
MINIMAL DOMAINS AND THEIR BERGMAN

KERNEL FUNCTION

MICHAEL MASCHLER

l Introduction, On certain problems which arise in the theory
of conformal and pseudo-conformal transformations• Attempts to gener-
alize the Riemann mapping theorem to the case of multiply connected
domains lead to the concept of canonical domains, that is, domains of
a special geometric "shape" (for example, the entire plane slit along
parallel rectilinear lines), onto which any other domain can be mapped
conformally. The existence of such mappings, though interesting in
itself, is less useful than the Riemann mapping theorem, because the
circle has many properties other canonical domains do not possess.
Moreover, this situation is worse when one passes to the space of several
complex variables. In fact, even in the case of a simply connected
domain, a complete set of canonical domains having a well defined
geometric shape is not known. If we return to the case of a plane
domain and note that the existence of canonical domains can be proved
by considering certain extremum problems, we are led to the conclusion
that perhaps it is worthwhile to introduce other types of canonical
domains, defined by a simpler extremum problem rather than by geometric
shape. Indeed, two important types of such domains were investigated
by S. Bergman: The minimal domains and the representative domains,
(Bergman [2, pp. 27-42]). The shape of these domains (for definition,
see § 2, 6.) is in general complicated, often they are situated on non-
univalent Riemann hypersurfaces, but they possess many properties
which enable us to deduce interesting results in the theory of pseudo-
conformal transformations.

In the last century, various domain-functions were introduced and
applied successfully to all branches of analysis. It proved useful to
consider two types of problems: 1. Given some information on a
domain—to find estimates for one of its domain functions. 2. Given
properties of a domain function belonging to some domain—to obtain
information about the domain itself. Theorems of these types lead, for
instance, to distortion theorems and to solutions of various extremum
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problems.
In the present paper we consider the Bergman kernel function

KD(z, C) of a minimal domain D with a center t. We start our investi-
gation by proving that Kΰ(z, t) = constant for zeD (§3). Only minimal
domains have this property and this fact enables us to deduce various
properties of minimal domains and analytic functions defined in such
domains (§§3, 4). These properties are generalizations of theorems on
circles and they are valid only for minimal domains.

It is interesting to note that while most known applications of the
kernel function to the theory of pseudo-conformal mapping use properties
of the function KD{z, z), the theorem mentioned above deals with the

function KB(z, t) where the arguments are not necessarily the same. It
seems that this fact throws some light on the connection between
mapping of domains and a metric defined in a domain which is invariant
under pseudo-conformal transformations (Bergman's metric) (see also

§6).
In § 2 the possibility of a mapping of a domain onto a minimal

domain is considered, then in § 5 it is proved that this mapping is unique
up to a transformation with constant Jacobian—this justifies the term
"canonical domains7'. Considering the case of mapping of a minimal
domain onto another minimal domain (so that the centers do not corre-
spond), we arrive at a distortion theorem. Section 6 is devoted to the
class S of domains which are simultaneously minimal and representative
with the same center. We define a domain function JA(w, ω) and prove
that if a domain Δ can be mapped onto a domain of the class S, then
JJvi, r)=constant for we Δ, where τ is the inverse image of the center.
The function JA(w, w), for an arbitrary domain Δ, but with identified
arguments, is known to be an invariant under pseudo-conformal trans-
formation.

REMARK. The theorems are stated for domains in the space of n
complex variables, w=l, 2, 3, <C°°. We use both notations z and
(zLfz2, , zn) to indicate a point in this space. In certain cases we apply
theorems that were originally published only for n=l, 2. In these cases
the extension to n^>2 is trivial. In order to state our theories in more
generality we found it useful to consider non-univalent domains and
certain kinds of domains in which points with different coordinates are
considered identified. This meant a slight generalization of the concept
of pseudo-conformal transformations (see §2). The definition of the
kernel function and known theorems we utilize in this paper can be
easily generalized to such domains.

