A CONVERSE OF HELLY'S THEOREM ON CONVEX SETS

Aryeh Dvoretzky

1. Introduction. Helly's well known theorem on convex sets states that families of compact convex sets in Euclidean n-space E^{n}, have the following property:

Property d4: If every $n+1$ of the sets have a point in common, then there exists a point common to all sets of the family.

If a family of compact sets in E^{n} has property $b \notin$ this, clearly, does not imply that the sets are convex. The purpose of this short note is to show that (loosely speaking) if the family possesses property $\$ \&$ not accidentally but by virtue of the geometric structure of its sets, then all the sets of the family are convex. The proof of our result is rather simple, but as far as we are aware no theorems converse to Helly's have been noticed before.

In order to state our result briefly we make the following definition:
Definition. A family of sets K_{α} in E^{n} is said to have property Cold if every family $\left\{K_{\alpha}^{\prime}\right\}$, with $K_{\alpha}^{\prime}=T_{\alpha} K_{\alpha}$ an affine ${ }^{1}$ transform of K_{α}, possesses property $\$ 4$.

We may now formulate our result.
Theorem. Let $\left\{K_{\alpha}\right\}$ be a family of more than $n+1$ compact sets in E^{n}, all having linear dimension n (that is, no K_{α} lies in a hyperplane). If the family has property C_{d} then all sets K_{α} are convex.
2. Proof. We shall show that if one of the sets of the family, say K_{0}, is not convex then the family cannot have property Cid.

Since K_{0} is closed and its linear dimension is n, there exist $n+l$ points $P_{1}, \cdots, P_{n+1} \in K_{0}$ forming the vertices of a simplex whose interior contains points not belonging to K_{0}. Let P_{0} be such a point.

[^0]The family contains more than $n+1$ sets. Let $K_{1}, K_{2}, \cdots, K_{n+1}$ be $n+1$ arbitrary sets of the family different ${ }^{2}$ from K_{0}. For $i=1, \cdots, n+1$ let \hat{K}_{i} denote the convex hull of K_{i}. Let $Q_{0}^{(i)}$ be any extreme point of \hat{K}_{i} (that is, $Q_{0}^{(i)} \in \hat{K}_{i}$ and it is not an interior point of any segment contained in \hat{K}_{i}). Since K_{i} is compact and not empty there exists such a point and, moreover, $Q_{0}^{(i)} \in K_{i}$. Let π_{i} be a hyperplane containing $Q_{0}^{(i)}$ and such that all other points of \hat{K}_{i} are in one of the open half-spaces, say π_{i}^{+}, determined by it (such a plane π_{i} exists since $Q_{0}^{(i)}$ is an extreme point of \hat{K}_{i}). As K_{i} has linear dimension n there exist points $Q_{1}^{(i)}, \cdots, Q_{n}^{(i)} \in K_{i}$, such that the $n+1$ points $Q_{0}^{(i)}, Q_{1}^{(i)}, \cdots, Q_{n}^{(i)}$ form the vertices of a simplex. Let T_{i} be an affine transformation sending $Q_{0}^{(i)}$ into P_{0} and $Q_{1}^{(i)}, \cdots, Q_{n}^{(i)}$ into the n points P_{j} with $1 \leq j \leq n+1$ and $j \neq i$.

Let T_{0} denote the identity transformation. Also, if the family contains more then $n+2$ sets, associate with every set K_{β}, different from the $n+2$ sets already considered, an affine transformation T_{β} such that $T_{\beta} K_{\beta}$ contains the $n+1$ points P_{1}, \cdots, P_{n+1} (this is possible since the linear dimension of K_{β} is $n)$.

Put $K_{\alpha}^{\prime}=T_{\alpha} K_{\alpha}$ (for $K_{\alpha}=K_{i,}, i=0,1, \cdots, n+1$ as well as for $K_{\beta}=K_{\alpha}$). Now every $n+1$ of the sets K_{α}^{\prime} have a point in common. Indeed, the sets $K_{1}^{\prime}, \cdots, K_{n+1}^{\prime}$ have the point P_{0} in common, while any other collection of $n+1$ sets K_{α}^{\prime} must omit at least one of these sets, say K_{i}^{\prime} and then P_{i} belongs to all the K_{α}^{\prime} in the collection. On the other hand we shall prove that there is no point common to all K_{α}^{\prime}. This will be done by showing that $\cap_{i=1}^{n+1} K_{i}^{\prime}=\phi$ (the void set).

