# SIMPLE FAMILIES OF LINES 

## ANDREW Sobczyk

1. Introduction. Planar families of lines are studied by P. C. Hammer and the author in [2], and families of lines in the plane and in ordinary space by the author in [6]. Families of lines in vector spaces $E_{3}$ and $E_{n}$ are mentioned in connection with convex bodies in [1]. The present paper gives a classification of simple types of families in $(n+1)$ dimensional real vector space $E_{n+1}$. Theorems are obtained on relations between the type of the family $F$, and the properties which $F$ may possess, of containing exactly one line in every direction, and of simply or multiply covering the points of $E_{n+1}$.
2. Notation and definitions. With respect to an $n$ dimensional vector subspace $E_{n}$ of ( $n+1$ ) dimensional real vector space $E_{n+1}$ a line $L$ in $E_{n+1}$ will be called horizontal if it is parallel to $E_{n}$. Any family $F$ of non-horizontal lines in $E_{n+1}$, for which there is a hyperplane $H$ parallel to $E_{n}$ such that each point of $H$ is covered exactly once by $F$, determines a single valued function $y=f(x)$ on $H$ to any parallel hyperplane $K: x, y$ are the points in which the line $L$ of $F$ which covers $x$ intersects $H, K$. Corresponding to any basis in $E_{n}$, and choice of origins in $H, K$, the function $f(x)$ will be represented by real valued functions $y_{i}=f_{i}\left(x_{1}, \cdots, x_{n}\right), i=1, \cdots, n$. (For definiteness, let $E_{n+1}$ be Euclidean, and choose the origins in $H, K$ to be their points of intersection with the line through the common origin of $E_{n+1}, E_{n}$, which is orthogonal to $E_{n}$.)

A family $F$ will be said to be composed of two lower dimensional associated families, $F_{p}$ and $F_{n-p}$, if there is a choice of basis such that the $n$ real functions have the form $y_{i}=f_{i}\left(x_{1}, \cdots, x_{p}\right), i=1, \cdots, p ; y_{j}=$ $f_{j}\left(x_{p+1}, \cdots, x_{n}\right), j=p+1, \cdots, n$. (The dimension of an associated family of course is one greater than the subscript; thus for example a three dimensional family may be composed of two associated two dimensional families.)

A family $F$ is primary if it contains exactly one line in every nonhorizontal direction, representative if it contains exactly one line in every direction. We say that a family $F$ of lines is simple if every point of $E_{n+1}$ is covered exactly once by the family; outwardly simple if every point exterior to some sphere $S_{n}$ has the same property in relation to the family. If the distances from the origin of the lines of an outwardly simple family are bounded, then for a sufficiently large sphere $S_{n}$, if $P, g(P)$ are the points in which the line $L$ of $F$ covering $P$ pierces $S_{n}$,

Received June 30, 1954.
the transformation $g$ is an involutory mapping of $S_{n}$ into itself which has no fixed point. By the theorem proved in [4], if $g$ is continuous, such an outwardly simple family covers the interior of $S_{n}$ and therefore covers all of $E_{n+1}$. Note the difference in the present usage of the term outwardly simple, and the usage in [2], [1] (where in order that $F$ be called outwardly simple the additional requirements are made that $F$ is representative, and that the corresponding involutory transformation $g$ of $S_{n}$ into itself is continuous and has no fixed point.)
3. Stacks and sheafs. In case the lines of $F$ are all contained in the $p$-sheaf of all $p$-flats in $E_{n+1}$ parallel to a fixed $p$ dimensional vector subspace $E_{p}, F$ will be called a $p$-stack, $1 \leqq p \leqq n$. If $p=1$, the 1 -stack or 1 -sheaf $F$ is a simple sheaf of parallel lines in $E_{n+1}$. A $p$-stack $F$ may be such that lines of the sub-family, for each of the parallel $p$ flats $R_{p}$, are contained in ( $p-1$ )-flats of a $(p-1)$-sheaf in $R_{p}$; such a family may be called a $p,(p-1)$-stack. A family $F$ is a $p,(p-1), \cdots$, $q$-stack if it divides successively into sub-families contained in parallel $p-,(p-1)-, \cdots, q-$, sheafs, where not all of the sub-families in the flats of lowest dimension $q$ are stacks. Evidently a $q$-stack is a $p, \cdots, q$ stack for all $p$ in $q<p \leqq n$. A $k$-stack, for any $k \leqq n$, cannot be a primary family, since the directions of its lines are confined to the directions contained in a $k$ dimensional subspace $\mathrm{E}_{k}$.