2. Preliminary remarks* The existence of a mapping of a domain
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onto a minimal domain* In the present paper we assume that each
domain we deal with can be mapped pseudo-conf ormally onto a bounded
univalent domain in the space of n complex variables, (w=l, 2, 3, •••)•
By a pseudo-conf ormal mapping- of a domain D onto a domain Δ we mean
a one-to-one mapping which, except in a denumerable number of analytic
segments of manifolds of complex dimensions <Ln — 1, can be described
locally in the form

(2.1) wh=w%{z) , k = l , 2 , * - ' , n , zeD, z = (zi, Za, * , s n )

where wk(z) are analytic functions with a non-vanishing Jacobian. We
allow wk(z) to be multi-valued functions provided that d(wlfwi9 * ,wn)l

d(3i, z2, , zn) is a single-valued meromorphic function in its domain of de-
finition. In such case we "identify" in Δ points which correspond to
the same point of D. A regular function in Δ must have, by definition,
the same value at the identified points.

It is known that such domains possess a Bergman kernel function

KD(z, t) (z, t € D)

(see Bergman [1, p. 30], [3, p. 24, 37], also (2.2)).
If D is a bounded univalent domain then KD(z, t) is a regular function

in z and t and KD(zfz)>0, (z,teD); however, in general this is not
true. Indeed, let Δ be a domain obtained from D by the pseudo-
conf ormal transformation (2.1), then the relation

(2.2) ' 2 Γ Λ ( M H l Γ Δ ( t f ^ ^

holds for z,teD; where w=(wτ, , wn) (Bergman [3, p. 33], [1, p. 51]).

Hence, if Δ is a bounded univalent domain and KA(w(z*), w(t*))φ$
where z* or ί* (or both) is a point on a branch manifold of D—the type

of singularity of KD{z*,Ί*) is determined by the Jacobian of the trans-
formation in (2.2). If for z=z* the Jacobian exists and is equal to zero,
then KD(z*, z*)=0.

We wish, however, to stress that it may well happen that z=z* or

£=£* (or both) is a point on a branch manifold of D but KA(w(z*),w(t*))=Q

in such a way that as z~+z*, t->t*, the kernel function KD{z, t) will tend

to a finite value (which, by definition, is KD(z*, t*)).

DEFINITION. A domain D is called a minimal domain with respect
to a point t (teD) as center if t is not a point on a branch manifold
of D and if any pseudo-conf ormal transformation wk=wk(z), k=l, 2, , n
which satisfies
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d(wlf , Wn) = 1
= t

maps D onto a domain whose volume is not less than the volume of D.

REMARK. Thus, since we are dealing only with a special type of
domains, the volume of a minimal domain is finite.

THEOREM 2.1. Any domain D {of the type mentioned at the begin-
ning of this section) can be mapped pseudo-conformally onto a minimal
domain τυith center at the origin by a transformation (2.1) which satisfies

— 1 >(O O\ q n (f\ A (h. 1 O . . . ryj\. u\Wι, , H/9

\Δ.ό) Wk\o) — v, \rC—1, Δf , ίl) f

where t is any fixed point of D which does not lie on a branch manifold.

Proof. This theorem was stated for special domains; however,
essentially, the the proof is the same for the general case. S. Bergman
showed ([2 p. 39] see also Garabedian [5]) that if such a mapping
exists, then

2 4) κ»(z> *) =

 d(wι> , wn)

κD(t,t) ate, ••-,"«»)
and if there exists a pseudo-conformal transformation which satisfies
(2.3) and (2.4) then this transformation maps D onto a minimal domain
with the origin as center. The volume V of the minimal domain is

(2.5) V= λ

KD(t, t)

It remains to be shown that there exists always a pseudo-conformal
transformation satisfying (2.3) and (2.4). This is trivial for rc=l, and
for # > 1 it was proved for domains satisfying special conditions, even
with the condition that the transformations (2.1) will be of the type

wι=w1(z) , wk=zk~-tk , k=2,3, •••%.

