ON SOME SPECIAL SYSTEMS OF EQUATIONS

H. H. CorsoN

1. Let F be an arbitrary field. Let S be a system of equations
which, when solved for two of its variables, takes the following form:

x’flzf(xh M xn) )
(1) k

x22=g(x3, M) xn) ]
where f and g are arbitrary functions of the indicated variables. Con-
sider also the equation

(2) YoFe= %y, oo o, Y9 Wss 205 Yn) -

THEOREM 1. If (ki k.)=1 and rk,+sk,=1, then the distinct solutions
of (1) in F with xw,50 may be put in one-to-one correspondence with
the distinct solutions of (2) in F with y=%=0. Moreover, these solutions
of (1), xw,7=0, may be determined from the solutions of (2), y%~0, and
conversely, by means of transformations (8) and (4) below. :

Proof. Assuming for the rest of this section that zx,7%0, y%0,
we put

@, =y"2 {_fgyi’,_._:,,’,,yl‘l,}r )
9(Ysy ~* 5 Yn)
(3) r,=y" {‘g_(y§;::’,,yﬁ)‘}s ,
Sz + o5 Ya)
T =Y, (=38, ---, n)
and notice that if (y, s, -+, ¥,) is a solution of (2) then (3) determines
a solution of (1). Now let
y=x§.’l7; )
(4)
Y=x; (=38, ---, n).

It may be verified directly that if (,, @, -+, z,) is a solution of (1)
then (4) determines a solution of (2). Further, given a solution (z,, z.,
«++,x,) of (1) and a solution (y, %, ---, ¥,) of (2) with z,=y, (=38, ---,
n), then (3) implies (4) and conversely—which may be verified with the
use of the relation »k,+sk,=1.
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We note that Theorem 1 may be extended by induction to apply
to a system like (1) with an arbitrary number of equations, with 2%,
242, -+, 2 as left members, and with arbitrary functions of z,.,, ---,
2, as right members if (k, k;)=1, ¢5%4j. The argument is the same in
going from % to »+1 equations, and transformations corresponding to
(3) and (4) may be constructed.

Use will also be made of the fact that Theorem 1 is still valid if
2, +-+, x, are restricted to values in A4, a subset of F, as long as ¥,
.«.,y, are similarly restricted.

2. Let F now be a finite field GF(q), g=p'. Assume f and g to
be homogeneous polynomials of degrees m, and m, respectively, where
(my, k,)=1 and (m,, k,)=1. The solutions of (2) can be determined by
the following method used by Hua and Vandiver [1] and Morgan Ward
[2].

As (k.k,, sksm,+rkm,)=1, there are integers a, b, and ¢ such that
ak k,+ b(skm,+ rkm,) + c(g—1)=1 with (a,g—1)=1. First assuming that
y%40, set '

y=2
(5) .
yz='{—bzi (II’=39 ) %) .

Equation (2) then assumes the following form:

( 6) ’1=f8k2 (ZS! ctty zn)gm1 (23, M) Zn) .

Thus every choice of 2z, ---, 2, such that f£0, g=%~0 determines a
solution of (2).

Now consider the system (1). Determine as above integers u, v,
and w such that uk,+wvm,+w(q—1)=1, (&, ¢—1)=1. Assuming x,7%0,
set

@,=7"
(7)
z=7"", (i=3, -+, n).
It is readily seen that all values of ¢, ---, ¢, such that f(¢&, ---,%,)=0
determine solutions of the system (1) whether ¢(¢,, ---, £,)=0 or not.
The same argument is valid if ¢ is assumed zero, which proves
the following.

THEOREM 2. If f and g are homogeneous polynomials of degrees m,
and m, respectively, (m,, k)=1 and (m,, k.)=1, then the total number of

solutions of the system (1) in GF{(q) is ¢"*

A similar application of Theorem 1 is the following. First let S be
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T = A"+ Q™ - - -+

(8)

Thr=025"s + bxi™ 4 - o+ + bgmn

where (k,, k,)=1. Also if M is the least common multiple of m;, ---,
m,, assume (eM, k,)=1 and (dM, k,)=1. In place of (5) we employ the
following transformation in (2), following Carlitz [3]:

y=4"
(9)
yiz’l#bﬂlmlzi (?:=3y M) n) y
where ak.k,+b0M(ske+rkd)+c(qg—1)=1, (a, g—1)=1. Exactly as above
follows the next theorem.

THEOREM 3. The total number of solutions of (8) subject to the con-
ditions stated above s ¢"*.

Also [3] suggests the following generalization of Theorem 2. Let
Sws), o), -+, ful@) and gyxs), g, -+, gu(x,) be homogeneous
polynomials of degrees em,, em,, ---, em, and dm,, dm,, ---, dm, respec-
tively, where now (@;)=(xy, iy +++, @) (=38, ---, »). Thus by the
same argument follows the next theorem.

THEOREM 4. Replacing in (8) xi™ by flx;) and xi™ by g,(x,), (=3,
<+, m), then the total number of solutions of the resulting system s

q$3+‘ .. +Sn‘

3. Now let F be the rational field and let f and ¢ in (1) be poly-
nominals with integral coefficients. If a3, ---, 2, are restricted to be
integers, then «, and «, in any solution must be integers.

In the equation 7k, +sk,=1 we may assume that » >0, s<0. In
place of system (1) write
x;klza;l:f(x* .1. - '?L;"):f/(mgy Sty Tn)
(10) 1 3 ’ n

w;"z:g(.’l?s, ct xn) .

we assume as in Theorem 2 that f and g are homogeneous of degrees
m, and m, respectively, (m,, k)=1 and (m., k,)=1. Let a, b and ¢
satisfy akk,+b(rkm,—skm)+c(g—1)=1, (a, ¢g—1)=1; then (5) deter-
mines a family of solutions in integers of

(11) Yk f1E2yyy <o Yo )9 Yy vy Yn)y

y#0. By Theorem 1, (3) determines a family of solutions of (10) with
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x; -+, T, integers, and by the remark at the first of this section, a
family of solutions of equations (1) with x,, @,, ---, z, integers, x,x,5%0.
The cases where f or g is zero may be treated as in § 2, which proves
the following.

THEOREM 5. If f and g are homogeneous polynomials with integral
coefficients of degrees m, and m, respectively, (m,, k)=1 and (m,, k,)=1
then a family of solutions in integers may be found for equations (1)
by the method above.

See [2] for remarks on the solution of equation (11) under the
above hypotheses. Note especially the above method does not in general
give all solutions.

I should like to thank Professor L. Carlitz for his very helpful in-
terest in this material.
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