A family $F$ of non-horizontal lines is an $n, \cdots,(n-p)$-stack if, with respect to some basis in $E_{n}$, the last ( $p+1$ ) equations for the family are of the form

$$
\begin{aligned}
y_{n} & =x_{n}+u_{n}, y_{n-1}=x_{n-1}+u_{n-1}\left(x_{n}\right), \cdots, \\
y_{n-p} & =x_{n-p}+u_{n-p}\left(x_{n}, \cdots, x_{n-p+1}\right) .
\end{aligned}
$$

This follows since $y_{k}=x_{k}+c_{k}, c_{k}$ constant, is the equation of a $k$-sheaf in a $(k+1)$-flat, $k=1, \cdots, n$.
4. Linear transformation corresponding to a pencil. Choose a basis in $E_{n+1}$ so that the equations of $H, K$ are respectively $x_{n+1}=a, y_{n+1}=b$. Then points in $H$ may be denoted by $(x ; a)$, in $K$ by $(y ; b)$, and any point in $E_{n+1}$ by ( $z ; z_{n+1}$ ), where $x, y, z$ are in $E_{n}$.

We determine the transformation $y=f(x)$ which corresponds to the pencil of lines through a point $\left(w ; w_{n+1}\right), w$ in $E_{n}$, of $E_{n+1}$. Any nonhorizontal line of the pencil has equations

$$
\frac{z_{1}-w_{1}}{m_{1}}=\cdots=\frac{z_{n}-w_{n}}{m_{n}}=\frac{z_{n+1}-w_{n+1}}{m_{n+1}},
$$

where ( $m_{1}, \cdots, m_{n+1}$ ) is a non-horizontal ( $m_{n+1} \neq 0$ ) unit vector of $\boldsymbol{E}_{n+1}$.
(Let it be understood that if $m_{k}=0,1 \leqq k \leqq n$, the presence of the ratio $\left(z_{k}-w_{k}\right) / 0$, in this form of the equations for the line, means that $z_{k}=w_{k}$ is one of the equations.) The coordinates of the points of intersection $x, y$ of this line with $H, K$ therefore satisfy the equations

$$
\begin{gathered}
\frac{y_{1}-w_{1}}{m_{1}}=\cdots=\frac{y_{n}-w_{n}}{m_{n}}=\frac{b-w_{n+1}}{m_{n+1}}, \\
\frac{x_{1}-w_{1}}{m_{1}}=\cdots=\frac{x_{n}-w_{n}}{m_{n}}=\frac{a-w_{n+1}}{m_{n+1}},
\end{gathered}
$$

or

$$
\begin{aligned}
\frac{y_{1}-w_{1}}{x_{1}-w_{1}}=\cdots=\frac{y_{n}-w_{n}}{x_{n}-w_{n}}=\frac{b-w_{n+1}}{a-w_{n+1}}, y_{j}-w_{j} & =\frac{b-w_{n+1}\left(x_{j}-w_{j}\right)}{a-w_{n+1}} \\
j & =1, \cdots, n
\end{aligned}
$$

Thus the transformation corresponding to the pencil, in vector or matrix form, is

$$
\begin{equation*}
(y-w)=c I(x-w), c=\frac{b-w_{n+1}}{a-w_{n+1}}, \tag{4.1}
\end{equation*}
$$

where $I$ is the identity matrix. Solving for $w_{n+1}$ in terms of $c$, we obtain

$$
w_{n+1}=\frac{c a-b}{c-1}=a-\frac{b-a}{c-1}
$$

5. Affine families. Equation (4.1) for a pencil suggests consideration of the families corresponding to any linear transformation ( $y-w$ ) $=T(x-w)$, or to any affine transformation $y=T x+u$, where $T$ may be regarded as the matrix of the transformation, $w, u, y, x$ as column matrices of the coordinates of the corresponding points or vectors in $E_{n}$. Let the family corresponding to $y=T x+u$ be called an affine family. It is shown below that, in case $T$ is singular, hyperplane $K$ may be replaced by a parallel hyperplane such that the matrix $T$ for the family $F$, referred to $H$ and the new hyperplane, is non-singular. In our consideration of affine families, let it be assumed, if necessary, that such a new choice for $K$ always is made.