Among such domains are, for instance, domains of the form D=BX\J
B,\J ••• \JBIH where Biy (i=l9 2, .- ,m) are polycylinders {|sA — α ί l O * ,
fc=l, 2, ••-,%} (S.Bergman [2 p. 38], Schiffer [7]). The existence of
a mapping of a general domain D onto a minimal domain now follows
directly. We map D onto a bounded schlicht domain D* in the C-space
by a pseudo-conformal transformation satisfying (2.3). This is possible
since t is not a point on a branch manifold. Since any point of D*
can be connected to the origin by a chain of a finite number of poly-
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cylinders, we can define by the method of analytic continuation1 a function

Wi=Wi(C) regular in ζeD* (C=(Ci, C*, •••>«) such that

3Ci ^ ( 0 , 0 )

The transformation ^ ^ ^ ( C ) , wk=ζh., k=2, 3, * ,w maps D* onto
a minimal domain J with the origin as center, and the transformation
from D onto Δ satisfies (2.3).

A minimal domain is, in general, not univalent. In fact, by an
unpublished result of M. Schiffer, in the case ra=l, except for a trivial
case, multiply connected minimal domains are not univalent domains
without identified points (see also Kufareff [6])2. The trivial case is a
circle punctured at isolated points where the center of the circle is the
center of this minimal domain (Bergman [3 p. 24]). In the case of several
complex variables there are more types of univalent minimal domains.
For n==2, sufficient conditions for the existence of a mapping of a un-
ivalent domain onto a minimal univalent domain were given by M.
Schiffer [7].

3. Minimal domains and their Bergman kernel function. Minimal
domains can be identified by the behavior of their (Bergman) kernel
function and this in turn may help us to find more of their properties.

THEOREM 3.1. A necessary and sufficient condition for a domain D
to be a minimal domain with center at a point t (where t does not lie on
a branch manifold) is

(3.1) Kn{z~t) —constant for zeD.

The value of the constant is 1/F, where V is the volume of D.

Proof. If D is a minimal domain in the 2-space then the trans-
formation wk==z/c — t/l, /fc=l, 2, * ',n maps it onto a minimal domain Δ
in the w-space with center at the origin. This transformation has a
constant Jacobian and it also satisfies (2.3), hence by (2.4) and (2.5)

On the other hand, if for a domain D and a fixed teD, we have

KD(z,t)=const. for zeD then KD(zft)=Kj)(t,~t)*>09 since t is not on a
3 Of course, since in general w±(ζ) is not single-valued, there are infinitely many

minimal domains obtained in this way. This depends on our choice of "cut t ing" D* to
make it simply connected and " pasting back " the points in the image domain.

2 Kufareff [6] considers the minimal domain for the ring when the class of functions
consists of regular functions having a single-valued integral,
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branch manifold. Here, the transformation ιvh.==zh—th satisfies (2.3) and
(2.4), therefore it maps D onto a minimal domain which is congruent
to D,

THEOREM 3.2. If D is a domain such that for a fixed point te D>

which does not lie on a branch manifold of D, we have KI}(t,t)=llV,

where V is the volume of D, then D is a minimal domain with t as center.

Proof, From Theorem 2.1 it follows that D can be mapped onto a
minimal domain Δ by a pseudo-conformal transformation satisfying (2.3).
From (2.5) it follows that vol D=vol Δ, hence, by definition, D is a
minimal domain.

REMARK. It follows from these theorems that domains such as the
hypersphere [|zχ|24- k l 2 + + | z J 2 O 2 ] , the polycylinder [ N O ^ \z2\<r2,
•••jtewKVw] a n d even the more general Reinhardt circular domains
(with center at the origin) are minimal domains with center at the
origin, since their kernel function was computed and was shown to satisfy
the condition of Theorem 3.1 (or Theorem 3.2) (see Bergman [4]).

Using the reproducing property of the kernel function, one obtains
immediately the following result, which is a generalization of a well
known theorem about a circle.

THEOREM 3.3. Let D be a minimal domain with t as center. Let
f(z) be any function of the class5 .£f2(D), then

(3.2) f(t)=y.\ f(z)dw,
V

where V is the volume of D and dω is the volume element. Only minimal
domains {where t does not lie on a branch manifold) have this property,
(Compare also Schiffer [7] for the case of univalent domains).

Proof, If D is a minimal domain, then from Theorem 1 we obtain

f(z)dω.

