
CANTOR-TYPE UNIQUENESS OF MULTIPLE TRIGONOMETRIC INTEGRALS

VICTOR L. SHAPIRO

1. Introduction. It is the purpose of this paper to obtain results in Cantor-

type uniqueness for multiple trigonometric integrals similar to those obtained

previously for multiple trigonometric series ([5, 11, 12]). As might be expected,

the results in the integral case are a bit more difficult to obtain.

Vectorial notation is used for the most part throughout this paper. Thus u

designates the point in ^-dimensional euclidean space, En, with coordinates

( u ί 9 9 u n ) , t h e s c a l a r p r o d u c t ( u 9 x ) = u± x ι + + un x n , w i t h \u\={u9u)^2

and u + 0.x is the point (u ι + axί9 , un + CLxn ).

Previously the author [13], using equisummability between trigonometric

integrals and trigonometric series, has obtained in the special case of double

trigonometric integrals the following result:

Let c{u)9 in L2 on any bounded domain, be 0 ( | u | ), e > 0. Suppose the

double trigonometric integral /„ e ' u c{u) du is circularly summable (C9 1)

to f(x). Furthermore suppose fix) is in Lip Cί, (X > 0, on every bounded

domain id depending on the domain). Then the double trigonometric integral

e-ί{x>u)fix)dx

is spherically summable ( C , 1) to c iu) for almost every u.

Specializing fix) to be the zero function (which is what is meant by Cantor-

type uniqueness, [ 15, p. 274]) and using a more direct attack on the problem,

we are able in this paper both to weaken the hypotheses of the above theorem

as well as to extend the results to ^-dimensional integrals.

2. Definitions and notation. The open π-dimensional sphere with center x

and radius r will be designated by Dnix,r), and the surface of the sphere by

Cn(x$r).
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Following Bochner [ l ] , we shall say that the multiple trigonometric integral

fE c{u)eι XfU du is spherically convergent at the point x to the finite value

Lix) if the spherical partial integrals of rank R converge to L(x), that is if

(D /*(*)= ί ei{x>u)cU)du—>L{x) (asR—>oo.)
JDn(0,R)

The integral

( 2 ) < 4 α ) U ) = 2 α β - 2 α ίR lr(x){R2-r2)a-ιrdr, α > 0 ,
κ Jo

is called the (C, cc)-mean of rank R of the multiple trigonometric integral

fE c(u)e 9 du$ and this integral is said to be spherically summable (C, α)

t o L U ) i f σ < α ) ( z ) — > L ( « ) as/?—>oo.

Given F{x) integrable on Dn{xθ9r), we designate the mean value of F in

this sphere by A (F; xo;r). Given F(x) integrable on CU(XQ; Γ), we designate

the mean value of F on this surface by L{F; xo; t). Thus, designating the

volume of the unit ^-dimensional sphere, 2 πn /nV(n/2), by Ωn and the (n — 1)-

dimensional volume of its surface, 2πn /Γ(n/2), by ωn, we have

A(F;xo;r) = (Qnr
n)'1 I F(x)dx

JDn(x0,r)
(3)

L(F;xo;r) = ω"1 / F(x0 + rx)dSn. t(x)

where dS^ί is the (n — 1) dimensional volume element of C n (0,1) .

We set

V l ( F ; * o ; r ) = L ( F ; * o ; r - ) - F ( * o ) and V2 ( F;x0; r) = A ( F; xo; r) - F(x0 )

and say that F(x) has a generalized Laplacian of the first or second kind at

the point x0 equal to OCi or 0,2, respectively, if

lim 2n Vι{F;x0;r)/r2 = C^

or

lim 2(n + 2) V2 ( F ; xo; r)/r 2 = a2
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The generalized Laplacian of the first and second kind of F at x0 will be

designated by ΔιF(x0) and Δ 2 F ( % 0 ) , respectively. It is known, [6, p. 261],

that if Fix) is in class C ( 2 ) on Dnix0, r0 ), then ΔF(% 0 ) = ΔιFix0 ) = Δ2F ix0 )

where ΔF(%) is the ordinary Laplacian of F at x.

The closure of the set W is designated by W; and its characteristic function

by \ψix) The set Z is said to be a closed set of vanishing capacity if for

every r§ ZDw(0, r) is a closed set of capacity zero. It is known, [4] , that if

Z is a set of vanishing capacity then Dn(xθ9 r) - ZDniχθ9 r) is a domain.

