CONSTRUCTION OF THE LATTICE OF COMPLEMENTED
IDEALS WITHIN THE UNIT GROUP

J. ELDON WHITESITT

In his book ‘‘Linear algebra and projective geometry ’’ [1, pp. 203-
227], R. Baer shows that in the ring of endomorphisms of a linear
manifold, (F, A), except where the characteristic of F' is 2, the pro-
jective geometry of the subspaces of the linear manifold is determined
entirely within the multiplicative group of units in the ring. G. Ehrlich
[2], using similar methods showed that the structure of a continuous
geometry is determined within the unit group of the associated regular
ring. The purpose of this paper is to show that a unified treatment
may be given.

We will assume throughout that the ring R has an identity element
which we denote by 1. We will say that a right ideal 4 in R is a
complemented right ideal if there exists a right ideal A’ such that R
=A® A where @& indicates direct sum. We refer to such an ideal by
the abbreviation C. R. 1.

If K is any ring with identity, we denote the unit group of K by
U(K). Where K is R, this will be shortened to just U. For any set
S of elements in R, we let Z(S) denote the center of S, that is, the
set of all those elements of S which commute with every element in S.

We assume the ring R satisfies the following postulates:

1. The mapping » —>r+r for every element »e R is an auto-
morphism of the additive group of R onto R. [1, p. 203; 2, p. 9]

This postulate requires a little more than that the characteristic of
R is different from 2. We will denote »+» by 27 and the inverse image

of r by —;r

2. If A and B are C.R.1.’s then A\ B and A\J Bare C.R.1.’s.
[1, pp. 178, 179; 2, p. 6]

8. If e is a nonzero idempotent in R and if % is any element of R,
then either eRk=0 or kRe=0 implies that £=0. [1, p. 198; 2, p. 16]

4. If e is an idempotent element of R, then Z(U(eRe)) < Z(eRe). [1,
p. 201; 2, p. 14]

5. Z(R) contains no nonzero divisors of zero. [1, p. 202; 2, p. 7]

An element of we R is termed an nwvolution if u’=1. An element
se R which is the product of two distinct involutions and satisfies the
property that (s—1)*=0 is said to be of class two. Section 1 deals with
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elements of class two, showing that they may be characterized within
the unit group.

If a is any element of R, we define J*(a) to be the setof allzec R
satisfying ax=2x, and J-(a) to be the set of all y e R satisfying ay= —y.
Then if 4 is a C.R. 1. we define 4(4)* to be the set of all involutions
u such that A=J*(u) and 4(A4)- to be the set of all involutions v such
that A=J-(v). Either of these sets is called a 4-set. In §2, 4-sets
are characterized within the unit group, making use of the results of
§1. It is shown that a one-to-one correspondence exists between the
set of all C.R.1.’s and the set of all pairs [4(4)*, 4(4)~] of all d-sets,
called 4-systems.

Finally, it is shown in § 8 that the set of C.R.I.’s forms an ir-
reducible, complemented modular lattice and that the ordering in the
lattice is determined by the ordering of the 4-systems, and conversely.

1. Elements of class two. It will be necessary to show that ele-
ments of class two can be characterized completely within the multiplicative
group of units in the ring. First we list without proof some well-
known properties of idempotent elements and the ideals they generate
(complemented ideals) in the ring R. These results hold for arbitrary
rings with 1. The proof of 1.1 is given in [4, p. 708].

ProrosITION 1.1. (a) An element e in R is idempotent if and
only if (1—e) is tdempotent.

(b) If e is idempotent, eR is the set of elements x in R for which
ex—=x. Note that this implies that y is in (1—e)R if and only if ey=0.

(¢) If e and f are idempotents such that eR=fR, and (1—e)R
=(1—f)R, then e=f.

(d) R=A® B for right ideals A and B if and only if there exists
an idempotent e such that eR=A and (1—e)R=B8.

The following result, useful for testing the equality of complement-
ed right ideals, holds for arbitrary rings with 1. It is given in [3, p.
13].

ProPOSITION 1.2. If e and f are idempotents, then eR=fR if and
only if f=e+ex(l—e) for some xeR.

The following result, given in Ehrlich [2, pp. 9, 10] relates the set
of all involutions to the set of all idempotents.

ProrosiTION 1.3. (a) The mappings u — ;/(u-kl):e and e > 2¢e—1

=u are one-to-one inverse mappings between the set of all involutions u
and the set of all idempotents e in R.
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(b) Similarly the mappings v — ; A—v)=f and f— —2f+1=v

are one-to-one inverse mappings between these sets.

(c) For the involution u=2e—1, J*(u)=eR and J (u)=(1—e)R.