Let $M$ be a hyperplane parallel to $H, K$. Then for any non-horizontal line, if $x, y, z$ are its points of intersection with $H . K, M$, we have

$$
z-y=d(y-x)
$$

or

$$
z=(1+d) y-d x=[(1+d) T-d I] x,
$$

for some real $d$ uniquely determined by the position of $M$. Referred to $H, M$ instead of to $H, K$, the family of lines is represented by matrix $[(1+d) T-d I]$ instead of by matrix $T$. The eigenvalues of $[(1+d) T$ $-d I]$ are all of the form $\lambda-d /(1+d)$, where $\lambda$ is an eigenvalue of $T$. Since $T$ has only a finite number of different eigenvalues, $d$ may be chosen so that the eigenvalues of $[(1+d) T-d I]$ are all different from zero. That is, in case $T$ is singular, $d$ may be chosen so that the new matrix $[(1+d) T-d I]$ is non-singular.

In the equation (4.1) for a pencil of lines, the multiplier $c$ is never 1 , since $a \neq b$. If $c=0$, the center of the pencil is in $K ; c=\infty$ corresponds to the center being in $H$. Thus the eigenvalues of matrix $c I$ are all real, equal to $c$, and different from 1.

If one or several eigenvalues of $T$ are equal to 1 , by suitable choice of basis, $T$ may be put in the form $\left(\begin{array}{cc}U & 0 \\ 0 & V\end{array}\right)$, where the eigenvalues of sub-matrix $U$ are all different from 1 , and $V$ is superdiagonal with all diagonal elements equal to 1. (See [5].) Thus the corresponding family is composed of two associated families, one corresponding to a transformation $U$ which has eigenvalues different from 1 , the other being an $s, \cdots, 1$-stack, where $s$, the multiplicity of the eigenvalue 1 of $T$, is the dimension of $V$. The family $F$, by the last paragraph of $\S 3$, accordingly is an $n, \cdots,(n-s+1)$-stack, and is not representative or primary. Consideration of stacks reduces to consideration of lower dimensional families which are not stacks. For affine families which are not stacks, the eigenvalues of $T$ are different from 1.

To put the equation for an affine family in the form $(y-w)=T(x-w)$, we must have $u=-T w+w$, or $(T-I) w=-u$. This is possible with $w$ $=0$ if $u=0$, or for any $u$ if $|T-I| \neq 0$. In the latter case, 1 is not an eigenvalue of $T$, and a unique solution for $w$ exists for any $u$. This means that for any affine family, not a stack, the vertical line $x=y=w$ $=-(T-I)^{-1} u$ is a central line of symmetry of the family, as in the case of a pencil.

In case of an affine family, not a stack, the eigenvalues of $T$ are all different from zero and from one. If $T$ further is such that its eigenvalues are all real, and corresponding eigenvectors span $E_{n}$, then if the eigenvectors are chosen as the basis, $T$ has diagonal form, and evidently the corresponding family of lines is composed of associated lower dimensional pencils with centers on $x=y=w$, there being one associated pencil for each distinct eigenvalue $t_{j}$, and the heights of the centers are given by $w_{n+1, j}=\left(a t_{j}-b\right) /\left(t_{j}-1\right)$. The dimension of the space of each associated pencil is one greater than the multiplicity of the corresponding eigenvalue $t_{j}$. Such a family will be called a quasi-pencil, with centers $\left\{\left(w ; w_{n+1, j}\right)\right\}$.

For example, in $E_{3}$ the family $F$ given by the equations

$$
y_{1}=t_{1} x_{1}, y_{2}=t_{2} x_{2}, t_{1} \neq t_{2}, t_{i} \neq 0, \neq 1, i=1,2,
$$

is a quasi-pencil, and may be described as the set of all lines of intersection of planes of the pencil of planes $y_{1}=t_{1} x_{1}$ with planes of the pencil $y_{2}=t_{2} x_{2}$. The lines $z_{1}=0, z_{3}=a+(b-a) /\left(1-t_{1}\right) ; z_{2}=0, z_{3}=a+(b-a) /\left(1-t_{2}\right)$, are infinitely covered by $F$; all other points in the planes $z_{3}=a+(b-a)$ $/\left(1-t_{1}\right), z_{3}=a+(b-a) /\left(1-t_{2}\right)$, are not covered by $F$. Every other point of $E_{3}$ is covered exactly once by $F$. In order to make the quasi-pencil $F$ cover all of space, it may be extended by addition of the horizontal 1 -sheafs of lines of intersection of the pencils of planes with the horizontal planes $z_{3}=a+(b-a) /\left(1-t_{1}\right), z_{2}=a+(b-a) /\left(1-t_{2}\right)$, but because of the infinite covering of the two skew horizontal lines, even the extended quasi-pencil is not outwardly simple.