On the other hand, if D is a domain of finite volume such that for

each function in 5^*(D) (3.2) holds then (3.2) holds in particular for

= KD(z,t) (see Bergman [3 p. 22-23]). Hence
3 That is f(z) is a regular function after transplanting its values into the bounded

univalent domain which corresponds to Z>, and \ \f(z)\2dω<C°° All integrals are taken

in the Lebesgue sense,
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1 = ( KD(z, ~t)dωz - V' Kΰ(t, t) ,

and from Theorem 3.2 it follows that U is a minimal domain.

4. Geometric properties of minimal domains.

THEOREM 4.1. If D is a minimal domain with the origin as center
then so is λD (that is, the aggregate of all points of the form λz, ze D)
where λ is a complex number,

Proof. The domain d=W is obtained from D by the transformation
wk = λzk1 Ic=l, 2, , n. From (2.2) it follows that KD(0, 0)=J5ΓΛ(0, 0)UΓ
and by Theorem 3 Δ is a minimal domain with center at the origin, since

THEOREM 4.2. A minimal domain D cannot have more than one
center, provided that for any two different points t(1) and t{2) in D (not
on a branch manifold) there exists a function f(z)^f(z; t(1), t(2)) in Sf'2(D)
which assumes different values at tω and tvz).

Proof. If tω and t(2) are two centers of a minimal domain D, t{l)φf}'λ\
then from Theorem 3.3 it follows that

(4.1) M f(z)dω = f(t^) = f(t^)
V JI>

for every function f(z) e £f\D), a contradiction.

REMARK. The property of a domain D to have a function f(z) e Sf\D)
such that f(t{1))Φ f(t(2)) when t(υ and tcz) are any given different points
(not on a branch manifold), certainly holds for bounded domains, hence
also for domains that can be mapped pseudo-conformally onto them
that is, for all domains considered in this paper.

THEOREM 4.3. A product domain D is a minimal domain if and
only if its components are minimal domains. The center of D is the
product of the centers of the components.

Proof. If D=DτxD2x •• xDs and Ό, are minimal domains with
centers ί(i) ( ΐ=l , 2, s s) then, since

κD(z, t)=κΌi(z^

6 A , 2 = (Z ( Ί ), Z(2), , Z(s)) ,
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(see Springer [8 p. 414]), it follows from Theorem 3.1 that KD(z, t)=const.,
zeD. Therefore D is a minimal domain.

The converse is also true. Let flbea minimal domain, then

(4.2) y =KD(t, t)=KDμ™, t™yKD£t™, #»)- -KD8(t<>\ #») .
vol D

Since llKD.(t{l\ t{i)) is the volume of a minimal domain generated from
Di and the point t(ί) in Dt (see 2.5), it follows that

(4.3) KDi(t«\t™)^(vo\D,)-1 , i = l , 2 , . . . , β .

The equality holds only if D, is a minimal domain with center a t t{l).
Thus

(4.4) -1 > X . - 1 ! .« - 1

vol Z)" vol A volZλ vol A volJ5

and the theorem is proved.

5 Transformation of a minimal domain onto a minimal domain.
Theorem 2.1. assures us that any domain D can be mapped onto a
minimal domain by a pseudo-conf ormal transformation which is normalized
at a point t e D (the inverse image of the center, and thus does not lie
on a branch manifold). There are, in general, infinitely many such
transformations which transform D onto different minimal domains under
the same conditions. However, we can say that up to a transformation
with a constant Jacobian these transformations are the same. More
exactly, we have the following.

THEOREM 5.1. Any pseudo-conf ormal transformation (2.1) which
satisfies

(5.1) w*(0)=0, (fe=l,2, -- ,w) and 3 ( W l ' ' " ' Wn^=const.
d(zlf , Zn)

for every z e άγ where the Jacobian exists, maps the minimal domain Δλ

with center at the origin onto a minimal domain Δ% with the center at
the origin. Conversely any pseudo-conformal transformation (2.1) which
maps a minimal domain Δ1 with center at the origin onto a minimal
domain with center at the origin such that the centers correspond to each
other must satisfy (5.1) whenever the Jacobian exists.

The proof is an immediate consequence of (2.2) and Theorem 3.1.
It is of interest to study also transformation of one minimal domain

onto another in which the centers do not correspond. From Theorem 4.1
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it follows that we can limit ourselves to minimal domains of equal volume.
It is to be expected that properties of transformation of this kind are
closely connected with distortion theorems.