It will be necessary to know that there exist ‘‘enough’ involu-
tions, or equivalently, idempotents.

LEMMA 1.4. If A=eR=J*(u) for an idempotent e and involution
u=2¢—1, and if 0 <A <R, then there exists an idempotent f e such

that A=fR, or equivalently, there exists an involution v %~u such that
A=J*(v).

Proof. Since 0 < eR <R, neither ¢ nor 1—e¢ is zero. By Postulate
3 there is an xeR such that ex(l—e)7%40. Let f=e+ex(l—e)7#~e.
Then f is an idempotent and eR=fR=A. Equivalently, v=2f—1 is
an involution such that u == v and A=J*(v).

Lemma 1.5, If J*@w)y=J*(w)=J*(w) for involutions u, v, w, then
uwrw=u—v+w, and (uv—1)y=0.

Proof. Let A=J*(u)=dJ*(v)=J*(w). Then u#+1, v+1, and w+1
are in A. Hence

u—v+w=u—@w+1)+w+1)=u—uw+1)+ufzw+1)
=y[l—w+D+(w+1]=ul—v+w+1]
=u[—v+ovw+1)]=wv(—1+w+1)=uvw.

Now wuvu=2u—v» and hence (uv)=2uv—1, or (uv)’—2uv+1=0, that
is, (uv—1)*=0. This completes the proof.

In 1.1 we have seen that principal right ideals generated by
idempotents are complemented, and it is necessary to know that certain
other ideals are also complemented. In particular,

LEMMA 1.6. If fR=eR for idempotents e, f, then (f—e)R is a
C.R. L.

Proof. We note that fe=e, ef=f and f=e+ez(l—e) for some
ze R. We will show that (f—e)R=eR N[1—e)R\J (1—f)R]. Clearly
(f—e)R < eR since f—e=ez(l—e¢), and (f—e)R < [(1—e)R\J (1—f)E],
since for any xe R, (f—e)x=(1—e)z+(1— f)(—x). Now suppose ycel
NI(1l—e)R\J (1—-f)E], then y=ey=Q1—¢e)r,+(1—f)r,, and (1—e)y=0
=1—er+Q—-e)(1-f)r,=>1—e)r, + (1—¢)r,. But then y=QQ—e)r
+ A=frr=QA=e)r, + (1=e)r, + (f—e)(—=1) =(f—e) (—7) and is in
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(f—e)R. This shows eRN\[(1—e)R\J Q- )R] < (f—e)R, and hence
equality holds. By Postulate 2, (f —e¢)R is a C.R.I. This completes
the proof.

PROPOSITION 1.7. If w and v are involutions, then J*(uv)=dJ*(vu)

=@ NJ*@]® () N J~)]-

Proof. Assume z is any element in J*(uv). This is equivalent to
uvr=x, or ve=ux, or x=vux. Hence J*(uwv)=J"(vuj. Further x may
be written =z} +a; where x;eJ*(u) and x; € J-(u). Then ux=ax;
—x; and x+ux=2x;. Similarly, z=z;+2,, where 2}eJ*(v) and z;
eJ~(v), and x+vx=2x,. Hence z;=a} and x;=x;. That is, x is in
[J*@) NS @)U [J-() N J(v)].

That [J*(w) N\ J @)U [J-@) N J-(v)] < J*(uv) is clear and the sum
is direct since J*(u) N\ J-(#)=0. This completes the proof.

We note that by Postulate 2, the above proposition also gives that
J*(uv) is a C.R.I. Next we show that an element of class two may
be written in a special form.

LEMMA 1.8. If the element s=u'v' for involutions u’ and v’ satisfies
(s—1)*=0, then there exist imvolutions u and v such that s=uv, and
JH(u)=J*(v).

Proof. (s—1)’=0 implies that s(s—1)—(s—1)=0 and hence that
s—1leJ*(s). Hence (s—1)R < J*(s), and J*(s) is a C.R.I. by the pre-
ceding proposition. Now let u be any involution such that (s—1)R
<J+w) < J*(s). This is possible, since J*(s) is a C.R.I. and will serve
for J*(w). If v=us, v=u(s—1)+u=s—1+u, since s—1eJ*(u).

V=(E—1 +E—Dut+u(s—)+uw'=(s—1u+s—1+1=s@u+1)—(@u+1)+ 1=1,

since u+1eJ*(s) < J*(u). That is, v is an involution. Clearly J*(w)
< J*(v). Assume that xeJ*(v), so that a=ve=(s—1+u)x. That is,
(s—1ex=(1—-u)x. But (1—u)reJ-(w), while (s—1)zeJ*(u), and hence
(1—w)x=0 for every zeJ*(w). That is, J*(v) < J*(w), and we have
proved that equality holds. This completes the proof.

