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1. Introduction. An inequality for Lebesgue area which corresponds
to the fact that the measure of a quadrilateral is not less than the
product of the distances between the two pairs of opposite sides may
sometimes be useful for the study of this area. This inequality is an
extension of a result of Besicovitch [2],

The important results of Cesari [4] and Federer [8] showing the
equivalence of Geocze and Lebesgue area will be used to show that
several other 'areas' are equivalent to these two.

This paper depends upon definitions and results of [11] and [12].
In particular we shall use the area defined in [11] which agrees with
Lebesgue area for surfaces in Euclidean space.

Let Q be the square 0<Lu, v<^l having consecutive sides α, b, c,
and d. The set of continuous functions on Q into m, the space of bound-
ed sequences [1], will be denoted by C, and the family of homeomor-
phisms of Q into Q by H.

Let x, ye C. Then x is defined on QxQ to the nonnegative real
numbers by

x(P, (i)=\\x(v)-x((j)\\

for (p, q)eQxQ. If there exists a positive real number M such that

x(p, q)<*M\\p-q\\

for all (p, q)eQxQ then x is Lipschitzίan. If x(p, q)^y(ρ, q) for all
(p, q)eQxQ, then we shall write x^ίy. The Lebesgue area of x is
denoted by L(x). If x^y then L(x)<LL(y) [KolmogorofΓs principle].

If i and k are distinct positive integers, let πιk be the plane in m
consisting of those points all of whose components, except the ith and
kth, are zero. The set of all planes πίk is 77. Let E2 be the Euclidean
plane provided with a cartesian coordinate system, and let Tlk be the
homeomorphism of Ez onto πίJc defined by

where (s, ί)eE\ ^ = s , w* = t, and w1 = 0 for iφjφk. If ECE'\ and
E is Lebesgue measurable, then the measure of Tlk{E),\Tilz(K)\, is the
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Lebesgue measure of E.

If x, xneC, n=^\, 2, •••, we write xn—>x for uniform convergence
of xn to x. If / and g are twτo functions with range / C domain g,
then gf is the composition of / and g.

In [12] we were interested in geodetic properties of Lebesgue area,
and definitions were framed accordingly. Now we are interested in pro-
perties which are analogous, equivalent for light mappings, but possibly
different in general. The geodetic distance between two points in the
parameter square Q is obtained by considering curves in Q joining these
two points. In this paper we shall define a pseudo-geodetic distance by
considering curves in a "middle-space7 ' . Every curve in Q corresponds
to a curve in the middle-space, but not conversely. Consequently the
pseudo-geodetic distance may be less than the geodetic distance, and
the results of [12] will necessarily hold with the modified definition.

If / is continuous on [0,1] into m let /'(/)=diameter range / . If
x 6 C, define xμ on Q x Q by

%μ{v, Q)= inf μ(xg) {p, q)eQxQ

for all continuous functions g on [0, 1] into Q with g(0)=^ρ and g(l) = q.

In [12] a function xμeC wτas constructed such that {xμ)--=-xμ . Further-

more, if xk->x then xkμr+xμ . Finally, xμ is the monotone factor in a

monotone-light factorization of x and has the same Lebesgue area as x.

2. An inequality for Lebesgue area. In this section the funda-
mental inequality of the paper is proved.

LEMMA 1. Let πeίl, If feC is lAynchiizian, and range fCπ,

then L(f)^\f(Q)\.

Proof. Let J be the Jacobian of / , and let R be the set on which
J is defined. Then | Q - ^ | - 0 and, consequently, 'f{Q)\ = \f{R)\. Now,
by Federer's Theorem [6] ,

=fϊ J(u,v)\dιιdv = \[ \J(u,v)dudv

, t),

w h e r e N((s, t), f, R) i s t h e n u m b e r , p o s s i b l y i n f i n i t e , of p o i n t s (u, v)e Q
such that f{u, v)=(s, t).

If c is an oriented simple closed curve in the plane, and / is continu-
ous on some region containing c into Rr (the plane of ordered pairs of
real numbers with the topology of the Euclidean plane), then for each
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peR2 let />(/), / , c) be the index of p relative to / and c [9, IT. 4.34].

LEMMA 2. Let f be continuom from Q into K2. If //(p, / , Q*)φO,
where Q* is the boundary of Q, then ρef(Q).

This lemma is proved in [9, IV. 1.4-26].