This last assertion is established as follows. (i) Since

$$
K_{i} \subset Q_{i}^{(0)} \cup \pi_{i}^{+}
$$

we have

$$
K_{i}^{\prime} \subset P_{0} \cup T_{i} \pi_{i}^{+}
$$

for $i=1, \cdots, n+1$, and, therefore,

$$
\bigcap_{i=1}^{n+1} K_{i}^{\prime} \subset P_{0} \cup\left(\bigcap_{i=1}^{n+1} T_{i} \pi_{i}^{+}\right)
$$

[^1](ii) For $i=1, \cdots, n+1$ let C_{i} denote the closed polyhedral cone with vertex at P_{0} and edges obtained by prolongation of the n directed segments $\overrightarrow{P_{j} P_{0}}$ ($1 \leq j \leq n+1, j \neq i$). Since
$$
P_{j} \in K_{i}^{\prime} \cap T_{i} \pi_{i}^{+}
$$
for these j, we have $C_{i} \cap T_{i} \pi_{i}^{+}=\phi$; also, since P_{0} is an interior point of the simplex with vertices P_{1}, \cdots, P_{n+1}, we have $\cup_{i=1}^{n+1} C_{i}=E^{n}$, the whole space. Therefore
$$
\bigcap_{i=1}^{n+1} T_{i} \pi_{i}^{+}=\bigcup_{i=1}^{n+1}\left(C_{i} \cap\left(\bigcap_{i=1}^{n+1} T_{i} \pi_{i}^{+}\right)\right) \subset \bigcup_{i=1}^{n+1}\left(C_{i} \cap T_{i} \pi_{i}^{+}\right)=\phi .
$$
(iii) Combining this with the result of (i) we have
$$
\bigcap_{i=1}^{n+1} K_{i}^{\prime} \subset P_{0}
$$

Thus P_{0} is the only common point of $K_{1}^{\prime}, \cdots, K_{n+1}^{\prime}$, but $P_{0} \notin K_{0}^{\prime}=K_{0}$, hence there is no common point to the $n+2$ sets $K_{0}^{\prime}, K_{1}^{\prime}, \cdots, K_{n+1}^{\prime}$. Q.e.d.
3. Generalizations. We indicate two stronger versions of the theorem of $\S 1$.
3.1. Similarly to the way we defined property Cibt, we can define the weaker property $a^{+} \not \downarrow$ by restricting the affine transformations T_{a} in the definition, to those for which the determinant of the non-translational part is positive. Only minor modifications are required in the proof in order to show that the theorem of $\S 1$ remains valid if property $C \neq d$ is replaced by property $a^{+} \neq$
3.2. Let K be a closed set in E^{n} having linear dimension n, and such that its complement in E^{n} contains a nondegenerate cone. It can then be shown that there exist points $Q_{0}, Q_{1}, \cdots, Q_{n} \in K$ forming the vertices of a simplex, and having the further property that Q_{0} is the only point belonging to K in the closed cone having Q_{0} as vertex and whose edges are the prolongations of $\vec{Q}_{i} Q_{0}$, $i=1, \cdots, n$. Using this fact the proof of $\S 2$ easily yields the theorem of $\S 1$ with the assumption of compactness weakened to: every K_{α} is closed and its complement contains a nondegenerate cone.
3.3. For $n \geq 2$ both 3.1 and 3.2 can be carried out simultaneously. That this cannot be done for $n=1$ is shown by the following example: A family of

3 sets, one consisting of two points and the other two being two equally directed closed half lines.
4. Remarks. It might be interesting to consider the necessity of the various assumptions made in the theorem.
4.1. It is natural to ask whether property $C 12$ could be weakened in that we would allow not all affine transformations but only some transformations of a special kind. As shown in 3.1 it is possible to do something in this direction; however not much more can be done as is seen from examples that follow.

The theorem would become false if in defining property Cidd we would have restricted the affine transformations by the extra condition that the determinant of the nontranslational part of the transformation be rational. Indeed, let the family contain $n+2$ sets S_{1}, \cdots, S_{n+2}, each S_{i} consisting of $n+1$ points forming the vertices of a simplex. Let V_{i} be the volume of the simplex whose set of vertices is S_{i} and assume the numbers $V_{1}, V_{2}, \cdots, V_{n+2}$ to be rationally independent. We claim that $S_{i}^{\prime}=T_{i} S_{i},(i=1, \cdots, n+2)$ with T_{i} being affine transformations with rational determinants, has property 2 . In fact, otherwise we would have $\cap_{i=1}^{n+2} S_{i}^{\prime}=\phi$ while any $n+1$ of the sets S_{i}^{\prime} would have a point in common. This would be possible only if $\bigcup_{i=1}^{n+2} S_{i}^{\prime}$ consists of exactly $n+2$ points, and the $n+2$ sets S_{i}^{\prime} are all the different subsets of $n+1$ points of $\mathrm{U}_{i=1}^{n+2} S_{i}^{\prime}$. We may denote the points by $Q_{1}, Q_{2}, \cdots, Q_{n+2}$ in such a way that S_{i}^{\prime} consists of all these points except Q_{i}. Let v_{i} be the volume of S_{i} then either (i) one v_{i} is equal to the sum of the $n+1$ numbers v_{j} with $i \neq j$ (this happens if one of the points Q_{1}, \cdots, Q_{n+2} is an interior point of the simplex formed by the other points); or (ii) the sum $v_{i}+v_{j}$ of two volumes equals the sum of two of the n remaining v_{k}, (this happens if the previous case does not occur). But $v_{i}=\left|d_{i}\right| V_{i}(i=1, \cdots, n+2)$ where d_{i} is the determinant (of the nontranslational part) of T_{i}, and either (i) or (ii) would imply a rational relation between the V_{i} contrary to our assumption.