In case $T$ has a single real eigenvalue $t_{1}, \neq 0, \neq 1$, let the basis be chosen so that $T$ assumes superdiagonal form. If it is impossible to choose the basis so that all elements above the diagonal vanish, let the corresponding family $F$ be called a skew pencil. It may easily be shown that a skew pencil simply covers all points of $E_{n+1}$ except points in the hyperplane $w_{n+1}=\left(a t_{1}-b\right) /\left(t_{1}-1\right)$, and that in this hyperplane, all points outside the $(n-1)$ dimensional flat $R$ of points ( $w ; w_{n+1}$ ) where $w_{n}=0$, cannot be covered. If $t_{12}, t_{23}, \cdots, t_{n-1, n}$ are all different from zero, then the ( $n-1$ ) dimensional flat $R$ is covered by all lines of $F$ through points $\left(x_{1}, x_{2}, \cdots, x_{n} ; a\right)$ in $H$, where $x_{2}, \cdots, x_{n}$ are uniquely determined by $w_{1}$, $\cdots, w_{n-1}$, but $x_{1}$ is arbitrary; therefore in this case $R$ is infinitely covered by $F$. Otherwise a smaller dimensional flat in the hyperplane $w_{n+1}$ $=\left(a t_{1}-b\right) /\left(t_{1}-1\right)$ is infinitely covered, and the rest of the hyperplane is not covered, by $F$.

For example, in $E_{3}$ the family $F$ given by the equations $y_{1}=t_{1} x_{1}$ $+t_{12} x_{2}, y_{2}=t_{1} x_{2}, t_{1} \neq 0, \neq 1, t_{12} \neq 0$, is a skew pencil. The lines of $F$ for fixed $x_{2}$ are the lines of the pencil $\left(y_{1}-w_{1}\right)=t_{1}\left(x_{1}-w_{1}\right)$, where $w_{1}=t_{12} x_{2} /$ $\left(1-t_{1}\right)$, which are in the plane $y_{2}=t_{1} x_{2}$. The coordinates of the center of the planar pencil, for each $x_{2}$, are $\left(w_{1}, 0 ; w_{3}\right)$, where $w_{3}=\left(t_{1} a-b\right) /\left(t_{1}-1\right)$. Thus $F$ may be described as a union of planar pencils, one in each plane of a pencil of planes through the line $z_{2}=0, z_{3}=w_{3}$, the centers of the planar pencils being located on this line at $z_{1}=w_{1}=t_{12} x_{2} /\left(1-t_{1}\right)$. Accordingly the centers move out unboundedly as $x_{2}$ increases or decreases indefinitely. This skew pencil $F$ simply covers all points of $E_{3}$, except that points of the line of centers in the plane $z_{3}=w_{3}$ are infinitely covered, and all other points of the plane are not covered, by $F$.

As shown in [5], in any case when the eigenvalues of $T$ are all real, by a suitable choice of basis, $T$ may be put in a diagonal block form, with blocks $D_{1}, \cdots, D_{r}$ on the diagonal, the dimension of each
block $D_{j}$ being equal to the multiplicity $p_{j}$ of the corresponding real eigenvalue $t_{j} ; D_{j}$ is in superdiagonal form with $t_{j}$ 's on the diagonal. More specifically, $D_{j}$ may decompose into a diagonal block $t_{j} I$ of dimension $s_{j}<\left(p_{j}-1\right)$, and a block $D_{j}^{\prime}$ which has only one eigenvector and cannot be made diagonal. The corresponding family $F$ to such a $T$ is composed of associated pencils and skew-pencils, one for each block $t_{j} I$, $D_{j}^{\prime}$. In case at least one $D_{j}$ cannot be made diagonal, $F$ will be called a skew quasi-pencil.
5.1 Theorem. A quasi-pencil or skew quasi-pencil $F$ is primary, and simply covers all of $E_{n+1}$ except the set of horizontal hyperplanes $\left\{z_{n+1}=\left(a t_{j}-b\right) /\left(t_{j}-1\right)\right\}$, where $t_{j}, j=1, \cdots, r$, are the distinct real eigenvalues of $T$.