LEMMA 3. Let f=(fι, f1) be continuous from Q into R\ Suppose

p e az^Γ(p)=0 , p e

If y and z a r e real numbers i v i t h 0<^y<Cr ond 0<^z<^s, t h e n (?y, z ) e

Proof. If we use the notation of Lemma 2 and the result of [9,
II. 4.35] we see that μ(p, f, Q*)^Q if p={y, z). An application of
Lemma 2 completes the proof.

Let xeC and x=lM be a monotone-light factorization of x. If (p, q)
eQxQ, and G is the set of continuous functions g defined on [0, 1] into
range M with g(0)=M(p) and g(l)=M(q) then define

&G(P> $)= ίnf {length lg) for all geG.

This definition is independent of the particular factorization of x. Finally,
if x=lxμ, is the indicated monotone-light factorization of x, and geG
(for M=Xμ), then

length lg < length g .

From this it follows that

DEFINITION 1. If xeC define

ct(x)= min χ(p, q) and A(x)= inf xσ(p, q).
pEa, QEQ, pea, qea

Define β(x) and B(x) by replacing a by b and c by d. Let

{ 1^(1, v) — xi(0, w)\}{ min

LEMMA 4. If xn-*x in C then A ( x μ ) ^ l i m inf A(xnμ).

Proof. We may suppose that for some M > 0 , A(xnμ)<CM for all n.
Hence there exist continuous functions gn on [0, 1] into range xnμ with
g.n(0) 6 xnμ,(a) and gn(l) e xnμ(c), such that

length gn < A(xnμ) + 1 /??. < Λί + 2 for all w.
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We may now use Hubert's Theorem l,o conclude that a subsequence
(still denoted by the same subscript) of the glb converges in the sense
of Frechet to a continuous function g. Let p e range g. There exist
Frechet equivalent representations γa of gtι, and a point te [0, 1], such
that γn(t)-+p. Let

A subsequence of Pn (still denoted by the same subscript) will converge
to a point P e Q. Then

^\\p-χ»μ(Pn)\\ -f | ί ^ ( P , ) - α V ( P w ) l !

Thus range g is contained in range xμ . Also #(0)e α?μ(α) and
Hence

.4(#μ).<l length #<Ilim inf length r7Λ = lim inf A(xnμ) .

If ^ e C is quasilinear (Q may be subdivided into a finite number of
triangles on each of which z is linear) then there exists a za e C such

that z(! is Lipschitzian, ^ = (^X;=έ6<, and L{z)=L{z(4) [12].

LEMMA 5. If zeC ΐs quasilinear then

Proof. It is sufficient to show that

Let / be the flat transformation from Q to πu defined by

where

)= min zg(p, g), f\p) = min zΠ{p, r/), fj(p) = (

If p, qy p
r 6 Q, then

> Q)^Zfi(P> P') + z<i(P'> Q) >

min za{Vy q)^zG(pf p')+ min zG(v' q),

mm zG(p, q)~ mm za{p', q)^LzG(p, pf) .
q 6 re (ί S re

The interchange of p and p', and of a and 6, shows that

\\f{v)-f{v')\\^Up,V).

Then by Kolmogoroff's principle and Lemmas 1 and 3,
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We now make the convention that ( ) . c o = 0 .

THEOREM 1. L(x)^A(xIJ)B(xμ)>.A(x)B(x).

Proof. Let {zn} be a sequence of quasilinear functions in C such
that zn-+x and L(zw.)->L(#). Then

L(x)= limL(3.w);>lim sup A(znμ)B(znμ)
W->co W-^ co

I> {lim inf ^4(^??μ)} {Km inf B(z.nμ)}

3. Functionals related to Lebesgue area. The alternative definitions
of Lebesgue area given in this section may be of some interest to the
reader.

For convenience we reserve the letter F to denote a finite subset
of H such that ranges of distinct elements of F have no interior points
in common.

DEFINITION 2. The functionals ψ*, φ, and Φ are defined on C by

ψ*(x)= sup Σ supγ i k{xh),

ψ(x)= sup
F

Φ(x)=

THEOREM 2. If xeC is light and if Φ{x)<Coz then there exists an
arc g connecting a and c such that xg is rectifiable.

Proof. If x is light then xμ is a homeomorphism and B(
Since A(#μ)i?(#μ)< oo we can conclude that A(x) <LA(Xμ) <C.oo, from which
the theorem follows.

Let Ω be any of the three functionals ψ*, <p, or Φ. A familiar
argument gives the following.

LEMMA 6. Ω(x) I> Σ Ω{xh).
heF

LEMMA 7. Φ*<ψ<LΦ<LL.