An argument of the same kind shows the existence of $n+2$ sets S_{i} as above having the property obtained from Cidf by restricting the affine transformations by the condition that the determinants be bounded and bounded away from zero. Such an argument also applies if instead of considering all affine transformations we consider, say, the similarities, that is, those obtained by combinations of translations, stretchings and orthogonal transformations; etc.

It should be noticed that in the above counterexamples the families consist of $n+2$ sets; thus they apply even if in the theorem the assumption "the family
has property Cid" is strengthened to "every subfamily of more than $n+1$ sets has property Gd"". On the other hand it is easily seen that with this new formulation (but not with the original one) the theorem remains valid if we restrict the consideration to affine transformations with determinants bounded by an arbitrary positive number (or, alternatively, with determinants bounded away from zero).
4.2. In 3.2 we remarked that the assumption of compactness could be weakened; it is, however, impossible to dispense with it altogether. To see this let $O_{i}(i=1,2, \cdots, N, N>n+1)$ be nonvoid, open and convex sets in E^{n}. Let O_{i}^{*} be a set obtained from O_{i} by deleting a single point P_{i} from it. The sets O_{i}^{*} are not convex, yet we claim that the family consisting of these N sets has property Cid. Indeed, let $T_{i}(i=1, \cdots, N)$ be affine transformations. If every $n+1$ of the sets $T_{i} O_{i}^{*}$ have a point in common, so do a fortiori every $n+1$ of the sets $T_{i} O_{i}$. But the sets $T_{i} O_{i}(i=1, \cdots, N)$ are convex and, it is well known that finite families of arbitrary convex sets have property ${ }^{2}$. Therefore $\cap_{i=1}^{N} T_{i} O_{i} \neq \phi$, but $\cap_{i=1}^{N} T_{i} O_{i}$ is an open set, hence it must contain other points besides $T_{i} P_{i}(i=1, \cdots, N)$. Since

$$
\bigcap_{i=1}^{N} T_{i} O_{i} \subset\left(\bigcap_{i=1}^{N} T_{i} O_{i}^{*}\right) \cup\left(\bigcup_{i=1}^{N} T_{i} P_{i}\right)
$$

it follows that $\bigcap_{i=1}^{N} T_{i} O_{i}^{*} \neq \phi$, that is, our family has property $Q_{\text {b }}$ as claimed.
It is even impossible, unless some precautions are taken, to replace the word "compact" in the theorem by the word "closed". One has merely to think of the family $\left\{K_{1}, \cdots, K_{n+2}\right\}$ where K_{1}, \cdots, K_{n+1} are arbitrary sets of linear dimension n and $K_{n+2}=E^{n}$.
4.3. Finally, it is easy to see that the assumption about the linear dimension of the sets K_{α} is essential. The simplest example proving this is obtained by considering the case when each K_{α} consists of n (or fewer) points. The sets K_{a}^{\prime} consist also of fewer than $n+1$ points and a trivial argument shows that the family $\left\{K_{a}^{\prime}\right\}$ has property ${ }^{2}$.

It is also impossible to improve the theorem by dropping the assumption about the linear dimension and replacing the conclusion by "each set is either convex or has linear dimension $n^{\prime \prime}$. A trivial counterexample is obtained by taking one arbitrary set and all other sets consisting of single points. It is possible to construct more ingenious examples showing, for example, that one
cannot replace the assumption that the linear dimension is n by the assumption that the sets contain more than n points.
hebrew University,
Jerusalem.

[^0]: ${ }^{1}$ By an affine transformation we understand a nonsingular one.
 Received September 22, 1953.
 Pacific J. Math. 5 (1955), 345-350

[^1]: ${ }^{2}$ Different means labelled differently. The theorem applies also to families in which one set appears several times, for example, to a family consisting of $n+2$ identical sets.