The trigonometric integral fE e fU c iu)du is said to be of type (U) on

a domain G if

/ ei(x'u)c(u)\u\-2du
JEn-Dn(0,\)

converges spherically on G to a function Fix) which is continuous on G.

Throughout this paper En stands for n-dimensional euclidean space where

n > 2, and μ = in - 2)/2.

The function 7j(r) is the Bessel function of the first kind of order i.

3. Statement of main results. We shall prove the following two theorems

concerning Cantor-type uniqueness for multiple trigonometric integrals.

THEOREM 1. Given the multiple trigonometric integral L e fU c iu) du

where ciu) is a complex-valued function which is integrable on every bounded

domain. Let Z be a closed set of vanishing capacity. Suppose that

( i ) The integral is spherically summable ( C, 1) to zero almost everywhere.

( i i ) The (C, 1) spherical mean of rank R, σ^Hx), is such that l i m ^ ^ ^

| ^ l ) U ) | < oo inEn -Z.

( i i i ) c iu) i I u \2 + 1 ) " 1 is in L^ on En.

Then ciu) vanishes almost everywhere.

THEOREM 2. Given the multiple trigonometric integral JE eτ *u ciu)du

where ciu) is a complex-valued function which is integrable on every bounded

domain. Let Z be a closed set of vanishing capacity. Suppose that

( i ) and ( i i ) The same as ( i ) and ( i i ) of Theorem 1.

( i i i ) The integral is of type iU) on En.

( i v ) ciu)i\u\2 + I)"1 is in L2 on En.

Then ciu) vanishes almost everywhere.
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For the special case of the plane, we prove the following theorem.

THEOREM 3. Given the double trigonometric integral fE e fU c(u)du

where c{u) is a complex-valued function which is integrable on every bounded

domain. Let Z be a closed set of vanishing capacity and W be a closed de-

numerable set such that WZ = 0. Suppose that

( i ) The integral is spherically summable ( C9 1) to zero in E2 — Z,

( i i ) The integral is of type (U) on E 2 — W.

( i i i ) c ( u ) = o ( I u I ) as \u\—» oo

( i v ) c ( u) ( I u I 2 + I ) " 1 is in L2 on En.

Then c(u) vanishes almost everywhere.

4. Fundamental lemmas. Before proving the main theorems of this paper, it

is first necessary to establish a connection between the ( C, 1) spherical sum-

mability of the integral fE e ' u c (u) du and the generalized Laplacians of

the "anti-Laplacian" of this integral. In short, we shall now establish some

lliemann-type, [15, p. 270], results for the multiple trigonometric integrals.

We need prove the following lemma only for the plane, since the conclusion

is hypothesized for Theorems 1 and 2.

LEMMA 1. Let du) be a complex-valued function which is integrable on

every bounded domain in the plane, vanishes in D2{0,ro), r 0 > 0, and is o\\u\)

Suppose that σ ^ ι ) {x0 ) = o {R) where σ^ ι ) (:x;) is the ( C , l ) spherical mean of

rank R of fE e

i(x>u)c(u) du. Then fE ei(x>u) c U ) \u\'2 du is spherically

convergent.

Without loss of generality, we assume x0 to be the origin. Then with //?(%)

given by (1) and σ^Hx) by (2), we have

= 2 ίR r-3lr(0)dr+R-2IR(0)
Jo
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Since by assumption σ^ ι ) ( 0 ) = o ( R ) , to prove the lemma it only remains to

show t h a t / Λ ( 0 ) = o ( β 2 ) . But

IR(0) = [(/? + I ) 2 σ

- ( 2 R + I ) ' 1 f c ( u ) [ R + D 2

JD2 (θ,R + l ) -D 2 (θ,R)

and the proof is complete.

LEMMA 2. Let c{u) be a complex-valued function which is integrable on

every bounded domain in En and which vanishes in Z ) π ( 0 , ΓQ ), ΓQ > 0. Suppose

that

( i ) lίm D ^ I On (XQ ) I - d where σ^ (XQ) is the (C9 1 ) spherical mean of

rank R of fF e 'u* c (u)du and d is finite-valued.