Proof. If $F$ is to contain a line in the direction of a non-horizontal unit vector $\left(\lambda_{1}, \cdots, \lambda_{n+1}\right)$, then there must exist $x, y$ such that $(y-x)=$ $(T-I) x=k\left(\lambda_{1}, \cdots, \lambda_{n}\right)$, where $k \lambda_{n+1}=(b-a)$. Since $F$ is not a stack, we have that 1 is not an eigenvalue, $|T-I| \neq 0$, and there exists a unique solution for $x$. Since $y=T x+u$ is single valued for each point $(x ; a)$ in the hyperplane $H, H$ is simply covered. Any other point $\left(z ; z_{n+1}\right)$ in $E_{n+}$ will be covered if there exists an $x$ such that

$$
(z-x)=k(y-x), \quad\left(z_{n+1}-a\right)=k(b-a) .
$$

For this we must have

$$
k(T-I)(x-w)+(x-w)=[k T-(k-1) I](x-w)=(z-w)
$$

A unique solution for $(x-w)$ exists if $(k-1) / k$ is not an eigenvalue of $T$. We have

$$
\frac{k-1}{k}=\frac{\left(z_{n+1}-a\right) /(b-a)-1}{\left(z_{n+1}-a\right) /(b-a)}=\frac{z_{n+1}-b}{z_{n+1}-a} .
$$

Comparing with (4.1), we see that a unique solution for $x$ exists for all points ( $z ; z_{n+1}$ ) not in the horizontal hyperplanes containing the centers of the associated pencils and skew pencils.
6. Complex eigenvalues. In any odd dimensional space $E_{n+1}$, for an affine family $F$ such that the eigenvalues of $T$ are all complex, we have the following theorem.
6.1 Theorem. Any affine family $F$, in $(n+1)$ dimensional space $E_{n+1}, n$ even, such that the transformation $T$ has no real eigenvalue, is primary and simple. That is, $F$ contains no horizontal line, contains exactly one line in every non-horizontal direction, no pair of lines of $F$
intersect, and each point of $E_{n+1}$ is covered by exactly one line of $F$.
Proof. In the proof of Theorem 5.1, under the present hypotheses, the determinant $|k T-(k-1) I|$ vanishes for no $k \neq 0$, so there is a unique line which covers each point $\left(z ; z_{n+1}\right)$ not in $H$. Each point $(x ; a)$ in $H$ also is uniquely covered since $y=T(x-w)+w$ is single valued. As in the proof of Theorem 5.1, since the determinant $|T-I|$ is not zero, we conclude that there is exactly one line of $F$ in every non-horizontal direction.

In any even dimensional space $E_{n+1}$, for an affine family $F$, not a stack, such that $T$ has only one real eigenvalue, we have the following theorem.
6.2 Theorem. Any affine family $F$, not a stack, in $(n+1)$ dimensional space $E_{n+1}, n$ odd, such that the transformation $T$ has only one real eigenvalue $t_{1}$, is primary, and simply covers all of $E_{n+1}$ except the hyperplane

$$
z_{n+1}=w_{n+1}=\frac{a t_{1}-b}{t_{1}-1}
$$

An ( $n-1$ ) dimensional flat $R$ in the hyperplane $z_{n+1}=w_{n+1}$ is infinitely covered, and the rest of the hyperplane is not covered, by F. The family $F$ is composed of an associated planar pencil, and of an associated simple family as in Theorem 6.1, of dimension $n$.

Proof. Since $F$ is not a stack, $|T-I| \neq 0$, and as in the proof of Theorem 5.1, we conclude that $F$ is primary. For any point $\left(z ; z_{n+1}\right)$ with $z_{n+1} \neq w_{n+1}$, so that $k \neq 1 /\left(1-t_{1}\right)$, the determinant $|k T-(k-1) I|$ does not vanish, so there is a unique line of $F$ which covers $\left(z ; z_{n+1}\right)$. Let an eigenvector $\tau_{1}$ corresponding to $t_{1}$ be chosen as the first vector of a basis. Then as shown in [5], the remaining basis vectors may be chosen so that $T$ assumes the form $\left(\begin{array}{cc}t_{1} & 0 \\ 0 & V\end{array}\right)$, where $V$ has only complex eigenvalues. For $k=1 /\left(1-t_{1}\right)$, the matrix $[k T-(k-1) I]$ has all zeros in it first column and first row. Accordingly $[k T-(k-1) I](x-w)=(z-w)$ has a solution only for vectors $(z-w)$ with $z_{1}=w_{1}$; for such vectors the solution for $\left(x_{2}-w_{2}\right), \cdots,\left(x_{n}-w_{n}\right)$ is unique, but $\left(x_{1}-w_{1}\right)$ is arbitrary. Thus for each point $x$ on the line $-\infty<x_{1}<\infty, x_{2}=w_{2}, \cdots, x_{n}=w_{n}$ in $H$, there is a line of $F$ through $x$ which covers the point ( $w_{1}, z_{2}, \cdots, z_{n} ; w_{n+1}$ ) of the hyperplane $z_{n+1}=w_{n+1}$. Therefore the $(n-1)$ dimensional flat $R$ defined by $z_{1}=w_{1}$ in the hyperplane is infinitely covered, and the rest of the hyperplane is not covered at all, by $F$.

