ON SOME SPECIAL SYSTEMS OF EQUATIONS

H. H. Corson

1. Let F be an arbitrary field. Let S be a system of equations which, when solved for two of its variables, takes the following form:

$$
\begin{align*}
& x_{1}^{k_{1}}=f\left(x_{3}, \cdots, x_{n}\right), \tag{1}\\
& x_{2}^{k_{2}}=g\left(x_{3}, \cdots, x_{n}\right),
\end{align*}
$$

where f and g are arbitrary functions of the indicated variables. Consider also the equation

$$
\begin{equation*}
y^{k_{1} k_{2}}=f^{s k_{2}}\left(y_{3}, \cdots, y_{n}\right) g^{r k_{1}}\left(y_{3}, \cdots, y_{n}\right) \tag{2}
\end{equation*}
$$

Theorem 1. If $\left(k_{1}, k_{2}\right)=1$ and $r k_{1}+s k_{2}=1$, then the distinct solutions of (1) in F with $x_{1} x_{2} \neq 0$ may be put in one-to-one correspondence with the distinct solutions of (2) in F with $y \neq 0$. Moreover, these solutions of (1), $x_{1} x_{2} \neq 0$, may be determined from the solutions of (2), $y \neq 0$, and conversely, by means of transformations (3) and (4) below.

Proof. Assuming for the rest of this section that $x_{1} x_{2} \neq 0, y \neq 0$, we put

$$
\begin{align*}
& x_{1}=y^{k_{2}}\left\{\frac{f\left(y_{3}, \cdots, y_{n}\right)}{g\left(y_{3}, \cdots, y_{n}\right)}\right\}^{r}, \\
& x_{2}=y^{k_{1}}\left\{\frac{g\left(y_{3}, \cdots, y_{n}\right)}{f\left(y_{3}, \cdots, y_{n}\right)}\right\}^{s}, \tag{3}\\
& x_{i}=y_{i}
\end{align*}
$$

and notice that if $\left(y, y_{3}, \cdots, y_{n}\right)$ is a solution of (2) then (3) determines a solution of (1). Now let

$$
\begin{equation*}
y=x_{1}^{s} x_{2}^{r} \tag{4}
\end{equation*}
$$

$$
y_{i}=x_{i}
$$

$$
(i=3, \cdots, n)
$$

It may be verified directly that if $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is a solution of (1) then (4) determines a solution of (2). Further, given a solution (x_{1}, x_{2}, \cdots, x_{n}) of (1) and a solution (y, y_{3}, \cdots, y_{n}) of (2) with $x_{i}=y_{i}(i=3, \cdots$, n), then (3) implies (4) and conversely-which may be verified with the use of the relation $r k_{1}+s k_{2}=1$.

We note that Theorem 1 may be extended by induction to apply to a system like (1) with an arbitrary number of equations, with $z_{1}^{k_{1}}$, $z_{2}^{k_{2}}, \cdots, z_{m}^{k m}$ as left members, and with arbitrary functions of z_{m+1}, \cdots, z_{n} as right members if $\left(k_{i}, k_{j}\right)=1, i \neq j$. The argument is the same in going from n to $n+1$ equations, and transformations corresponding to (3) and (4) may be constructed.

Use will also be made of the fact that Theorem 1 is still valid if x_{3}, \cdots, x_{n} are restricted to values in A, a subset of F, as long as y_{3}, \cdots, y_{n} are similarly restricted.
2. Let F now be a finite field $G F(q), q=p^{t}$. Assume f and g to be homogeneous polynomials of degrees m_{1} and m_{2} respectively, where (m_{1}, k_{1})=1 and (m_{2}, k_{2})=1. The solutions of (2) can be determined by the following method used by Hua and Vandiver [1] and Morgan Ward [2].

As $\left(k_{1} k_{2}, s k_{2} m_{1}+r k_{1} m_{2}\right)=1$, there are integers a, b, and c such that $a k_{1} k_{2}+b\left(s k_{2} m_{1}+r k_{1} m_{2}\right)+c(q-1)=1$ with $(a, q-1)=1$. First assuming that $y \neq 0$, set

$$
y=\lambda^{a}
$$

$$
\begin{equation*}
y_{i}=\lambda^{-b} z_{i} \quad(i=3, \cdots, n) \tag{5}
\end{equation*}
$$

Equation (2) then assumes the following form:

$$
\begin{equation*}
\lambda=f^{s k_{2}}\left(z_{3}, \cdots, z_{n}\right) g^{r k_{1}}\left(z_{3}, \cdots, z_{n}\right) . \tag{6}
\end{equation*}
$$

Thus every choice of z_{3}, \cdots, z_{n} such that $f \neq 0, g \neq 0$ determines a solution of (2).

Now consider the system (1). Determine as above integers u, v, and w such that $u k_{2}+v m_{2}+w(q-1)=1,(u, q-1)=1$. Assuming $x_{2} \neq 0$, set

$$
\begin{align*}
& x_{2}=\gamma^{u} \tag{7}\\
& x_{i}=\gamma^{-v} t_{i} \quad(i=3, \cdots, n) .
\end{align*}
$$

It is readily seen that all values of t_{3}, \cdots, t_{n} such that $f\left(t_{3}, \cdots, t_{n}\right)=0$ determine solutions of the system (1) whether $g\left(t_{3}, \cdots, t_{n}\right)=0$ or not.

The same argument is valid if g is assumed zero, which proves the following.