Proof. It is sufficient to recall that L(x)^J^L(xh).
he F

After we show that ψ*=L for flat transformations we can use the
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results of Cesari and Federer to conclude that the inequalities in the
lemma are actually equalities. It will be more convenient for us to use
the equality of Peano and Lebesgue rather than that of Geocze and Le-
besgue area. If xeC, then P(x) is the Peano area of x. If L(x)<^oo
then it is known that P(x)--=L(x) [11].

If N is a positive integer let πN be the transformation on m into
itself determined by

where

LEMMA 8. P{πNx)=L{πNx).

Proof. Let T map range πN into EN by

Then T and T~ι are both Lipschitzian with constants not exceeding iVl/J

and 1, respectively. Thus if zeC is quasilinear we can use the defini-
tion of area in m [11] to conclude that

(1 IN) area TπNz <= area πNz < area TπNz .

Thus

(HN)L\Tπ"x) <: UπNx) <; L'(Tπ»x)

where L' is Lebesgue area in EίY, and an analogous inequality relates P
and P', where P ' is Peano area in EN. lίP(πNx) is finite then P'(TπίYx)
=L\TπNx) are also, and furthermore, so is L{πNx). From what has al-
ready been said we can conclude that P(πfirx) = L(π;vx).

Let / be continuous from Q into πvz. If pβπu and p(p, f,c)Φ§
for a simple closed curve c bounding a Jordan region J contained in Q,
then there are open oriented rectangles (sides parallel to the coordinate
axes) R and R with p 6 RCclosure R' C R C closure R and /̂ (cy, / , c)τ^0
for all qe R .

LEMMA 9. Under the conditions of the preceding paragraph there
is a simple closed curve B with f(B) dR — closure R' and such that μ{q, /, B)
^ 0 for all qeR'.

Proof. There are only a finite number of components AJf j=l, 2,
• ••,92 of f~ι (closure Rf) whose intersection with f~ι(p) is not empty.
The minimum distance between any two of these components is positive
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as is the distance between any of these components and the complement
of f~ι(R) Hence there exist simple closed curves cj bounding Jordan
regions J} with AjCZJjdf~\R). Some of the curves will not be con-
tained in Jordan regions bounded by any of the other curves. Let di9

i = l , 2, •••, m, be this set of curves and denote the regions they bound
by Kt. Suppose that μ(p, / , c?4)=0 for all i. By introducing (ra-fl)
arcs joining c to d19 d% to di+ι for l<Li<Lm — l and dm to c, we can de-
compose J—\JKί into Jordan regions Lx and L, with bounding curves
eλ and e2. Furthermore

, f, c)~%KPf f> d)=μ(p, f, ej + μfa f, e,).

Hence either μ(p, / , e^)φQ or μ(p, f, e 2 )#0, which implies that

Therefore μ(p, / , dt)j^0 for some dh. Let 5 be this dt .

LEMMA 10. Let he H with h(Q*)=B. Then Ψ*(fh)^\Rf\.

Proof. Choose β>0 and less than (width /2')/10. Take i? so that
the distance between the boundary of R' and the boundary of R is less
than e. Let the sides of Rf be Z, Γ, £, and T. Since //(p, f,B)^0
there is a point g e 5 such that the distance between f(q) and one side,
say X, of R' is less than e. Start from g and traverse B in a positive
sense (with respect to the Jordan region J which it bounds). There will
be a point q1e B such that if r is between q and qλ (going from q to qx

on B) the distance from f(r) to X does not exceed 2e, and no point be-
yond q1 has this property. Now start from (jι and obtain c/2 such that
for any point s between qτ and g2 the distance between f{s) and Y", a
side of i2r adjoining X, does not exceed 2# but that no point beyond q2

has this property. (It may be, of course, that points beyond q2 have
images close to X.) In this manner B is divided into a finite number
N of closed intervals having only endpoints in common such that the
image of a single interval will be within distance 2e of one of the sides
of Rf. Since μ(p, f, B)φO, it is necessary that AΓ>3.

If iV=4 take heH so that the images of the sides of Q are the
four intervals into which B is divided. Then

where A and B are the lengths of adjoing sides of R\
If AΓ> 4 let W be a strip of width e whose centerline iv is parallel

to one of the coodinate axes and which divides R into congruent rectang-
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les S{ and S 2 . There exists an open rectangle S" which contains the
closure of Sι and for which /*(p, / , c)φQ if peS". Thus there is a
Jordan curve B" with f{B")CS"-Si and μ(p, / , B")=^0 for p e S. Let
m be a component of B —B which contains a point whose image is
within a distance e of the center of R. If m were all of B ' we could
conclude that μ(p, f, J5)^0 for all vef(B"), but this is false for any
pe S1 — R/. Thus m connects two points of B whose images lie near
opposite sides of R' and thus divides J into two Jordan regions Jλ and
J2 with bounding curves BL and B.L. The image of Bv is contained in
R — R—W as is the image of B.z.