THEOREM 5.2. Let a minimal domain Δ ivith center at the origin be
an image of a minimal domain D with center at the origin under a
pseudo-conformal transformation (2.1) such that wk(t)=0, &=l, 2, •••,%
and t^O. Let us assume also that the two domains have the same volume,
then

(5.2) •, Wn)

d(zl9

LEMMA. // Ώ* is a minimal domain with center ζ then

(5.3) min Km(z, z)^Km{ζf ζ)
βD

for any z which does not lie on a branch manifold and the minimum is
achieved only if z=ζ.

Proof. Indeed, we can map Z>* onto a minimal domain J* with
the normalization of Theorem 2.1 at the point z, zφζ. Since D has
only one center (see Theorem 4.2) we have vol Z)*>vol J*; on the other
hand

(5.4) vol Z>*= X , vol J*== - - 1

hence the lemma is proved.

Proof of Theorem 5.2. By (2.2) we have

(5.5) KD(t, ίHϋΓΛO, 0) 3 ( ^'- # - "> w»

d(zL, " , z n )

and by the lemma JfiΓ2,(ίJ)>J5ΓD(0,0)=l/voli5; on the other hand iΓΛ(0,0)=
l/volJ==l/volZ>, hence the theorem is proved.

EXAMPLE^. Let D be a domain in the z-plane. Let KD(z, i)=constant
on a line γ in D. We chose a point A on j and map D onto a minimal
domain ΔA by a conformal transformation w=fjz) which satisfies fΛ(A)=0

f'Λ(A)=lf then the image of an arc AB on γ whose length is s lies
completely in a circle with radius s about the origin in the w-plane.

4 This example can be generalized to the case ??/> 1 by using the concept of 73-area
(see Bergman [1]).
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Proof, Let C be any point on AB, which does not lie on a branch

manifold. We map D onto a minimal domain ΔG by a conformal trans-

formation w=fo(z) which satisfies fc(C) = 0, f'ΰ(C) = l. From KD{A, Ά) =

KD(C,C) it follows that vol dΛ = vόl dσ (see (2.5)), hence from Theorem

5.2, and (2.4) we have

(5.6)

hence \KD(A, C)\<Kβ(A, A).
On the other hand

ΪC)\

therefore, by chosing the path of integration to be on AB we obtain:
| / X B * ) | O , from which the required result follows.

6, Minimal domains and representative domains. Attempts to
generalize the Riemann mapping theorem to the case of domains in the
space of n complex variables lead to various other classes of canonical
domains. In this section we shall be interested with the so-called
representative domains (Bergman [2 p. 27]):

Let D be a domain in the space of n complex variables z19 z.>, , zn.
We consider pseudo-conformal transformations of this domain, wk =
wAz\ > 9 >z?ι)> (&=1, 2, •••,%), which satisfy

(6.1) wk(t)=t, , dw"\ =δkm , k, m=l, 2,
dzm U-ί

at a point teD (not located on a branch manifold).

Let5

delta,

be the functions which minimize the integral \ \f(z)\'zdω under the con-

ditions

, n,

for k=l, 2, " ,n, respectively.

5 The number of upper indices is n.
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Let M{),(z, t) be the function which minimizes the same integral
under the conditions

The transformation

M°Jz, t) Ml(z, t)

satisfies (6.1) and transforms D onto a domain Δt. This Δt is called a
representative domxiin having t as center.

In the following we shall make use of some properties of repre-
sentative domains which are proved in Bergman, [2 p. 27-33].

1. A necessary and sufficient condition that two domains can be
mapped pseudo-conformally onto each other by a trausformation of the
type (6.1) is that they have the same representative domain obtained
by (6.2).

2. Equations (6.2) can be expressed in terms of the kernel function

KD(z, C) and its derivative, as follows:

( 6 3 ) — " • ' K(tt)

Let IM be the (w + l)x(w+l) matrix

(6.4)

where

M=

JX - ^ 0 , 1 -^-0,2

if TΓ τ<r
-^1,0 -"-1,1 -"-1,2

j rV 2 ό - ^ 2 , 1 -^2,2

\ «»0

(see §2).