( i i ) - f ei{x'u)c(u)\u\-2du

is spherically uniformly convergent in Un(xOf ί0 ), ί0 > 0, to F (x).

Then l i n i ί ^ o I %n^ι (F; xo; t )/t2 \ <_Kd where K is a constant independent of

%o and d.

Observing that for fixed u

(see [1, p. 177]), we have by assumption (ii) for t sufficiently small that

L(F;xo;t)

= -2^T(μ+l) lim / eiix°>u)c(u)\u\-2jΛ\u\t){\u\t)'μdu
R^ooJDn(o,R)

and consequently that

(4) (2n)Vι(F;x0;t)/t2= l im / e i { x Q ' u ) c(u)η{\u\t)du
R^ooJDn(o,R)

where

( r ) r - μ ] / r 2 f o r r > 0, τ ; ( 0 ) = l ,
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and η(r) i s in C .

Making the following observations:

( a ) By the second mean-value theorem applied to the real and imaginary

parts of IR(XQ) given by ( 1 ) and hypothesis ( i i ) we have IR(XO) = O(R2)9

( b ) F o r f i x e d t9 η(Rt)=O(K'2) a n d η'(Rt) = O(R'5/2) w h e r e τ j ' ( r ) =

dη(r)/dr, we o b t a i n from ( 4 ) t h a t

( 5 ) 2nyι(F;x0;t)/t2 = r ί [°° r2 σ < ι > ( * 0 )t3 Oi(rt) dr
J Γo Γ

where OC (r) = dr"177 ' ( r)/dr.

From the fact that Cί(z) is an entire function of the form Σ = 0 b(Z21 l, we

have that there exists a constant Kx such that

(6) | ( χ ( r ) | < «!Γ for r < 1

From the fact that Jμ(r) =0{r'i/2) as r —> 00, and

rfr-μ/μ(r)/rfr = - r " μ / μ + 1 ( r ) f

we obtain that there exists a constant K2 such that

(7) | α ( r ) | < K 2 [ r - ( μ + 7 / 2 ) + r- S ] f o r r > l

From (5), (6) , and (7) , the conclusion of the lemma follows readily. For

given an e > 0, choose RQ so large that \o^Hxo) \ <_ d + 6 for R > Ro. Then

for t < RQ1

9 it is easily seen that

(8) \ 2 r f t ι ( F ; x O t t ) / t 2 \ < K ( d + e ) + O ( ί 4 )

where K is a constant independent of xOi d9 and e. Taking the limit superior

of the left side of ( 8 ) as t —» 0 and then the limit of the right side as e —> 0,

we have the proof of the lemma.

LEMMA 3. Let the hypotheses be the same as in Lemma 2 except that

For if d = 0, the lemma follows immediately from Lemma 2. If d £ 0, choose

cι(u) integrable on En, vanishing for u in [En - Dn(0, 2 ) ] + Dn(0,1), and such

that fE Cι(u)ei{x°'u) = d. Set F ι ( * ) = - / £ Ci(u) \u\'2 ei(x'u)du. Then
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0 = A^Axo)- /iίF^xo) = Δ ^ U o ) - Δ F ^ Λ Q) = ΔιF(xo)-d.

LEMMA 4. Let c(u) be a complex-valued function which is integrable on

every bounded domain in En and which vanishes in Dn(0fro)9 ro> 0. Suppose that

( i ) σ^Hx), the (C, 1) spherical mean of rank R of JP eι XfU c (u)du,

is such that lim/? _» oo | σ^ (Λ O ) I = d

( i i ) c (u ) I u I" is in L2 on En.

( i i i ) - f eί(x°>u)\u\-2c(u)duJ

is spherically convergent to F(XQ). Set

i(x'u)c{u)\u\-2du.f
Dn(0,R)

Then

ϊhn | 2 ( 7 i + l ) V 2 ( F ; « 0 ; i ) A 2 | < Kd

where K is a constant independent of XQ and d.

