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Numerous results relating the location of the zeros of a sequence
of polynomials to the form of possible limit functions of the sequence
are known. These results are due in the main to Laguerre, Lindwart,
Pόlya, and Korevaar. Summaries and references are to be found in
[5] and [1]. For example, the following is a theorem of Lindwart and
Pόlya [3]. Let Pn{z) be a sequence of polynomials with all zeros real
and let Pn(z) converge uniformly in some domain to a function no
identically zero. Then Pn(z) converges, uniformly in every compact sub-
set of the plane, to an entire function of the form e~cz2 f(z)f where c is
a constant I>0 and f(z) is of genus <I1.

We shall show, in Theorems 2 and 3, that the state of affairs is
violently altered if instead of polynomials we consider rational functions
with real zeros and real poles. Essentially, the convergence and-or
non-convergence can be anything compatible with the fact that no
limiting function, not identically zero, can have a non-real zero.

Various theorems of Saxer, Montel, and Obrechkoff specify the pos-
sible form of the limit of a sequence of rational functions. A resume
and references are contained in Obrechkoff [5]. All of these results
depend on conditions on the rational functions involving either the
location of the poles relative to the zeros or the behavior of expressions
involving poles and residues.

The proof of Theorems 2 and 3 hinges on the fact that if f(z) is
holomorphic and ^ 0 in ^ z > 0 , then there exists a sequence of rational
functions Rn(z) with real zeros and poles such that Rn(z)~^f(z) uniform-
ly in every compact subset of ^ X > 0 . This is a special case of Theorem
1 below, which is similar to a previous result of ours for polynomials
[4].

THEOREM 1. Let Γ be a rectifiάble Jordan curve on the z-sphere
and let D be one of the two domains determined by Γ. Let f(z) be
holomorphic and φQ in D. Then there exists a sequence of rational
functions Rn(z), n^X, such that all zeros and poles of Rn{z) are on Γ
and Rn(z)->f(z) uniformly in every > compact subset of D.

Note. If oo0Γ, then each Rn(z) is of the form P(z)/Q(z), where P
and Q are of the same degree and have zeros only on Γ. For ooeΓ,
P and Q may have different degrees.
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Proof. If necessary, a linear transformation in z enables us to
assume that D\JΓ is bounded and OeZλ As for the function f(z) we
may assume that f(z) is holomorphic and ψ^O in D\JΓ. For let Pn(z)
be a sequence of polynomials tending to log f(z) uniformly in every
compact subset of D. The sequence exj)(Pn(z)) approaches f(z) uniform-
ly in every compact subset of D. Finally, we assume that /(0)=l.

The proof hinges on the following integral representation.

LEMMA 1. Let f(z) be holomorphic and =£0 in D\JΓ. Then there
exists a real-valued function Q(ζ)f defined and continuous on Γ', such
that

(1) log/(«)== I —-—Q(ζ)dζ, zeD.

Here log f(z) is that branch which vanishes at 2=0.

The reality of Q is essential in the use we shall make of this re-
presentation. We omit the proof of this lemma; it follows from [4,
Lemma 2.3] after a simple integration by parts.

Now (1) may be written as

(2) log f{z)= \ Γ - i — l]Q(ζ)dζ = c + \ Qlζ)d^ , zeD,
JrLζ—Z ζJ Jr ζ — z

where c is a constant. From the definition of the integral in (2) it
follows that for each ε>0 and each compact subset AC.D there exists
a set of points on Γ, ζQ, ζl9 , ζm=ζ0, progressing around Γ in the
positive sense with respect to D and such that

( 3 )
fc-i ξlc-Z

ze A,

where ξk is any point of the interval (G-i, G) of Γ. Since the values
Q(ξk) are real, Theorem 1 is a consequence of (3) and the following
lemma.

LEMMA 2. Let Γλ be any Jordan arc joining the distinct points ζ1

and ζ2. Then there exists a point ξ on Γλ with the following property.
For each real number s there exists a sequence of rational functions

all zeros and poles on Γlt such that

- C i >(4) i ? m ( s H e x p Γ ^
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uniformly for \z — ξ|I> V > 0 .

Proof of Lemma 2. For each positive integer m there exist two
distinct points ξ'm and ξ'ή on ΓΎ such that the line through these points
is parallel to the line through Ci and ζ2, and \ξ'm—?^|<l/m. With pro-
per labelling we may set

and

The points ξ'm, ξ£ have at least one limit point on Γlf say ξ; clear-
ly we may assume that ξ'm-*ξ and ξ'ή —> ξ as m —> oo.

