta)} q(x ; \beta) q(x ; \alpha)[q(x ; \beta)]^{-1} \\
& =x^{n(\alpha)} q(x ; \alpha)=\alpha(x),
\end{aligned}
$$

so that $\beta+\gamma=\alpha$. Now

$$
\gamma(x y)=q(x y ; \alpha)[q(x y ; \beta)]^{-1} ;
$$

hence if we apply (A) to each of the q 's and simplify, it turns out that $\gamma(x y)=$ $\gamma(x) \gamma(y)$, so that γ is an endomorphism lying in η.

Corollary. Let M be the cardinal of n. Then \cap decomposes into partition classes, each of cardinal M, in such a way that α and β are in the same partition class if and only if $n(\alpha)=n(\beta)$.

Examples of such partition classes are \bigcap (where $n=0$) and \mathcal{E} (where $n=1$). Nontrivial ε and $\varepsilon \cong \bigcap$ along with an exponent on Q imply, by the Corollary of Theorem 7, the existence of an infinite number of partition classes.

Let I_{N} denote the group of integers, modulo N.
Theorem 9. Let G be a group of class 2 with exponent N on G / Z. Then there exists a nontrivial mapping τ on $ค$ into l_{N} which preserves addition and multiplication (whenever they are defined on ${ }^{\triangleright}$). $\eta \subset \operatorname{kern} \tau$ 。

Proof. Let j_{N} denote the residue class, modulo N, to which the integer j belongs. Let $\tau(\alpha)=(n(\alpha))_{N}$. Then $\tau(\imath)=1_{N}$, so that τ is nontrivial. The remaining statements are apparent. Note, however, that if N is the exponent of G / Q, then kern $\tau=\eta$.

It should be noted that a well known lemma of Grün leads to nontrivial n and hence to nontrivial elements of P. For, by this lemma, the mappings of the type $x \longrightarrow(x, u)$ for each fixed $u \in G, u \notin Z$ are in η for groups of class 2 .

Let G / Q have exponent n, so that G / Z has exponent $t \mid n$. By [1, Lemma,
p.370], the mutual commutator group $(G, G)=Q$ has an exponent $k \mid t$. If t is odd, then $k \mid v(t)$, and $(x y)^{t}=x^{t} y^{t}$, whence $x \rightarrow x^{t}$ is a central endomorphism of G. If t is even, then $x \longrightarrow x^{2 t}$ is a central endomorphism. Since $x^{n} \in Q$, and since k is the exponent of Q, we have $x^{k n}=e$ for every $x \in G$. Now t is the exponent of G / Z, so that t must generate the ideal of exponents of central power endomorphisms of G in case t is odd. The central power endomorphisms are then all

$$
x \longrightarrow x^{j t}
$$

$$
(j=0,1,2, \cdots(k n / t)-1)
$$

If $k n$ is not the exponent of G but only an integral multiple thereof, then the number of distinct central power endomorphisms will be reduced (in proportion) to a submultiple of $k n / t$.

If t is even, then the generator t^{\prime} of the ideal of exponents of central power endomorphisms of G must have the property $t\left|t^{\prime}\right| 2 t$. Hence $t^{\prime}=t$ or $t^{\prime}=2 t$. If $t^{\prime}=t$ then the $k n / t$ mappings $x \longrightarrow x^{j t}$ include all the central power endomorphisms (with possible repetitions). In fact, if k is odd, then $k \mid t / 2$, and $t^{\prime}=t$. If $t=t^{\prime}$, then $k \mid v(t)$. It follows readily that $k \equiv 0 \bmod 2^{r}$ implies $t \equiv 0 \bmod 2^{r+1}$. Thus $k \equiv 0 \bmod 2^{r}$ and $t \equiv 0 \bmod 2^{r+1}$ imply $t^{\prime}=2 t$. Whenever $t^{\prime}=2 t$, there are, at most, $k n / 2 t$ central power endomorphisms of G. Since, in any event, a submultiple of $k n / t$ or of $k n / 2 t$ is a submultiple of n, we have proved the following.

Theorem 10. Let G be a group of class 2 for which G / Q has exponent n. Then the number of central power endomorphisms of G divides n.

The above is a generalization of the following: Let G be an abelian group with exponent n. Then there are precisely n power endomorphisms of G; for, $x^{n+m}=x^{m}$.

Corollary. Let G be a non-abelian group of class 2 for which G / Q is an elementary p-group [2] for an odd prime p. Let G have at least one nontrivial element of order $\neq p$. Then G has precisely p central power endomorphisms. If $p=2$, then G has only the trivial central power endomorphism.

Proof. Since G is non-abelian we have $k \neq 1$, and $k \mid n=p$ implies $k=p$, so that $k|t| n$ leads to $t=p$. Likewise, $k n=p^{2}$. The exponent of G is not p, since there exists $y \in G$ with $y^{p} \neq e$. Hence the exponent of G must be p^{2}. If p is odd, then there are precisely $k n / t=p$ central power endomorphisms. The set of these endomorphisms is generated by the endomorphism $x \rightarrow x^{P}$ under
endomorphism composition. If $p=2$ then $x \longrightarrow x^{2}$ is not an endomorphism; for, if it were, $(x y)^{2}=x^{2} y^{2}$ would imply $y x=x y$, whence G would be abelian. Since $x^{4}=e, G$ has only the one trivial central power endomorphism, $x \longrightarrow x^{4}=e$.

In a non-abelian group of class 2, as in the Corollary above, we can find an element of \mathcal{Z} for which the corresponding right principal ideal does not have a unity. Let $\eta(x)=x^{p}$ so that $n(\eta)=p$. Since $k=p$ we have $\eta \in \notin$. If (η) had an identity, then there would exist mappings $\alpha_{i} \in P, i=1,2, \cdots, m$, with

$$
p \sum_{n}\left(\alpha_{i}\right) \equiv 1 \bmod p^{2},
$$

by the proof of Theorem 5, item (3), and the fact that p^{2} is the exponent of $G \supset \eta(G)$. But the congruence $p \xi \equiv 1 \bmod p^{2}$ has no solution ξ.

References

1. F. Haimo, Groups with a certain condition on conjugates, Canadian J. Math., 4 (1952), 369-372.
2. H. Zassenhaus, Gruppentheorie, Leipzig and Berlin, 1937.

Washington University

Saint Louis, Missouri