The following lemma, and the classification of elements of class
two given in Theorem 1 are due to Israel Halperin. We define C(s),
the centralizer of an element se R, to be the set of all elements te U
such that ts=st. Then we let C*s)=C(C(s)) be the set of all elements
in U which commute with every element in C(s).

LEMMA 1.9. If s=1+n=uv, where n*=0 and u and v are involu-
tions, then nR=eR for some idempotent e, and for any such e, if te C*(s)
and te=et, then tx=uxt for every x<c U.
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Proof. By 1.8 we may assume J*(u)=J*(v)=4R for some idempotent
2. Then u=2[¢+ix(1—17)]—1 and v=2[¢+4y(l—14)]—1 for some z, yeR.
Then by direct computation, uv=1+142(1—17), where z=2(y—=x). Hence
n=s—1=42(1—1)=j—1 for the idempotents j=4+42(1—%) and ¢, and nR
is a C.R.I. by 1.6. Let nR=¢eR for the idempotent e. Then nR=eR
< iR implies te=¢, (1—t)(1—e)=(1—1%), en=mn, en(l—e)=n(l—e)
=12(1—1)(1—e)=n, and ne=0.

Now e=nh' for some 2’ e R. Set h=(l—e)h'e, g=hn, f=1l—e—g.
Then nh=n(l—e)h'e=nh'e=e, gn=0, ng=en=n, h=(l—e)he, h’=0,
hg=0, ¢*=g, ge=eg=0, [’=f, ne=nf=fn=gn=0, and e, f, g are
orthogonal idempotents satisfying l=e+ f+g.

Further, nx=0 is equivalent to gz=0. Clearly nx=0 implies gr="Anx
=0. gx=0 imples x=(e+ f)x, hence nx=n(e+ f)r=n(l—g)x=0.

Also on=0 is equivalent to xe=0, since eR=nZR.

Now let # be an arbitrary element in U. We show zt=¢x for any
t in C*s) for which te=et by showing ¢ commutes with each term in
the expansion of z=(e+ f+g)x(e+ f+9).

Since fn=nf=0 and 2f—1eU, 2f—1 is in C(n)=C(s) and hence
tf=st. Then also tg=gt. s'=n—1, so se U, and hence se C(s), and
ts=st, th=mnt.

Using the relations given above between e, f, ¢, 7, we have:

1+exf has inverse 1—exf and is in C(s), hence texf=exft.

1+exg has inverse 1—exg and is in C(s), hence texg=exgt.

1+ fxg has inverse 1—fxg and is in C(s), hence tfxg=fxgt.

1+ exen has inverse 1 —exen and is in C(s), hence texen=ecxent, that is,
(texe —ewet)n=0, since tn=mnt. But this is equivalent to (texe—exet)e=0
and hence tere=exet.

1+fxen has inverse 1—fxen and is in C(s), hence ¢fwen=fxent
and tfxe=fxet.

1+mnan has inverse 1— faen and is in C(s), hence tnwn=mnant, that
is, n(tx—axt)n=0. But ny=0 is equivalent to gy=0, zr=0 is equivalent
to ze=0, hence tgxe=guxet.

1+naf has inverse 1—naxf and is in C(s), hence tnxf=nxft and
tgxf=gxft.

1+mnxg has inverse 1—nwg and is in C(s), hence tnwg=nxgt and
tgrg=9xgt.

Finally, if fyf e U(fRSf) with inverse fzf < fRf, then e+ fyf+g
has inverse e+ fzf+g in R and is in C(s), hence tfyf=fyft and
(FtINSYN)=(fyf)NSftf) and [ftf=tf has ¢7'f as inverse in fRf.
Hence ftfe Z(U(FRS)) < Z(fRf) by Postulate 4, and tfzf=fxft for
xe U. This completes the proof.

The following theorem gives necessary and sufficient conditions that
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an element which is the product of two involutions be of class two. It
will be noted that these conditions are entirely multiplicative in nature.

THEOREM 1. If s=wwv for distinct involutions u, v, neither of which
is+1, then s is of class 2 iof and only if
1. For some re U, and tnvolution w, we have

wsw=s"",
rsr-l=g*,
Cw) < C(r), and
C(s) N Clw) = Z(U)

2. $=£1 or for every s'=u'v’ satisfying 1, s”=1.