Set Λw=[te/ίJ and

where \_E] denotes the greatest integer not exceeding E. Ifw=l/(ξ—z),
then

For | ^ - f | ^ ; ^ > 0 , w; is bounded and

log #m(z) = ̂ m(f m -

uniformly for |« — f | ^ ; ^ > 0 . Exponentiating yields (4). This completes
the proof of Theorem 1.

THEOREM 2. Let D be a simply-connected domain contained in
^z^>0 and let D* be the reflection of D in ^z^Q. Let f(z) be an
arbitrary holomorphic function in D, fφd in D. Let f*(z)=f(z); f*(z)
is holomorphic and 7^0 in D \ Then there exists a sequence of rational
functions Rn{z) such that

1° All the zeros and poles of Rn{z) are real.
2° Bn(z) —• f(z) uniformly in every compact subset of D and JRn(z)->

cf *(z) uniformly in every compact subset of D*, where c is a
constant of modulus 1.

3° The sequence Rn(z) is non-normal at every point of the comple-
ment of D\JD*.
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Proof. By use of Runge's theorem it is e&sy to show, by ap-
proximating simultaneously to two different functions, that there exists
a sequence of polynomials Pn{z) with the properties:

(a) Pn(z)~+logf(z) uniformly in every compact subset of D.
(b) For any zQ ψ D and any r > 0 there exists n0 such that for %>

n0 the values assumed by w = Pn(z) for |z —20 |<V include points of
&w<^-~n as well as points of &vj>n.

By Theorem 1 there exists a sequence of rational functions RJz)
with real zeros and poles such that

( 5 ) |2j>n(s)_^co|<JL , z 6 {\z\^
n

The first part of 2° follows from (5) and (a). From (5) and (b) it fol-
lows that the sequence Rn(z) is non-normal at every point of
D.

Since Rn(z) has real zeros anά poles we liave

where an is a sequence of real constants. The remaining conclusions
of Theorem 2 follow provided we pick a subsequence of the Rn such
that an~->a.

It is possible to replace the f(z) of Theorem 2 by the constant zero.
Namely, if Rn(z) is the sequence obtained from Theorem 2 when /(«)=
1, then Rn(z)jn will tend to zero in D\JD* and the specifications of (b)
are strong enough so that this new sequence is still non-normal outside
of D\JΌ%.

THEOREM 3. Let D be a simply-connected domain in the z-plane,
symmetric with respect to the real axis and containing no points of the
interval x<ίθ of the real axis. Let f(z) be holomorphic and φθ in D,
and let f(x) be real on the single interval γ common to D and the real
axis. Then there exists a sequence of rational functions Rn{z) such that

1° All zeros and poles of Rn(z) are real and negative.
2° Rn(z)-*f(z) uniformly in every compact subset of D.
3° The sequence Rn{z) is non-normal at every point of the comple-

ment of D.

Proof. Since it is permissible to change the signs of f(z) and Rn(z),
we may assume that /(a?)>0 on γ. Now ζ==ξ + iη=zm maps the z-
plane, cut along the negative real axis onto f>0 and maps D onto Δ,
a domain symmetric with respect to ^=0 and containing a single in-
terval Γ of ?=0. Set f(z)==F(ζ).
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By using Runge's theorem again it is easily seen that there exists
a sequence of entire functions gn(ζ) = Q'xχ> Pn(ζ) such that:

(6a) gn(ζ)φ0f gn(ξ) is real and positive.

(6b) gn(ζ)~^F'(ζ) uniformly in every compact subset of Δ.

(6c) The sequence gn(ζ) is non-normal at every point of the comple-
ment of Δ.

Set

MC)=(0»(C))1/a, hn(ξ)>0.

By virtue of (6a), hn(ζ) is entire. Also

(7) gn{ζ)-hl{ζ)==hn{ζ)K^).

Let An denote the compact set {£Ξ>l/ra} f\{\ζ\<Ln] and let

Mn=l+ sup |

By Theorem 1 there exists a sequence of rational functions rn(ζ) with
all zeros and poles on f=0 such that

\rn(ζ)~hn(ζ)\<llSnMn, ζeAn.

Then \rn(ζ) — hn(ζ)\ has the same bound in An and it follows that

(8) ln/CK(C) - hn(ζ)hn(ξ) I <Hn, ζeAn.

Combining (6), (7), and (8) it is clear that the function Rn{z) defined by

Rn(z)=rn(ζ)rjξ) has the properties 2° and 3° of Theorem 3. Finally,
each r(ζ) is of the form

with (Xj and βk real, and hence each R(z) is of the form

j

Thus Rn{z) also satisfies 1° and the proof is complete.
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