
ON SOME SPECIAL SYSTEMS OF EQUATIONS

H. H. CORSON

l Let F be an arbitrary field. Let S be a system of equations
which, when solved for two of its variables, takes the following form:

(1)

where / and g are arbitrary functions of the indicated variables. Con-
sider also the equation

(2) y^^ΓHvs, , yn)gr}Ci{y^ , yn)

THEOREM 1. // (kv k2)=l and r ^ + s λ ^ l , then the distinct solutions
of (1) in F with xτx2^0 may be put in one-to-one correspondence with
the distinct solutions of (2) in F with yφO. Moreover, these solutions
of (1), xλx2φθ, may be determined from the solutions of (2), yj^O, and
conversely, by means of transformations (3) and (4) below.

Proof. Assuming for the rest of this section that
we put

ilt*, , yn)

(3) Xl^{ψ

Xi^Vi ( i = 3 , ••-, n)

and notice that if (y, y3, , yn) is a solution of (2) then (3) determines
a solution of (1). Now let

y
( 4 )

!/i=#i ( i = 3 , •••, n).

I t may be verified directly t h a t if (xlf x2, •••, xn) is a solution of (1)

then (4) determines a solution of (2). Fur ther , given a solution (xlf x2,

•••,#„) of (1) and a solution (2/, ?/3, •••, yn) of (2) with ^ = ^ ( ί = 3 , •••,

^ ) , then (3) implies (4) and conversely—which may be verified with the

use of the relation rkxΛ-sk2=l .
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We note that Theorem 1 may be extended by induction to apply
to a system like (1) with an arbitrary number of equations, with zfi,
Φ> •••>2f™ as left members, and with arbitrary functions of zm+1, •••,
zn as right members if (kt, kj)=l, iφj. The argument is the same in
going from n to n + 1 equations, and transformations corresponding to
(3) and (4) may be constructed.

Use will also be made of the fact that Theorem 1 is still valid if
#3, •••, xn are restricted to values in A, a subset of F, as long as y3,
• , yn are similarly restricted.

2. Let F now be a finite field GF(q), q=pι. Assume / and g to
be homogeneous polynomials of degrees m1 and m2 respectively, where
(mlf k1) = l and (m2, k2) = l. The solutions of (2) can be determined by
the following method used by Hua and Vandiver [1] and Morgan Ward
[2].

As {kxk%1 sh^ + rkxm^^lj there are integers α, δ, and c such that
j,mL + rk1m2)-hc(q—1)=1 with (a,q—1)=1. First assuming that

set

y
( 5 )

yi=λ~\ (*=3, •••, rc).
Equation (2) then assumes the following form:

(6) W M s 3 , •• , ^ ) ^ 1 f e , ••-,«»).

Thus every choice of s3, •••,«„ such that / # 0 , ^7^0 determines a
solution of (2).

Now consider the system (1). Determine as above integers u, v,
and w such that uki + υm2 + w(q—1)=1, (M, g—1)==1. Assuming
set

( 7 )
Xi=r~% ( i = 3 , ••-, w) .

I t is readi ly seen t h a t all va lues of t3, •••, tn s u c h t h a t / ( ί 3 , •••, ί n ) = 0
d e t e r m i n e solutions of t h e s y s t e m (1) w h e t h e r #(£3, •••, tn)=0 or n o t .

T h e s a m e a r g u m e n t is val id if g is a s s u m e d zero, w h i c h p r o v e s
t h e fol lowing.

THEOREM 2. // / and g are homogeneous polynomials of degrees mι

and mλ respectively, (mlf k^)=l and (m.2, k.2)=l, then the total number of
solutions of the system (1) in GF(q) is qn~2

A similar application of Theorem 1 is the following. First let S be
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xf1^ Λ 4- anx
emn

( 8 )
Φ = hxfh + b,xT± -f - + δΛίC»

where (£χ, &2)=1. Also if M is the least common multiple of m3, •••,
mw, assume (eM, ̂ ) = 1 and (dM, &2)=1. In place of (5) we employ the
following transformation in (2), following Carlitz [3]:

( 9 )

where akjk1 + bMiskβ + rk^ + ciq—1)=1, (α, g ~ l ) = l . Exactly as above
follows the next theorem.

THEOREM 3. The total number of solutions of (8) subject to the con-
ditions stated above is qn~2.

Also [3] suggests the following generalization of Theorem 2. Let
/3fe)> Λ(O, •••, frfan) and ^fe), ^ (^) , •• , ^ f e ) be homogeneous
polynomials of degrees em3, emί7 •••, emn and dw3, dm±> •••, c?mw respec-
tively, where now (ίPi)=(a?tι, a?<2,

 β , ^ ί S l ) ( i = 3 , •• ,w). Thus by the
same argument follows the next theorem.

T H E O R E M 4. Replacing in (8) af71* % /*(#*) and χfm* by 9i(xt)f ( i = 3 , .
• , n), £Λe% ίΛe ίoίaί number of solutions of the resulting system is

3. Now let F be the rational field and let / and g in (1) be poly-
nominals with integral coefficients. If x3, * ,xn are restricted to be
integers, then xι and χ.2 in any solution must be integers.

In the equation rk1-hsk2==l we may assume that r^>0, s<^0. In
place of system (1) write

\ /( )

we assume as in Theorem 2 that / and g are homogeneous of degrees
mι and m2 respectively, (mlf k1) = l and (m2, ^2) = 1. Let α, δ and c
satisfy ak1k%-hb(rkιmi—sk2m1)-hc(q—l) = lf {a, q—l)=l; then (5) deter-
mines a family of solutions in integers of

(11) yk***=f"**(v3, , yn)grkl(y3, , s/n),

By Theorem 1, (3) determines a family of solutions of (10) with
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α?3> •••,»» integers, and by the remark a t the first of this section, a

family of solutions of equations (1) with χu χ29 ••-, χn integers, χxχ%φ§u

The cases where / or g is zero may be t reated as in § 2, which proves

the following.

THEOREM 5. If f and g are homogeneous polynomials with integral

coefficients of degrees mλ and m2 respectively, (m19 A:x)==l and (m.z, kz)=l

then a family of solutions in integers may be found for equations (1)

by the method above.

See [2] for remarks on the solution of equation (11) under the

above hypotheses. Note especially the above method does not in general

give all solutions.

I should like to thank Professor L. Carlitz for his very helpful in-

terest in this material.
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