ON SOME SPECIAL SYSTEMS OF EQUATIONS

H. H. CORSON

1. Let F be an arbitrary field. Let S be a system of equations which, when solved for two of its variables, takes the following form:

(1)
$$x_{1}^{k_{1}} = f(x_{3}, \dots, x_{n}),$$
$$x_{2}^{k_{2}} = g(x_{3}, \dots, x_{n}),$$

where f and g are arbitrary functions of the indicated variables. Consider also the equation

(2)
$$y^{k_1k_2} = f^{s_k}(y_3, \cdots, y_n)g^{r_k}(y_3, \cdots, y_n)$$
.

THEOREM 1. If $(k_1, k_2)=1$ and $rk_1+sk_2=1$, then the distinct solutions of (1) in F with $x_1x_2\neq 0$ may be put in one-to-one correspondence with the distinct solutions of (2) in F with $y\neq 0$. Moreover, these solutions of (1), $x_1x_2\neq 0$, may be determined from the solutions of (2), $y\neq 0$, and conversely, by means of transformations (3) and (4) below.

Proof. Assuming for the rest of this section that $x_1x_2 \neq 0$, $y \neq 0$, we put

(3)

$$x_{1} = y^{k_{2}} \left\{ \frac{f(y_{3}, \dots, y_{n})}{g(y_{3}, \dots, y_{n})} \right\}^{r},$$

$$x_{2} = y^{k_{1}} \left\{ \frac{g(y_{3}, \dots, y_{n})}{f(y_{3}, \dots, y_{n})} \right\}^{s},$$

$$x_{i} = y_{i}$$

$$(i = 3, \dots, n)$$

and notice that if (y, y_3, \dots, y_n) is a solution of (2) then (3) determines a solution of (1). Now let

(4)
$$y = x_1^s x_2^r$$
, $y_i = x_i$ $(i=3, \dots, n)$.

It may be verified directly that if (x_1, x_2, \dots, x_n) is a solution of (1) then (4) determines a solution of (2). Further, given a solution (x_1, x_2, \dots, x_n) of (1) and a solution (y, y_3, \dots, y_n) of (2) with $x_i = y_i$ $(i=3, \dots, n)$, then (3) implies (4) and conversely—which may be verified with the use of the relation $rk_1 + sk_2 = 1$.

Received August 8, 1955.

We note that Theorem 1 may be extended by induction to apply to a system like (1) with an arbitrary number of equations, with $z_1^{k_1}$, $z_2^{k_2}$, \cdots , z_m^{km} as left members, and with arbitrary functions of z_{m+1} , \cdots , z_n as right members if $(k_i, k_j)=1$, $i\neq j$. The argument is the same in going from n to n+1 equations, and transformations corresponding to (3) and (4) may be constructed.

Use will also be made of the fact that Theorem 1 is still valid if x_3, \dots, x_n are restricted to values in A, a subset of F, as long as y_3, \dots, y_n are similarly restricted.

2. Let F now be a finite field GF(q), $q=p^t$. Assume f and g to be homogeneous polynomials of degrees m_1 and m_2 respectively, where $(m_1, k_1)=1$ and $(m_2, k_2)=1$. The solutions of (2) can be determined by the following method used by Hua and Vandiver [1] and Morgan Ward [2].

As $(k_1k_2, sk_2m_1+rk_1m_2)=1$, there are integers a, b, and c such that $ak_1k_2+b(sk_2m_1+rk_1m_2)+c(q-1)=1$ with (a,q-1)=1. First assuming that $y\neq 0$, set

(5)
$$y = \lambda^{a}$$
$$y_{i} = \lambda^{-b} z_{i}$$
 (i=3, ..., n).

Equation (2) then assumes the following form:

(6)
$$\lambda = f^{sk_2}(z_3, \dots, z_n)g^{rk_1}(z_3, \dots, z_n)$$

Thus every choice of z_3, \dots, z_n such that $f \neq 0$, $g \neq 0$ determines a solution of (2).

Now consider the system (1). Determine as above integers u, v, and w such that $uk_2+vm_2+w(q-1)=1$, (u, q-1)=1. Assuming $x_2\neq 0$, set

(7) $x_{i} = \gamma^{-v} t_{i} \qquad (i=3, \dots, n).$

It is readily seen that all values of t_3, \dots, t_n such that $f(t_3, \dots, t_n)=0$ determine solutions of the system (1) whether $g(t_3, \dots, t_n)=0$ or not.

The same argument is valid if g is assumed zero, which proves the following.