Two of the intervals into which B was divided, which correspond
to opposite sides of R\ will each have been divided into two smaller
intervals by the arc m. One of each of these pairs of smaller intervals
will belong to B1 and the other to B2.

The appropriate intervals for B% are all those contained in Bh which
originally belonged to B plus the arc m, i=l, 2. Thus

where Nt is the number of intervals into which BL is divided.
For the proof of Lemma 11 we shall wish to remember that Jγ and

J.z have no interior points in common.
If iVχ = 4 and JV2=4 then h1 and h2 can be defined as was h in the

case N=-Λ. If W were chosen so as to make A/2 and B the width and
length of the rectangles into which Rr was divided then

If either A^>4 or iV2>4, the preceding procedure can be repeated
using a sufficiently narrow dividing strip. Since N is finite we can con-
clude that ψ*(fh)^\K\.

LEMMA 11. If heH, B=h(Q*), G={p\μ(p, f, B)^0}, then ψ*(fh)

Proof. Choose e^>0. Let Rif i=l, 2, , JV, be a finite set of non-
overlapping open (oriented) rectangles contained in G with \\JRi\^>\G\ —e.
For each i take another such rectangle Kt whose closure is contained in Rt

and such that \Rί\'^>\Ri\'-elN. By Lemmas 9 and 10 there exist hL e H
with ^*(Ai)^ | i e ί | and BmΓ\Bn = 0 for mφn where B^h^Q*). Let Jt

=hi(Q). If we knew that Jmf\Jn=0 the lemma would follow since we
could take F to be this collection of h.

Suppose that JmΓ\Jn7^0 Since Bmf\Bn=0, we may assume that
JmCUn- Fix w > 0 and use the method of the proof of Lemma 10 to
bisect Rn into rectangles S{ and S2 containing rectangles S\ and So respec-
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tively such that

(ii) If Kλ and K2 are appropriate Jordan regions for SΊ and S2 then
K\\JK2=Jn and Kλ and Kλ have no interior points in common.

In a similar manner we can subdivide S[ and S'2. Take j so that
I i4 | /2 j <w. The area of a rectangle of the collection .Shinto which Rn

is divided will be less than w. Let &" be a collection of smaller rec-
tangles, one contained in each element of J5f Let J Γ b e the collection
of associated Jordan regions. We can take ^' and J ^ s o that

( i ) \\j %\>\R'n\-W,
west

(ii) distinct elements of J ^ h a v e no interior points in common and

υ κ=jn.

Let Hn={he H\ range ft e .^*}. For some k e iϊM , Jm C range ft. Let
ft* be one such ft. Now put ^ δ ? =fl w -{ f t* } . Then

Thus

In a similar manner we can conclude that if

hm.(Q)Chn(Q) i = l , 2. - . . , ikf

then

Now let JP consist of those ftm for which range hm is not contained
in range hn for mφn. Then

LEMMA 12. ψ*{f)=L(f)

Proof. By a result of Cesari [5], similar to results of Rado and

Reichelderfer [10] and Federer [6],

where
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Thus, by the preceding lemma,

THEOREM 3. P=ψ*=φ=Φ=L.

Proof. We saw in [11] that L(x) = l imL(Λ) and P(x) = limP(ππx).

By Lemma 9 we can conclude that P=L. Since ψ*=L=P for flat trans-
formations, we have that P(x)<Lψ*(x) for all xeC. Thus

Let xG(p, Q) be the geodetic distance between p and q, that is,
xσ(p, q)=inί length xg for all g continuous on [0, 1] into Q with g(0)=p
and g(l)=q. According to Busemann [3] an area S is intrinsic if S(x)
=S(y) whenever xG=yΘ. Let Cι=^{xeC\x is light}. If we use the
definition of Φ and the fact that xμ is a homeomorphism if x e Cz we
see that Φ, and therefore L, is intrinsic on Cτ.

Choquet suggested an inequality stronger than that the author was
able to prove. His inequality would be that of Theorem 1 if geodetic
rather than pseudo-geodetic distances were used.
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