Setting

TR(x)=- f ei(x>u)c(u)\u\-2du,
JDn{θ,R)

observing that A(F;xo;t) - l i m R _ o o A ( TR xo; t) and that for fixed u,

i { \ nnt
n Γ rn-ιL(ei{x'u);x0;r)dr

Jo

we obtain

( 9 ) A(F;xo;t)

= - lim (μ)f

JDn(0,R)

and consequently
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lίm f ei{x°>u)γ(\u\t)c(u)du
R^ocJDn(0,R)

here

U + l ) ( ^ l ) r ) ] / r 2 for r > 0, y(0) = l ,

and γ(r) i s in C ( o ° I

S i n c e γ{r) h a s t h e s a m e form a s η(r) in L e m m a 2 with μ r e p l a c e d by μ + 1,

we c a n p r o c e e d a s in t h a t l emma a n d o b t a i n

2 U + 2 ) V 2 ( F ; * 0 ; ί ) / ί 2 = 2 - 1 [°° t3r2 σ ( 1 ) (x0) β(rt) dr
Jo

where β(r) = dr" γ'(r)/dr. Then we can proceed in a similar manner to obtain

that for e > 0

ϊ ϊ m " \2(n + 2)\72(F;x0;t)/t2\ <K(d + e)

where K is a constant independent of λ'o, d, and e. Since e is arbitrary the con-

clusion of the lemma follows.

LEMMA 5. Let the hypotheses be the same as in Lemma 4 except that

lim/^oo O^HXQ ) = d. Then Δ 2 F(% 0 ) = d.

In the same manner that we obtained Lemma 3 from Lemma 2, we obtain

Lemma 5 from Lemma 4.

LEMMA 6. Let F{x) be real-valued and continuous on Dn(xo,ro ), r0 > 0.

Suppose that

( i ) A 2F(%) = 0 almost everywhere in L)n(x0$r0 )

( i i ) Tϊm \2(n + 2) V2 (F; x; r)/r2 \ < oo for all x in Dn(xθ9ro).
r —* oo

77ιeπ F ( # ) is harmonic in Dn(xOiro ).

Following the pattern of proof in [9], we give a proof for n >_ 3.

To prove the lemma, it is sufficient to show that Fix) is subharmonic in

Set
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f(x)=2(n + 2)[ ϊ h n ~ V 2 ( F ; % ; r ) / r 2 + lim V2 ( F; x; r)/r2 1/2
Γ->0 Γ-»0

for x in 0n(χ0i r0 ). Then / (A; ) = 0 almost everywhere in Dn(x0; r0 ).

By the theorem of Vitali-Caratheodory [10, p. 75] , there exis ts a sequence

of nondecreasing upper semίcontinuous functions ίgm(χ)\ such that gm(x) <

f (x) for a l l x in Dn{xo,ro), gm^x^—> f (x) a l m o s t e v e r y w h e r e in Dn(xOfro),

g ( A : ) i s i n t e g r a b l e on Dn(xoiro)9 and s u c h t h a t

lim
m

im / £ ( x ) dx — I f (x) dx for r < r0 .
-oo JDn(x0>r)*m JDn(xQ,r)

Set

^gJx)=-[ωnU-2)Yιf gmU)\u-x\2-ndu.

Then Δ~ιgm(x) is superharmonic, since gm(u) £ 0 for almost all u in Dn(xQ$ ro)

Furthermore, we observe that for fixed u

A{\x-u \2'n;x0;r) = | x 0 - u \ 2n if |%0 - M | > r

= / ι r " Λ 2 - 1 [ r 2 + |%0 - α | 2 ( 2 - Λ ) τ ι - 1 ] if \x0 ~u\ <r.

Consequently, for xι in Dn(xo,r) with r sufficiently small,

( 1 1 ) V 2 ( Δ - 1 g m ; x ι , r ) = [ ω R ( r a - 2 ) ] - 1 ^ ^ ^gju) \ \u - X ι \2'n

- r a r - " 2 - 1 [ r 2 + |SB t - u | 2 ( 2 - n) n ι ] }rfu.

Suppose g_,(*i ) s finite. Then by the upper semi-continuity of gm(u) at

%i, for e > 0 and r sufficiently small, we have from ( 1 1 ) that

V 2 ( Δ - ι g m ; * i ; r ) < [ g m ( X ι ) + ε ] [ ω n ( n - 2 ) ] - ι [ ω n ( n - 2 ) ] r 2 / 2 { n + 2 ) .