It has been seen that the equation for any affine family, not a stack,
can be put in the form $(y-w)=T(x-w)$. The origin in $E_{n+1}$ may be translated by a vector ( $w ; 0$ ). With respect to the new origin, the family has equation $y=T x$. Thus the most general affine family, $y=T x+u$, which is not a stack, may be obtained simply by translation of the family having equation $y=T x$. Accordingly in the remainder of this section and in the next, we take the equation for $F$ in the homogeneous form $y=T x$.

In case $T$ has several real eigenvalues different than 1 , and at least one pair of conjugate complex eigenvalues, then the basis may be chosen so that $T$ has block diagonal form, with a block $D_{i}$ on the diagonal for each real eigenvalue $t_{i} \neq 0$, and a block $Q_{j}$ for each pair of conjugate complex eigenvalues $\left(x_{j} \pm i y_{j}\right)$. (See [5].) The real blocks $D_{i}$ have already been described in $\S 5$. Each complex block $Q_{j}$ is of dimension $2 s_{j}$, where $s_{j}$ is the multiplicity of ( $x_{j} \pm i y_{j}$ ), and has $s_{j}$ two dimensional blocks $\left(\begin{array}{rr}x_{j} & y_{j} \\ -y_{j} & x_{j}\end{array}\right.$ ) on its diagonal, elements of $Q$, below the diagonal being zeros. The family $F$ corresponding to $T$ therefore is composed of associated pencils, skew pencils, and simple families as in Theorem 6.1.

In summary, the family $F$ corresponding to a matrix $T$ is a pencil if and only if the eigenvalues of $T$ are all real and equal; if $T$ has no real eigenvalue, $F$ is primary and simple; in any other case $F$ is primary, and simply covers all of $E_{n+1}$ except points in the set of hyperplanes

$$
\left\{z_{n+1}=w_{n+1, j}=\left(a t_{j}-b\right) /\left(t_{j}-1\right)\right\}, j=1, \cdots, p,
$$

where $t_{1}, \cdots, t_{p}$ are the distinct real eigenvalues of $T$. If the associated family of dimension $\left(p_{j}+1\right)$, where $p_{j}$ is the multiplicity of $t_{j}$, infinitely covers a flat of dimension $\left(p_{j}-1-q_{j}\right)$, then in the hyperplane $z_{n+1}=w_{n+1, j}$, a flat of dimension $\left(n-1-q_{j}\right)$ is infinitely covered by $F$; the remainder of each hyperplane is not covered by $F$.
7. Composition of general associated families. Any family $F$ in $E_{n+1}$ which is the composite of associated general families (families not necessarily corresponding to a linear transformation $T$ ), $F_{p}$ and $F_{n-p}$, in $E_{p+1}$ and $E_{n-p+1}$, is primary if $F_{p}$ is primary in $E_{p+1}$ and $F_{n-p}$ is primary in $E_{n-p+1}$. For by hypothesis there exists a unique $\left(x_{1}, \cdots, x_{p}\right)$ such that $\left(y_{i}-x_{i}\right)=k \lambda_{i}, i=1, \cdots, p$, and a unique $\left(x_{p+1}, \cdots, x_{n}\right)$ such that $\left(y_{j}-x_{j}\right)=k \lambda_{j}, j=p+1, \cdots, n$, where $k \lambda_{n+1}=(b-\alpha)$, for any non-horizontal direction $\left(\lambda_{1}, \cdots, \lambda_{n+1}\right)$. If further both $F_{p}$ and $F_{n-p}$ are covering and simple (like the family of Theorem 6.1), then the composite family $F$ is covering and simple. For by hypothesis there exists a unique

$$
\left(x_{1}, \cdots, x_{p}\right)
$$

such that

$$
\left(z_{i}-x_{i}\right)=k\left(y_{i}-x_{i}\right), \quad i=1, \cdots, p,
$$

and a unique

$$
\left(x_{p+1}, \cdots, x_{n}\right)
$$

such that

$$
\left(z_{j}-x_{j}\right)=k\left(y_{j}-x_{j}\right), \quad j=p+1, \cdots, n,
$$