ίf\

(6.5)

Let

κ

then
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! 0 K(z,t) KoΓι(z,t) . . . KφJ)

1919
(6.6) I X M

where |M| is the determinant of the elements of M (Bergman [1 p. 45]).
It is easy to verify from (6.3) and (6.6) that polycylinders, hyperspheres
and, in general, Reinhardt circular domains are representative domains
with their center of gravity as center (that is, for these domains (6.2)
becomes wk=zk9 &=1, 2, , nf. These domains are also minimal domains
with the same center. In general, however, we shall see (Corollary 2),
that minimal domains and representative domains are different.

THEOREM 6.1. If a domain D is a minimal domain and also a
representative domain with the same center t, then its kernel function
satisfies the identities

Kφ, t)=All(zL-tl) + AJ&-t2)+ 4- AΛn(zΛ-ta)

Kφ,~t)=A^-tΊ) + AJtt-£2)+ + A,n(zfi-tlb)
(6.7)

Kφ> t) == A Λ l (^ - tλ) -f An2(zz - 1 2 ) + 4- Aan{zn - ί.Λ)

/or zeZλ iϊerβ -A,-,- are constants and \Atj\φD.

Proof. Since D is a minimal domain it follows from (3.1) of Theorem
3.1 and (6.3) that M°Jz, t)=l for zeD. Also Ktt0, ( i=l , 2, , n) in (6.6)
(see also (6.4)) must vanish. But D is also a representative domain
with the same center t, hence (6.2) becomes wk—zk. We obtain

! Kφ, t) Kφ, t) . - Kφ, t)

where M* is obtained from M by removing the first row and the first
column and M^ is obtained from M* by removing the kth row. |M*|τ^0
because |M|τ^0 hence zk — tk satisfy the equations (6.7) where Atj are
obtained from the corresponding elements of M*.

By reversing the arguments of the proof we obtain immediately
the converse theorem

6 In fact, all circular domains are representative domains with respect to their center
(Bergman£[2 p. 32]),
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// D is a minimal domain with t as center, and its kernel function)
satisfies (6.7) with |A,, |^0, then D is also a representative domain with
the same center.

COROLLARY. The constants Au of (6.7) must satisfy

(6.9) Au=An.

Proof. From the symmetry property of the kernel function (Bergman

[3 p. 23]) KD(z,ζ)=Kn(ζ,~z) it follows that

(6.10) dKD{z, OlKι^KAζ,z)idζi

From (6.7) we obtain

— -KD(tι, , tj-if Zj, tj + if mtn] ζl9 ζ.if , ζn)\ζ"Ί==Alj{Zj"—tj) ,

hence

We consider the Taylor expansions of the function

F{Zij ζf)^KD(t19 , ί«-!, ^ , ti+ι, , tn; tlf , έj-i, Cj , ίj+i,

around the point Zt — ti and around the point ζ \ = ζ Since

and

a C ,

we have (6.9).
Let D be a minimal domain in the z-spaee which is also a repre-

sentative domain with respect to the same center t. Let Δ be the image
of D under the pseudo-conformal transformation wk=wk(z), fc=l, 2, , w;
which satisfies

v ' d(z . . . x)

We use the following notation

-1
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3 (Wl9l _, Wn)_K^τ, τ)

3(«i> , SΛ) K±(w, τ)

514

then, since

(6.12)

it follows from (2.2) that

KD(zy ζ)=K

hence, from (6.7)

A*ij — - —^=-

Lif(^, r)

therefore, from (6.11) and (6.12)

, τ) AΔ(r, ω)

^i

9ω; KA(w, τ)

V

j=l, 2, •••,

ω = τ /

By expanding the determinant \atj\ we obtain

(6 13) Ά ' h ι κ d ^ ' ' = J Λ w 'T)

y9 r) ό*1ΛW>j)_

W, τ) d2KA(w, τ)

), F)

dwJdω,

The left side of (6.13) is constant, hence we have proved the following.
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THEOREM 6.2. If Δ is a domain in the w-space which is " equivalent "
to a domain D that is, Δ is the image of D under the pseudo-conformal
transformation [wk=wk(z), fc=l, 2, , ri], zeD, with a non-vanishing
Jacobian at z=t,7 and if D is a minimal domain and simultaneously a
representative domain with a common center at z=t, then the right side
of (6.13) is a constant for fixed τ—the image of t—and we A.