Consequently, we conclude that

( 1 2 ) lim 2 U + 2 ) V 2 ( Δ " l £ xι; r)/r2 < g(xι).
Γ->0

S i m i l a r l y , in c a s e g (%i ) = — oo, c o n c l u s i o n ( 1 2 ) r e m a i n s v a l i d .
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From the fact that Δ" g ix) is superharmonic, we have that F — Δ" g is

upper semi-continuous in Dnix0, r 0 ) . From ( 1 2 ) we conclude that

Tϊm" 2 U + 2 ) V 2 ( F ~ Δ - l g ; % ; r ) / r 2 > 0 for x in D Λ ( * o , r o ) .
Γ-»0

Therefore by [8, p. 14], ί F — Δ" g 1 is a nondecreasing sequence of sub-

harmonic functions in Dnixθ9 ro ). But limm_>(X) Δ" g ix) = 0 almost everywhere.

Therefore Fix) is almost everywhere equal to a subharmonic function, Gix), by

[8, p. 22]. But A(F x r) = AiG x r) —> Gix) for all % in Dnixθ9 r0 ). However

from the continuity of F we have A(F x r) —» F(%), and the proof of the lemma

is complete for n >_ 3. For β = 2 a similar proof can be given with the Newtonian

potential replaced by the logarithmic potential.

For the case of the generalized Laplacian of the first kind, we have a similar

lemma with a similar proof, see [9],

LEMMA 7. Let Fix) be real-valued and continuous on Dnixθ9 r0 ), r0 > 0.

Suppose that

( i ) Δ xF ix ) = 0 almost everywhere in Dnixθ9 r0 ).

( i i ) lim \2n^χ (F; x; r)/r2 \ < oo for all x in Dnix0; ro ).

Then Fix) is harmonic in Dnixθ9 ro )•

We now prove s o m e l e m m a s c o n c e r n i n g t h e s p h e r i c a l s u m m a b i l i t y iC9n) of

F o u r i e r t r a n s f o r m s .

LEMMA 8. Let Gix) be a function in L\ on En which vanishes in Dni0,ro),

r0 > 0. Suppose that Fix) = fE eι * Giu)du is in C ( 2 ) on En. Then for u in

Dnio9r0/2)-0

(13) j [e'i(x>u)Fix)~i-e i(x>u)\u\'2AFix))]dx

is spherically summable iC9n) to zero.

For, by Green's second identity, we have

(14) » ( « ) - f [e i(x>u) F (x) - {-e-i(x>u) \u\ 2 AF(x))]dx
JD(0R)
f

JDn(0,R)

"-1 f F{Rx)i(x,u)e-iR{x'ιι)dSn.ι(x)
/cπ(o,i)
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+ R n ' 1 f dF(Rx)/dR e'iR(x'u)dSnml(x)\ Ξ \u\'2(AR +BR)
JCn(θ,l) i

where dSn_ι(χ) is the (n — 1) dimensional volume element on the unit sphere

CB(O,1).

We shall now show that both AR and BR are ( C, n) summable to zero. For,

by Fubini's theorem, we have

( 1 5 ) {MR2Yι

lif
Jεn-Dn{o.ro)

=(MR2)

where M =(2π)n/2/2n ι (n-1)1 and

1 for 0 < r < 1

φι(r) =
0 for r > 1

( 1 - r 2 ) " - 1 forO < r < 1

0 for r > 1

Since for fixed u £ 0, (x, u) is a homogeneous polynomial which is also a

harmonic function in x, we have by [2, p. 806] and [14, p. 3731 that the right

side of (15) is equal to

(16) G(γ)
( y - u9u) \y ~ u \)dy

\y ~u ( Λ l y - u )"

Clearly ( 1 6 ) tends to zero a s R —»oo; so AR is (C,n) summable to zero

for u in Dn(0, r0 / 2 ) - 0.

We also observe after integrating by parts that

17) (MR2)'1 [R rψl-)Brdr
Jo n\Rl

From the above discussion concerning AR and from [ l , Theorem 1], to show

that BR is (C, n) summable to zero for u in Dn{0,r0/2) - 0 , it is sufficient to

show that
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(18) (MR2)'1 f F(x)φ ( i l l ) ! l ! _ «>-'•<*.«>,&—»0 as /?—• oo
Jπ " - 1 \ P / r>2

But by [2, p. 806] and [14, p. 373] the expression in (18) is equal to

En.Dn(θ.ro) l y - u l " " 1 n-μ<- I(R\y-u\)

- K2 dy.