where

$$
k(b-a)=\left(z_{n+1}-a\right),
$$

for any point ( $z ; z_{n+1}$ ) of $E_{n+1}$.
If however some point $\left(z_{1}, \cdots, z_{p} ; z_{n+1}\right)$ of $E_{p+1}$ is multiply covered by $F_{p}$, and if $F_{n-p}$ is covering, then since $F_{n-p}$ covers all points ( $z_{p+1}$, $\cdots, z_{n} ; z_{n+1}$ ) where $z_{p+1}, \cdots, z_{n}$ are arbitary, the composite family $F$ multiply covers all points $\left(z_{1}, \cdots z_{p}, z_{p+1}, \cdots, z_{n} ; z_{n+1}\right)$ of an $(n-p)$ dimensional flat. If $F_{p}$ does not cover some point $\left(z_{1}, \cdots, z_{p} ; z_{n+1}\right)$, then similarly there is an $(n-p)$ dimensional flat in $E_{n+1}$ which is not covered by $F$. Therefore no family $F$ other than a pencil, which is composed of associated families which are not simple, can be outwardly simple; any outwardly simple family which is composite must be either a pencil or simple. (For completion of the justification of this statement, see the following paragraph.)

Given two representative, outwardly simple families $F_{p}, F_{n-p}$, we may compose the primary sub-families (of all non-horizontal lines of $F_{p}$, $F_{n-p}$ ), to obtain a family $F$ which does not cover ( $n-p$ ) flats consisting of all points of the form $\left(z_{1}, \cdots z_{p}, z_{p+1}, \cdots z_{n} ; z_{n+1}\right),\left(z_{p+1}, \cdots, z_{n}\right)$ arbitrary, where $\left(z_{1}, \cdots, z_{p} ; z_{n+1}\right)$ is a point of $E_{p+1}$ which is covered only by an omitted horizontal line of $F_{p}$, and $p$ flats consisting of all points of the form $\left(z_{1}, \cdots z_{p}, z_{p+1}, \cdots z_{n} ; z_{n+1}\right),\left(z_{1}, \cdots, z_{p}\right)$ arbitrary, where ( $z_{p+1}, \cdots$, $z_{n} ; z_{n+1}$ ) is a point of $E_{n-p+1}$ which is covered only by an omitted horizontal line of $F_{n-p}$. In case there is a one-to-one correspondence of uncovered $(n-p)$ flats and uncovered $p$ flats, such that each corresponding pair of flats have the same values of $z_{n+1}$, then each such pair of corresponding flats together span a hyperplane in $E_{n+1}$. If $n$-dimensional covering line families are added in each of the hyperplanes, then the extended family $F$ covers all of $E_{n+1}$. If the number of such hyperplanes is finite or denumerable, it may be possible to choose such covering horizontal families in the hyperplanes that the covering extended family $F$ is representative. (See [6].) The extended family $F$ can be outwardly simple, however, only in case there is just one hyperplane and the associated families $F_{p}, F_{n-p}$ are pencils with common $w_{n+1}$, in which case $F$ neces-
sarily is a pencil.
8. Generalization to Banach spaces. Some of the results of the preceding sections may be carried over to Banach spaces. If $f(x)$ is any non-vanishing bounded linear functional on a Banach space $B$, then

$$
H=[x \in B \mid f(x)=a] \text { and } K=[y \in B \mid f(y)=b]
$$

are hyperplanes which are parallel to the closed linear subspace $E=$ $[x \in B \mid f(x)=0]$. The space $B$ may be the Cartesian product of any Banach space $E$ and the real number line; for such a product a bounded linear functional $f$ always exists having $E$ for its null subspace.

There is an $\alpha$ in $B$ such that $f(\alpha)=\|\alpha\|=1$. If $P$ is any point of $B$, we have $P=f(P) \cdot \alpha+[P-f(P) \cdot \alpha] ;[P-f(P) \cdot \alpha]$ is in the null subspace $E$ of $f$. If also $P=z_{f} \cdot \alpha+z$, with $z$ in $E$, we have $f(P)=z_{f}, 0=P$ $-f(P) \cdot \alpha-z$, or $z=P-f(P) \cdot \alpha$. Thus with respect to any fixed "vertical" vector $\alpha$, any point $P$ in $B$ has unique coordinates $\left(z ; z_{f}\right)$. A direction $\left(v ; v_{f}\right)$ is "horizontal" if $f\left(v ; v_{f}\right)=v_{f}=0$.