Theorem 2. If f and g are homogeneous polynomials of degrees m_{1} and m_{2} respectively, $\left(m_{1}, k_{1}\right)=1$ and $\left(m_{2}, k_{2}\right)=1$, then the total number of solutions of the system (1) in $G F(q)$ is q^{n-2}

A similar application of Theorem 1 is the following. First let S be

$$
\begin{align*}
& x_{1}^{k_{1}}=a_{3} x_{3}^{e m_{3}}+a_{4} x_{4}^{e m_{4}}+\cdots+a_{n} x^{e m_{n}} \\
& x_{2}^{k k_{2}}=b_{3} x_{3}^{d m_{3}}+b_{4} x_{4}^{d m_{4}}+\cdots+b_{n} x_{n}^{d m_{n}} \tag{8}
\end{align*}
$$

where $\left(k_{1}, k_{2}\right)=1$. Also if M is the least common multiple of m_{3}, \cdots, m_{n}, assume $\left(e M, k_{1}\right)=1$ and $\left(d M, k_{2}\right)=1$. In place of (5) we employ the following transformation in (2), following Carlitz [3]:

$$
y=\lambda^{a}
$$

$$
\begin{equation*}
y_{i}=\lambda^{-b M / m_{i}} z_{i} \quad(i=3, \cdots, n), \tag{9}
\end{equation*}
$$

where $a k_{1} k_{2}+b M\left(s k_{2} e+r k_{1} d\right)+c(q-1)=1,(a, q-1)=1$. Exactly as above follows the next theorem.

Theorem 3. The total number of solutions of (8) subject to the conditions stated above is q^{n-2}.

Also [3] suggests the following generalization of Theorem 2. Let $f_{3}\left(x_{3}\right), f_{4}\left(x_{4}\right), \cdots, f_{n}\left(x_{n}\right)$ and $g_{3}\left(x_{3}\right), g_{4}\left(x_{4}\right), \cdots, g_{n}\left(x_{n}\right)$ be homogeneous polynomials of degrees $e m_{3}, e m_{4}, \cdots, e m_{n}$ and $d m_{3}, d m_{4}, \cdots, d m_{n}$ respectively, where now $\left(x_{i}\right)=\left(x_{i 1}, x_{i 2}, \cdots, x_{i s_{1}}\right)(i=3, \cdots, n)$. Thus by the same argument follows the next theorem.

Theorem 4. Replacing in (8) $x_{i}^{e m_{i}}$ by $f_{i}\left(x_{i}\right)$ and $x_{i}^{a m_{i}}$ by $g_{i}\left(x_{i}\right),(i=3$, $\cdots, n)$, then the total number of solutions of the resulting system is $q^{s_{3}+\cdots+s_{n}}$.
3. Now let F be the rational field and let f and g in (1) be polynominals with integral coefficients. If x_{3}, \cdots, x_{n} are restricted to be integers, then x_{1} and x_{2} in any solution must be integers.

In the equation $r k_{1}+s k_{2}=1$ we may assume that $r>0, s<0$. In place of system (1) write

$$
\begin{align*}
& x_{1}^{k_{1}}=\frac{1}{x_{1}^{k_{1}}}=\frac{1}{f\left(x_{3}, \cdots, x_{n}\right)}=f^{\prime}\left(x_{3}, \cdots, x_{n}\right) \tag{10}\\
& x_{2}^{k_{2}}=g\left(x_{3}, \cdots, x_{n}\right)
\end{align*}
$$

we assume as in Theorem 2 that f and g are homogeneous of degrees m_{1} and m_{2} respectively, $\left(m_{1}, k_{1}\right)=1$ and $\left(m_{2}, k_{2}\right)=1$. Let a, b and c satisfy $a k_{1} k_{2}+b\left(r k_{1} m_{2}-s k_{2} m_{1}\right)+c(q-1)=1, \quad(a, q-1)=1$; then (5) determines a family of solutions in integers of

$$
\begin{equation*}
y^{k_{1} k_{2}}=f^{\prime s_{2} k_{2}}\left(y_{3}, \cdots, y_{n}\right) g^{r k_{1}}\left(y_{3}, \cdots, y_{n}\right) \tag{11}
\end{equation*}
$$

$y \neq 0$. By Theorem 1, (3) determines a family of solutions of (10) with
x_{3}, \cdots, x_{n} integers, and by the remark at the first of this section, a family of solutions of equations (1) with $x_{1}, x_{2}, \cdots, x_{n}$ integers, $x_{1} x_{2} \neq 0$. The cases where f or g is zero may be treated as in § 2 , which proves the following.

TheOrem 5. If f and g are homogeneous polynomials with integral coefficients of degrees m_{1} and m_{2} respectively, $\left(m_{1}, k_{1}\right)=1$ and $\left(m_{2}, k_{2}\right)=1$ then a family of solutions in integers may be found for equations (1) by the method above.

See [2] for remarks on the solution of equation (11) under the above hypotheses. Note especially the above method does not in general give all solutions.

I should like to thank Professor L. Carlitz for his very helpful interest in this material.

References

1. L. Carlitz, The number of solutions of certain types of equations in a finite fleld. Pacific J. Math. 5 (1955), 177-181.
2. L. K. Hua and H. S. Vandiver, On the nature of the solutions of certain equations in a finite field, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 481-487.
3. Morgan Ward, A class of soluble diophantine equations, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 113-114.

Duke University