(R\y-u\n-μ-2) \

where Kt and K2 are two constants depending on n.

Clearly (19) tends to zero as R—>oo for u in Dn(0, r o /2) - 0; so BR is

(C, n) summable to zero and the lemma is proved.

LEMMA 9. Let G{x) be a function in L2 on En which vanishes in ^n(0, r υ ) ,

r 0 > 0. Suppose that fE eι *u G(x)dx is spherically convergent to a function

F(χ) which is in C ( 2 ) on En. Then for u in Dn(0,r0/2) - 0

f

is spherically summable (Cfn) to zero.

For (14) also holds in this case, and as in Lemma 8, we have to show that

both AR and BR are (C, n) summable to zero.

Since both F(x) and φ (\x \/R)(x$u) are in L 2 on En, ParsevaΓs formula

gives us both (15) and (16). We therefore conclude as before that AR is ( C, n)

summable to zero for u in Dn(0, ΓQ/2) - 0.

To show that BR is summable (C9n) to zero, we obtain (17) as in Lemma 8.

Then from the fact that AR is ( C, n) summable to zero and from [3, Theorem

55], it is sufficient once again to show that (18) holds.

But by Parseval's formula, we obtain that the expression in (18) is equal

to (19). Observing that for u in Dn{Q, ro/2) - 0 and for y in En -Dn(0,r0) there

exists a constant Kn such that

I W - i ( Λ | y - « P I <κn(R\γ-u\Ti/2 for/? > l

a n d t h a t for s u c h u9 \y -u\2~n i s in L 2 on En - Dn(Q,r0), we c o n c l u d e t h a t
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(18) holds and consequently that BR is ( C9 n) summable to zero, which proves

the lemma.

5. Proof of Theorem 1. To prove Theorem 1, it is sufficient to show that

for any r0 > 0, c(u) = 0 almost everywhere in Dn(0y r o /2) . Set

*( \ f [ « ' ( * ' B ) - i - * U»>1 , u

Fι{x) = -I c(u)du
JDn(0,rQ) | u | 2

Then, Fχ(x) is in C °̂° ' on En and

AF t(%)= / eilx'u)c(u)du.
JDn(o,ro)

Set

./ \ C ( u )

which is by ( i i i ) continuous in En. Then by Lemma 2 and ( i i ) ,

Tίm | 2 n V ι ( F 2 ; % ; r ) / r 2 | < oo

r-»o

in En - Z and by Lemma 3 and ( i ) , Δ 1 F 2 ( Λ ; ) = - Δ F 1 ( Λ ; ) almost everywhere.

Set F ( Λ ) = Fχ(x) + F2 (x). Take any χ0 in F n and consider Dn{xQir\)>

ri > 0. From the definition of a closed set of vanishing capacity, we see that

there is a closed bounded set of capacity zero Zγ such that

lim \2rNι(F;x;r)/r2\ ^{AF^x)]* lim \2rtfi ( F 2 ; x; r)/r2 \ <

for x in the domain G = Dn(xθ9 ry) — ZιDn(χ9n) Furthermore almost everywhere

in Gf ΔχF(x) = ΔF t (%) + ΔiF 2 (%) = 0. Consequently it follows from Lemma 7,

that F(x) is harmonic in the domain G = Dn(x<)9 r\ ) — ZιDn(xθ9 r̂  ). But F(x)

is continuous in Dn(x 0>ri)« Therefore by [7, p.335], F(%) is harmonic in

Dfjî Oi Γ ι ) a n ( i since xQ is arbitrary, F ( Λ ) is harmonic in En

From the fact that F{x) is harmonic in En, we now have that F2(x) =F{χ)

-Fx(x) is in C ( o o ) on F w and that ΔF2 (%) = - ΔFX (%) for all x. Also by [ l ,

Theorem l ] we obtain that
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[2πYn f e-i(x u)F2(x)dx

is spherically summable (C,n) to zero for u in Dn(0, ro/2) — 0. Therefore by

Lemma 8 for such u,

f e-
i{x u)[-ΔF2(x)]dx

is spherically summable (C, n) to zero. But for almost all such u9 we have that

(2πYn f e-i(x'u)AFί(x)dx

i s s p h e r i c a l l y summable ( C , n) to c{u) S ince Δ F ^ Λ ; ) = — Δ F 2 ( % ) , we c o n c l u d e

t h a t for a l m o s t a l l u in Dn(0, ΓQ/2), C(U) = 0, which p r o v e s the theorem.

