A NOTE ON HELLY'S THEOREM

Michael Rabin

1. Introduction. The aim of this note is to give a new elementary proof of Helly's theorem [1] on the intersection of convex sets in n dimensional Euclidean space E^{n}. Like other elementary proofs, our proof avoids the use of limit concepts and is thus valid for any n dimensional affine space with coordinates in a real number field. In $\S 3$ we remark that Carathéodory's theorem on convex hulls may be derived from Helly's theorem. This is a reverse procedure of the one adopted by Rademacher and Schoenberg [2], and indicates the central position of Helly's theorem in the theory of convex bodies. We shall prove the following version of Helly's theorem.

Helly's theorem. Let $C_{1}, \cdots, C_{m}, m>n$, be convex sets in E^{n}. If every $n+1$ of these sets have a point in common then there is a point common to all $C_{i}, i=1,2, \cdots, m$.

Equivalently the theorem states that if

$$
\bigcap_{i=1}^{m} C_{i}=\phi(\text { the void set })
$$

then there exist $k+1$ (with $k \leq n)$ sets $C_{i_{1}}, \ldots, C_{i_{k+1}}$ such that

$$
C_{i_{1}} \cap \ldots \cap C_{i_{k+1}}=\phi
$$

Other versions of Helly's theorem refer, under suitable restrictions, to infinite sets of convex bodies. These are easily deduced from the above form. In these generalizations the completeness of the space is essential and it is impossible to avoid the limit concept in some form or another.
2. We shall first prove the following special case of Helly's theorem.

Lemma 1. Helly's theorem is valid in the special case when C_{1}, \cdots, C_{m}

[^0]are closed half-spaces of E^{n}.
Proof. The case $n=1$ is simple. We proceed by induction and note that if we have the Lemma for some E^{k} it obviously remains true if some of the C_{i} are allowed to coincide with E^{k} or to be void sets. Let C_{1}, \cdots, C_{m} be closed halfspaces of E^{n} defined by the hyperplanes π_{1}, \cdots, π_{m} and assume
\[

$$
\begin{equation*}
C_{1} \cap \cdots \cap C_{m}=\phi . \tag{1}
\end{equation*}
$$

\]

We may assume that no C_{i} in (1) may be omitted without making the intersection nonvoid. C_{1} is a closed half-space so $C_{1} \supset \pi_{1}$ hence

$$
\pi_{1} \cap C_{2} \cap \ldots \cap C_{m}=\phi
$$

that is

$$
\left(\pi_{1} \cap C_{2}\right) \cap \ldots n\left(\pi_{1} \cap C_{m}\right)=\phi .
$$

Now $\pi_{1} \cap C_{i}$ is either a closed half-space of π_{1} considered as an $n-1$ dimensional space, or (if π_{1} and π_{i} are parallel) coincides with π_{1} or the null-set. By virtue of the generalized induction hypothesis there are $k, k \leq n$, sets $\pi_{1} \cap C_{i}$ having no point in common. Thus, after renumbering the sets if necessary:

$$
\left(\pi_{1} \cap C_{2}\right) \cap \ldots n\left(\pi_{1} \cap C_{k+1}\right)=\pi_{1} \cap C_{2} \cap \ldots \cap C_{k+1}=\phi .
$$

Denote $C_{2} \cap \ldots \cap C_{k+1}$ by B then B is convex. We claim that either
(a) $B \cap \widetilde{C}_{1}=\phi$ (where \widetilde{C}_{1} is the complement of C_{1} in E^{n}) or
(b) $B \cap C_{1}=\phi$. Indeed, if both (a) and (b) were false there would exist two points P_{1}, P_{2} with $P_{1} \in B \cap \widetilde{C_{1}}$ and $P_{2} \in B \cap C_{1}$ and the line segment $\overline{P_{1} P_{2}}$ would have a point in common with π_{1}. As B is convex, $\overline{P_{1} P_{2}} \subset B$ contradicting $B \cap \pi_{1}=\phi$. Now case (a) is impossible, because it implies $\widetilde{C}_{1} \cap C_{2} \cap \ldots \cap C_{m}=\phi$ which together with (1) implies that

$$
\left(\tilde{C}_{1} \cup C_{1}\right) \cap C_{2} \cap \ldots \cap C_{m}=C_{2} \cap \ldots n C_{m}=\phi
$$

contrary to the assumption that none of the C_{i} in (1) could be omitted. Thus case (b) holds, that is, $C_{1} \cap \ldots n C_{k+1}=\phi$; since $k \leq n$ the proof of the lemma is completed.