REMARK. Since KA(w, ω)=KA{ω, u), it follows that JA(w, ω)=JΔ(ω, w),
and hence, under the condition of the last theorem, also JA(T,W)=constant
for w 6 Δ.

COROLLARY 1. Let Δ be a simply connected plane domain the boundary
of which consists of more than one point. Such a domain can be mapped
onto a circle such that an arbitrary fixed point ω of A will be mapped
onto the center with a non-vanishing derivative there. Since the circle
is a minimal domain and also a representative domain with respect to its
center it follows that for any such simply connected domain Δ

(6.14) 1
(W,

dω

dw dwdω

=constant ,

where both w and ω vary in Δ.
A similar result can be stated for domains which are equivalent to

hyperspheres or to poly cylinders, because such domains can be mapped
onto themselves with an arbitrary fixed point going to the center.

COROLLARY 2. There are representative domains which are not
minimal domains with the same center.

Proof. Otherwise, for all domains Δ the relation JA(w, ω)=constant
will hold for we Δ, ωe Δ, and in particular JA(w, ϊo)=constant for we Δ.
But it is known that there are domains for which this is not true. In
fact, it was proved by Springer [8] that, in the case n=2, for certain
Reinhardt-circular-domains JJw, w) is not constant8.

It is interesting to note that in the particular case w=ω one can
look at the expression JA(w, w) from a different angle. Indeed, it was
proved by S. Bergman that for any domain (which possesses a kernel

7 The normalization (6.11) is unessential because by a similarity transformation D is
mapped onto a domain of the same type (see Theorem 4.1).

8 In [8] the expression ( T I T T 2 2 H ^ | 2 ) / # Δ ( W , W), where Tmΰ =92log KA(w,w)/dwmdwn, is
used instead of JA (w,w). These two expressions are equal as was pointed out by S.
Bergman ([1, pp. 52, 53])
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function) the expression JA(w, w) is invariant under pseudo-conformal
transformation ([3, p. 139]). Estimation of JA{w, w) was used by various
authors to obtain distortion theorems ([3, p. 140], [6], [9].) Thus it
appears that the domain function JΔ(w, ω) where the argument are, in
general, different may yield some information about pseudo-conformal
properties of the domain J. The connection between JA(wf Tΰ) and
JΔ(W, W) is, in a way, the same as the connection between the kernel
function KA(w, ω) and the invariant metric based on the function
KA(w, w).

REFERENCES

1. S. Bergman, Sur les functions orthogonales de plusieurs variables complexes avec
les applications a la theorie des fonctions analytiques, Intersc. Pub. 1941, and Mem.
des Sc. Math., 106, Paris, 1947.
2. , Sur la fonction-noyau d'un domaine eί ses applications dans la theorie
des transformations pseudo-con formes, Mem. des Sc. Math., 1O8, Paris, 1948.
3. ; The kernel function and conformal mapping, Amer. Math. Soα, New York,
1950.
4. } Ueber die Kernfunktion gewisser Reinhardtscher Kreiskδrper, Rev. Math.
de ΓUnion Interbalcanique, 2 (1939), 41-43.
5. P. R. Garabedian, A new formalism for functions of several complex variables, J.
Analyse Math., 1 (1951), 59-80.
6. P. Kufareff, Ueber das zweifachzusammenhάngende Minimalgcbiet, Bull. Inst. Math,
et Mec, Univ. de Tomsk, 1 (1935-1937), 228-236.
7. M. Schiffer, Sur les domaines minima dans la theorie des transformations pseudo-
conformes, C. R. Acad. Sci. Paris, 207 (1938), 112-115.
8. G. Springer, Pseudo-conformal transformations onto circular domains, Duke Math.
J., 18 (1951), 411-424.
9. J. Stark, On distortion in pseudo-conformal mapping, Pacific J. Math., 6 (1956), 565-
582.

STANFORD UNIVERSITY AND THE HEBREW UNIVERSITY, JERUSALEM.