6. Proof of Theorem 2. T h e proof i s quite s i m i l a r to t h a t of T h e o r e m 1.

O n c e a g a i n it i s su f f ic ient to prove t h a t for any r 0 > 0, c(u) -0 a l m o s t every-

where in Dn(0, ro/2).

Set

F ι ( % ) = - / [ e i ( * tt)-l-ί(*,α)] — du,

and

F 2 ( % ) = - lim ί ei(x>u) ίί^ldu.
R-.ocJDn(o,rR)-Dn(o,r0) | α | 2

By (ii i), F2(x) is continuous. Then in a manner exactly analogous to the proof

of Theorem 1 except that Lemmas 4, 5, and 6 are used instead of 2, 3, and 7,

we obtain that F2(x) is in C^°°^ and that ΔF2 {x) = - Δf\ (x). By Lemma 9

and [3, Theorem 55], we obtain that / £ e " ι ^ ' w ^ [ ~ Δ F 2 (x) ]dx is spherically

summable (C$n) to zero for u in Dn(0, ro/2) - 0 . But by [1 , Theorem 1] for

almost all such u, we have that

(2 πyn ί

is spherically summable ( C , n) to C ( M ) . Since ~ Δ F 2 (A;) = Δ F t (x), we con-

clude that c ( u ) = 0 almost everywhere in Dn(0,ΓQ/2) and the theorem is proved.
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7. Proof of Theorem 3. L e t F{ix) be a s in Theorem 2 with n r e p l a c e d by

2, and le t

F 2 U) = - U m /
R-oo JD2{θfR)-D2(θ,ro) \u\Z

where r0 > 0. This limit exists for x in Z by ( i i) and for x not in Z by ( i ) ,

(i i i), and Lemma 1. Furthermore by (i i) F2ix) is assumed continuous in E2 - W.

It is clear from the proof of Theorem 2 that to prove this theorem we need only

show that F2ix) is continuous in E2 or what is the same thing that Fix) =

Fγ ix) + F2ix) is continuous in E2.

By (i i) Fix) is continuous in E2 -IF, and by Lemmas 5, Δ2Fix) = 0 in

E2 - Z. Let D2ixOfrι ) be any disc which has a null intersection with W. Then

as in the proof to Theorem 1, Fix) is harmonic in this disc and consequently

in E2 - W. We also observe that now Δ 2 F(%) = 0 in the whole plane and further-

more that Fix) is in L2 on any bounded domain.

Let Wι be the set of discontinuity points of Fix) and let XQ be an isolated

point of Wι» Then there is a closed disc D2ixo,r2) whose intersection with

Wι is xQ. Then by the above discussion we have that Fix) is in L2 on D2ix0% r 2 ),

harmonic in D2ix0i r2) - XQ, and satisfies the further condition that Δ 2 F(% 0 ) = 0.

Consequently by [12, Lemma 4], Fix) is then harmonic in the whole disc and,

a fortiori, continuous at XQ.

Therefore Wl9 has no isolated points and Wι is a perfect set. But W\ C W is

at most denumerable, and by [10, p. 55], Wx is then the empty set. Thus Fix)

is continuous in the whole plane, and, as mentioned above, the proof of this

theorem is reduced to that of Theorem 2.

8. Appendix. In closing we point out that the assumption W and Z have a

null intersection in Theorem 3 is a necessary one. For consider the double

trigonometric integral fE c iu) eι^x'u'du with C ( M ) = 1 . ( i i i) and (iv) of

Theorem 3 are clearly satisfied. Observing that the spherical mean of rank R,

(%), w i th Λ; 5̂  0 is given by

£ ) ~4πJ2i\x\R)\x\-2=OiR'ι/2),

we see that ( i ) is satisfied with Z equal to the origin. Furthermore, we observe

that for x £ 0

lim / \u\-2ei{x>u)du = 2πfO°i Joir)r'ιdr.
R-+OG JD2(O,R)-D2iθ,l) J\χ\
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Consequently ( i i ) is satisfied with W consisting of the origin. But W and Z do

not have a null intersection, and the conclusion of Theorem 3 does not hold.
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