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1. Introduction. The aim of this note is to give a new elementary proof of

Helly's theorem [ l ] on the intersection of convex sets in n dimensional Eucli-

dean space En. Like other elementary proofs, our proof avoids the use of limit

concepts and is thus valid for any n dimensional affine space with coordinates

in a real number field. In § 3 we remark that Carathe'odory's theorem on convex

hulls may be derived from Helly's theorem. This is a reverse procedure of the

one adopted iby Rademacher and Schoenberg [2], and indicates the central

position of Helly's theorem in the theory of convex bodies. We shall prove the

following version of Helly's theorem.

H E L L Y ' S THEOREM. Let Cι, ,Cm, m > n$ be convex sets in En.

If every n + 1 of these sets have a point in common then there is a point common

to all Cι, i = 1, 2, , m.

Equivalently the theorem states that if

m

Π C, = φ (the void se t ) ,

then there exist k + 1 (with k <_n) sets C^, , Q f c + 1 such that

C i ι n # ' n Cife + i = < ^

Other versions of Helly's theorem refer, under suitable restrictions, to

infinite sets of convex bodies. These are easily deduced from the above form.

In these generalizations the completeness of the space is essential and it is

impossible to avoid the limit concept in some form or another.

2. We shall first prove the following special case of Helly's theorem.

LEMMA 1. Helly's theorem is valid in the special case when Cu , Cm

Received September 22, 1953. This work was done in a seminar on convex bodies

conducted by Prof. A. Dvoretzky at the Hebrew University, Jerusalem.

Pacific J. Math. 5 (1955), 363-366

363



364 MICHAEL RABIN

are closed half-spaces of En.

Proof. The case n = 1 is simple. We proceed by induction and note that if

we have the Lemma for some £ it obviously remains true if some of the C; are

allowed to coincide with £ or to be void sets. Let C l f , Cm be closed half-

spaces of En defined by the hyperplanes ττ\ , , πm and assume

(1) C , n . . . n C m = f

We may assume that no Q in (1) may be omitted without making the intersection

nonvoid. C t is a closed half-space so Cι D πx hence

πx n C 2 n . n Cm = φ,

that is

(77Ί n C2 ) n n ( πx n Cm ) = φ .

Now 77! n Cj is either a closed half-space of 77"! considered as an n - 1 dimen-

sional space, or (if πx and π( are parallel) coincides with 77̂  or the null-set.

By virtue of the generalized induction hypothesis there are kf k < n, sets

77Ί π Cj having no point in common. Thus, after renumbering the sets if neces-

sary:

(77"ι n C2 ) n 0 ( 7 7 ^ 0 Cfc + i ) = 7Γ1 n C 2 n n C ^ ^ ι = φ .

Denote C2 n n C^.+ 1 by S then δ is convex. We claim that either

( a ) S n ( ? ! = < £ (where Cv i s the complement of C\ in En) or

( b ) S n Cϊ - φ. Indeed, if both ( a ) and ( b ) were false there would exist two

points Pi9 P2 with Px E β n Cι and P2 € δ n C\ and the line segment f\ P 2

would have a point in common with πx. As B is convex, P^P2 C B contradicting

B n 77! = 0 , Now case (a) is impossible, because it implies C\ n C2 n . . n C m =<i

which together with ( 1 ) implies that

( C l u C l ) n C 2 n « . . n C m = C 2n n C m = φ

contrary to the assumption that none of the Cj in (1) could be omitted. Thus

case (b) holds, that is, Cx n . . . n C^ + 1 = φ; since k < n the proof of the

lemma is completed.

Proof of Helly's theorem. Let Ci9 ,Cm be arbitrary convex s e t s in En
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every n + l of which have a nonempty intersection. Let C^, , C t be any

n + l sets Cι and Λ' l f , i Λ + ι

 a n y point in C t l n . . . n Ct Λ + 1 , denote by A the

finite set of all these points (for this device compare [ 1 ] ) . The sets Ct n A

are finite sets every n + l of which have a point in common. Put B( = H { Cι n A )

where H(S) stands for the convex hull of S. The convex hull of a finite set

may be represented as the intersection of a finite number of closed half-spaces

(for an elementary proof of this fact see [ 3 ] ) , thus B( = D^ x n n D^^. 9

say. Let D 1 , ,D S be all the half-spaces appearing for all the δ ; . To every

Dj corresponds a certain JSj for which D, D β { D Q n /I so that every n + l of

the D: have a common point. By virtue of Lemma 1: Dι n . n Ds ^ φ. Now

Dι π . . n Ds = δ t rv . . π Bm

also Cι D A n Q so that by the convexity of Q we have

hence

m m

n cέ D n Biέφ. Q.E.D.

3. Caratheodory's theorem states that the convex hull H(S) where S C En

equals the union of the convex hulls H{F) where F ranges over all sub-sets of

S containing not more than n + l points. It is easy to show that H(S) equals the

union of the convex hulls of all the finite sub-sets of S, so that the crucial

point of Caratheodory's theorem lies in the following:

T H E O R E M . Let P i , ,Pki k >_ n + l, be points of En. Let Q G H{Pί9 • ,

Pjt) then n + l points P(ί9 •• >Pin + ι ™ay be chosen so that Q G H (P^ , ,

We shall deduce this result from Helly's theorem and the following easily

established lemma.

LEMMA 2. Let Q^P(9 i = l, •••,&. Denote by π( the hyperplane through

Pi perpendicular to the direction QPi, let C± be the closed half-space defined

by πι, which does not contain Q. A necessary and sufficient condition for

Q eH{Pi9*- ,Pk) is C t n . . . n Q =<£.

Proof of Caratheodory's theorem. We may suppose that Q ^ P(9 i = 1, , k.
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By the lemma Π?Lt C, = φ; by the special case of Helly's theorem n + l half-

spaces Cj , , Cj may be chosen so that Π72... Ct = φ. Using again the

lemma we conclude Q G H (Pit, . . , P i n + ι ) Q.E.D.
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