Proof of Helly's theorem. Let C_{1}, \ldots, C_{m} be arbitrary convex sets in E^{n}
every $n+1$ of which have a nonempty intersection. Let $C_{i_{1}}, \cdots, C_{i_{n+1}}$ be any $n+1$ sets C_{i} and $P_{i_{1}}, \cdots, i_{n+1}$ any point in $C_{i_{1}} \cap \cdots n C_{i_{n+1}}$, denote by A the finite set of all these points (for this device compare [1]). The sets $C_{i} \cap A$ are finite sets every $n+1$ of which have a point in common. Put $B_{i}=H\left(C_{i} \cap A\right)$ where $H(S)$ stands for the convex hull of S. The convex hull of a finite set may be represented as the intersection of a finite number of closed half-spaces (for an elementary proof of this fact see [3]), thus $B_{i}=D_{i, 1} \cap \ldots \cap D_{i, k_{i}}$, say. Let D_{1}, \cdots, D_{s} be all the half-spaces appearing for all the B_{i}. To every D_{j} corresponds a certain B_{i} for which $D_{j} \supset B_{i} \supset C_{i} \cap A$ so that every $n+1$ of the D_{j} have a common point. By virtue of Lemma $1: D_{1} \cap \ldots n D_{s} \neq \phi$. Now

$$
D_{1} \cap \cdots \cap D_{s}=B_{1} \cap \cdots \cap B_{m}
$$

also $C_{i} \supset A \cap C_{i}$ so that by the convexity of C_{i} we have

$$
C_{i} \supset H\left(C_{i} \cap A\right)=B_{i}
$$

hence

$$
\bigcap_{i=1}^{m} C_{i} \supset \bigcap_{i=1}^{m} B_{i} \neq \phi . \quad \text { Q.E.D. }
$$

3. Carathéodory's theorem states that the convex hull $H(S)$ where $S \subset E^{n}$ equals the union of the convex hulls $H(F)$ where F ranges over all sub-sets of S containing not more than $n+1$ points. It is easy to show that $H(S)$ equals the union of the convex hulls of all the finite sub-sets of S, so that the crucial point of Carathéodory's theorem lies in the following:

Theorem. Let $P_{1}, \ldots, P_{k}, k \geq n+1$, be points of E^{n}. Let $Q \in H\left(P_{1}, \cdots\right.$, $\left.P_{k}\right)$ then $n+1$ points $P_{i_{1}}, \cdots, P_{i_{n+1}}$ may be chosen so that $Q \in H\left(P_{i_{1}}, \cdots\right.$, $P_{i_{n+1}}$.

We shall deduce this result from Helly's theorem and the following easily established lemma.

Lemma 2. Let $Q \neq P_{i}, i=1, \cdots, k$. Denote by π_{i} the hyperplane through P_{i} perpendicular to the direction $\overrightarrow{Q P}$, let C_{i} be the closed half-space defined by π_{i}, which does not contain Q. A necessary and sufficient condition for $Q \in H\left(P_{1}, \ldots, P_{k}\right)$ is $C_{1} \cap \ldots \cap C_{k}=\phi$.

Proof of Carathe'odory's theorem. We may suppose that $Q \neq P_{i}, i=1, \cdots, k$.

By the lemma $\bigcap_{i=1}^{k} C_{i}=\phi$; by the special case of Helly's theorem $n+1$ halfspaces $C_{i_{1}}, \cdots, C_{i_{n+1}}$ may be chosen so that $\bigcap_{s=1}^{n+1} C_{i_{s}}=\phi$. Using again the lemma we conclude $Q \in H\left(P_{i_{1}}, \ldots, P_{i_{n+1}}\right)$ Q.E.D.

References

1. E. Helly, Über Mengen konvexer Körper mit gemeinschaftichen Punkten, Jahresbericht der Deutschen Mathematiker Vereinigung, 32 (1923), 175-176.
2. H. Rademacher and I. J. Schoenberg, Helly's theorem on convex domains and Tchebycheff's approximation problem, Canadian J. Math. 2 (1950), 245-256.
3. H. Weyl, Elementare Theorie der konvexen Polyeder, Commentarii Mathemetici Helvetici, 7 (1935), 290-306. English translation in Ann. of Math. Studies, No. 24. Princeton.

Hebrew University
Jerusalem

[^0]: Received September 22, 1953. This work was done in a seminar on convex bodies conducted by Prof. A. Dvoretzky at the Hebrew University, Jerusalem.

 Pacific J. Math. 5 (1955), 363-366