THEOREM 2. If f and g are homogeneous polynomials of degrees m_1 and m_2 respectively, $(m_1, k_1)=1$ and $(m_2, k_2)=1$, then the total number of solutions of the system (1) in GF(q) is q^{n-2}

A similar application of Theorem 1 is the following. First let S be

$$(8) \qquad \qquad x_1^{k_1} = a_3 x_3^{em_3} + a_4 x_4^{em_4} + \dots + a_n x^{em_n} \\ x_2^{k_2} = b_3 x_3^{dm_3} + b_3 x_4^{dm_4} + \dots + b_n x_n^{dm_n}$$

where $(k_1, k_2)=1$. Also if M is the least common multiple of m_3, \dots, m_n , assume $(eM, k_1)=1$ and $(dM, k_2)=1$. In place of (5) we employ the following transformation in (2), following Carlitz [3]:

(9)
$$y = \lambda^{a}$$
$$y_{i} = \lambda^{-bM/m_{i}} z_{i} \qquad (i=3, \dots, n),$$

where $ak_1k_2 + bM(sk_2e + rk_1d) + c(q-1) = 1$, (a, q-1) = 1. Exactly as above follows the next theorem.

THEOREM 3. The total number of solutions of (8) subject to the conditions stated above is q^{n-2} .

Also [3] suggests the following generalization of Theorem 2. Let $f_3(x_3)$, $f_4(x_4)$, \cdots , $f_n(x_n)$ and $g_3(x_3)$, $g_4(x_4)$, \cdots , $g_n(x_n)$ be homogeneous polynomials of degrees em_3 , em_4 , \cdots , em_n and dm_3 , dm_4 , \cdots , dm_n respectively, where now $(x_i)=(x_{i1}, x_{i2}, \cdots, x_{is_1})$ $(i=3, \cdots, n)$. Thus by the same argument follows the next theorem.

THEOREM 4. Replacing in (8) $x_i^{em_i}$ by $f_i(x_i)$ and $x_i^{am_i}$ by $g_i(x_i)$, $(i=3, \dots, n)$, then the total number of solutions of the resulting system is $q^{s_3+\dots+s_n}$.

3. Now let F be the rational field and let f and g in (1) be polynomials with integral coefficients. If x_3, \dots, x_n are restricted to be integers, then x_1 and x_2 in any solution must be integers.

In the equation $rk_1 + sk_2 = 1$ we may assume that r > 0, s < 0. In place of system (1) write

(10)
$$\begin{aligned} x_1^{'k_1} = \frac{1}{x_1^{k_1}} = \frac{1}{f(x_3, \cdots, x_n)} = f'(x_3, \cdots, x_n) \\ x_2^{k_2} = g(x_3, \cdots, x_n) . \end{aligned}$$

we assume as in Theorem 2 that f and g are homogeneous of degrees m_1 and m_2 respectively, $(m_1, k_1)=1$ and $(m_2, k_2)=1$. Let a, b and c satisfy $ak_1k_2+b(rk_1m_2-sk_2m_1)+c(q-1)=1$, (a, q-1)=1; then (5) determines a family of solutions in integers of

(11)
$$y^{k_1k_2} = f^{\prime \epsilon k_2}(y_3, \cdots, y_n)g^{rk_1}(y_3, \cdots, y_n),$$

 $y \neq 0$. By Theorem 1, (3) determines a family of solutions of (10) with

H. H. CORSON

 x_3, \dots, x_n integers, and by the remark at the first of this section, a family of solutions of equations (1) with x_1, x_2, \dots, x_n integers, $x_1x_2 \neq 0$. The cases where f or g is zero may be treated as in §2, which proves the following.

THEOREM 5. If f and g are homogeneous polynomials with integral coefficients of degrees m_1 and m_2 respectively, $(m_1, k_1)=1$ and $(m_2, k_2)=1$ then a family of solutions in integers may be found for equations (1) by the method above.

See [2] for remarks on the solution of equation (11) under the above hypotheses. Note especially the above method does not in general give all solutions.

I should like to thank Professor L. Carlitz for his very helpful interest in this material.

References

1. L. Carlitz, The number of solutions of certain types of equations in a finite field. Pacific J. Math. **5** (1955), 177-181.

2. L. K. Hua and H. S. Vandiver, On the nature of the solutions of certain equations in a finite field, Proc. Nat. Acad. Sci. U.S.A. **35** (1949), 481-487.

3. Morgan Ward, A class of soluble diophantine equations, Proc. Nat. Acad. Sci. U.S.A. **37** (1951), 113-114.

DUKE UNIVERSITY