As in the finite dimensional case, the equation for any pencil of lines in $B$ is $(y-w)=c I(x-w)$, where $I$ is the identity transformation in $E$ and $c \neq 1$. To show this, let the origin of $B$ be translated from $(0 ; 0)$ to $(w ; 0)$. Then the translated family of lines has equation $y=c I x$. Define

$$
w_{f}=a-\begin{aligned}
& b-a \\
& c-1
\end{aligned} .
$$

Points $z$ on the line through $(x ; a)$ and $(y ; b)$, where $y=c I x$, are given by $e(x ; a)+(1-e)(y ; b)$. There is a unique $e$ such that $e a+(1-e) b=w_{f}$, namely

$$
e=\frac{w_{j}-b}{a-b},
$$

and

$$
e x+(1-e) y=[e+(1-e) c] x=0 x=0
$$

Therefore all lines of the family pass through the point $\left(0 ; w_{f}\right)$. Conversely for any non-horizontal direction ( $v ; v_{f}$ ), there exist a unique $x$ and $y=c x$ in $E$ such that

$$
(y-x)=(c-1) x=k v,(b-a)=k v_{f} ;
$$

thus the family contains one line through $\left(0 ; w_{f}\right)$ in every non-horizontal direction, and is made into a pencil, with center ( $0 ; w_{f}$ ), by addition of all horizontal lines through $\left(0 ; w_{f}\right)$.

If the affine family $y=T x+u$, where $T$ is a not necessarly bounded linear transformation, is not a stack, then 1 must belong either to the resolvent set, or to the continuous or residual spectrum of $T$. (See [3, p. 31].) In case $u$ is in the domain of $(T-I)^{-1}$, the corresponding family may be translated so that the equation becomes $y=T x$. Replacement of reference hyperplane

$$
K=\left[\left(z ; z_{j}\right) \in B \mid z_{J}=b\right]
$$

by

$$
K^{\prime}=\left[\left(z ; z_{j}\right) \in B \mid z_{f}=b+h(b-\alpha)\right]
$$

does not change the family of lines, but induces replacement of $T$ by $T^{\prime}=(1+h) T-h I$. Thus an eigenvalue $\lambda^{\prime}$ of $T^{\prime}$ corresponds to an eigenvalue

$$
\lambda=\frac{h+\lambda^{\prime}}{h+1}
$$

of $T$; in particular if 0 is an eigenvalue of $T$, it may be replaced by any desired value $\lambda^{\prime}$ except 1 by taking $h=-\lambda^{\prime}$. The choice $h=-1$ is impossible since $K^{\prime}$ then would coincide with $H$; an eigenvalue 1 of $T$ is preserved under this transformation.

The affine family $y=T x$, where $T$ is a not necessarily bounded linear transformation, if not a stack, will contain exactly one line in every non-horizontal direction $\left(v ; v_{f}\right)$ where $v$ is in the domain of $(T-I)^{-1}$. This follows since the system $(y-z)=(T-I) x=k v$, where $k v_{f}=(b-a)$, then has a unique solution for $x$. If $U$ is a bounded, one-to-one linear transformation on all of $E$ to all of $E$, then by a theorem of Banach, $U$ is an isomorphism, so the affine family $F$ corresponding to $T=U+I$ is primary; more generally $_{F}$ is primary for any bounded or unbounded $U$ which is linear and one-to-one on $E$ to all of $E$. If the domain $D$ of $U$ is not all of $E$, then $T=U+I$ also will be defined only on $D$, so that $F$ is primary but covers only the proper subset $(D ; a)$ of hyperplane $H$.

The affine family will simply cover a point $\left(z ; z_{f}\right)$ in $B$ if the system $(z-x)=k(y-x)$, or $z=[k T+(1-k) I] x$, where $k(b-a)=\left(z_{f}-a\right)$, has a unique solution for $x$. This will be the case for all $\left(z ; z_{f}\right)$ in every hyperplane $z=z_{f}$ such that $(1-k) / k=-\left(b-z_{f}\right) /\left(a-z_{f}\right)$ is not in the point spectrum of $T$, and such that $z$ is in the domain of $[k T+(1-k) I]^{-1}$.

## References

1. P. C. Hammer, Diameters of convex bodies, Proc. Amer. Math. Soc., 5 (1954), 304306.
2. P. C. Hammer and A. Sobczyk, Planar line families I, II, Proc. Amer. Math. Soc., 4 (1953), 226-233, and 341-349.
3. E. Hille, Functional analysis and semi-groups, Amer. Math. Soc. Colloquim Publications 31 (1948).
4. Amasa Forrester, A theorem on involutory transformations, Proc. Amer. Math. Soc., 3 (1952), 333-334.
5. A. Sobczyk, Canonical form for a real matrix, unpublished manuscript.
6. A. Sobczyk, Families of lines, to be submitted to Mem. Amer. Math. Soc.

University of Florida