Proof. Assume s=uv=n-+1, n*=0, n 0. Then as in 1.9, nR=eR
for an idempotent e, and n=en, ne=0. Let r=1+¢, w=2e¢—1. Then
r-l=1—¢/2, w'=1, and wsw=2e—1)(1+n)2e—1)=1—n=s"'. Further,
we have that rsr-'=(1+e)(1+n)(1—¢/2)=1+2n=1+2n+n’=s". If yw
=wy, then ye=ey, and yr=7ry, that is, C(w) < C(r). Finally, if te C*(s)
N C(w), then te=et, and by 1.9, te Z(U). (Note that ¢' exists since,
for example, C(w) < U). Hence we have established 1. We note that
s’=143n, but 8¢ Z(R), n %40, and hence s’=1 implies 3=0.

Now assume s=uv satisfies 1, 2. Let t=s+s~'. Then w(s+s™")
=s~'+s, that is, wt=tw. C(w) < C(r) implies that tr=2t and wr=rw
since weU and hence we C(w). Hence t=rtri=rsr-'+rsiri=g
+rwswr' =8+ wsw=s+wswwsw=s+ (s =+2+s7—2=(s+s7)* -2

=t’—2. That is, #—t—2=0. Hence ¢t '= ; (t—1) and ¢ is in U, and

in C(w).

Now if ye C(s), yt=ty, and te C°(¢). But then te Z(U) and by
Postulate 4, te Z(R). Then (¢+1) and (¢—2) are in Z(R). Hence #—t¢
—2=0=(t+1)(¢—2) implies by Postulate 5 that t=—1 or ¢=2.

Suppose t=s+s'=—1. Then s*+s+1=0. Multiplication by s—1
gives s*—1=0, s*=1, which contradicts 2 unless each s'=u'v’ satisfying
1 has the property s®=1. In this case, we show the existence of an
element of class 2. Since u=%+1, 0 <J*(u) <R, and there exists an
involution ' =~ u such that J*(u)=J*(x') by 1.4. Now by 1.5, uuw'=1+m
is of class 2, hence satisfies 1, by the first part of this proof. Hence
3=0 and —1=2.

Then in any case t=2=s+s™', hence $*—2s+1=(s—1)*=0. That
is, s is of class 2 as was to be shown.

Finally, suppose s=uv=1+n, where #»*=0, n 40, s=1. Then 3=0
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and if s'=u'v" satisfies 1, by the preceding proof ¢ —2=s+s1—2=0,
§”—2¢"+1=0, and (s'—1)*=0. Hence s®=1+3n=1, which completes
the proof.

The cases where u=v, or one or both of u, v are 1 or —1 may be
treated separately and the preceding theorem is easily seen to be true
for each case. In these cases, s cannot be of class 2, and one or more
of (1), (2) fails to hold in each case. These cases are not of interest,
so the proofs are omitted.

2. Cosets of involutions. Having finished the characterization of
elements of class two, we proceed with the discussion of the sets of
involutions defined in the introduction, which we call 4-sets. There
are several simple properties which are apparent from the definition.
We note that 4(A)-=—4(A)*. If we define the normalizer of 4(A)*,
N4(A)* to be the set of all involutions » such that v4(4)*v < 4(4)%,
then N4(A)*=N4(A)-. We denote either of the latter by N4(4). If
A £0, then 4(A)* and 4(A)- have no elements in common. Further,
if A and B are two C.R.I. such that 4(4)* and 4(B)* contain a com-
mon element, then A=B. It is clear that every involution u is in ex-
actly one 4-set, 4[J*(w)]*=4d[J-(«)]-. Finally we note that any 4-set is
completely determined by any one of its elements.

Let ¢ denote an arbitrary set of involutions. If ¢ satisfies certain
properties (in particular if ¢ is a 4-set) it will be shown that ¢ is a
coset of involutions modulo the abelian subgroup ¢* in ». This proper-
ty is the justification for the term ‘‘coset of involutions’’ which heads
this section.

PROPOSITION 2.1. If the nonempty set ¢ of involutions satisfies the
property that for every triple of involutions u, v, w im ¢, WVU=UVW 1S
m ¢, then ¢ is an abelian subgroup of U and ¢ is a coset of involutions
modulo ¢*, and conversely. Moreover, wgw=g-' for every w n ¢, and
every g in ¢.

If in addition, every element s==1 of ¢* is of class two, then every
pair g, h, of elements in ¢* satisfies the condition (g9—1)(h—1)=0.

Proof. The first part of the proposition is quickly verified using
the fact that if g=uv e ¢*, then g'=ou.

Now assume that g and 4 are any two elements of ¢*. Then (g—1)*
=0, or ¢*=2¢9—1. Similarly, #*=2h—1. But gh=hge ¢* and hence
O0=(gh -1y =29 —1)2h —1) — 292 + 1 =49h — 2h — 29 + 1 —2gh+1
=2(9g—1)(h—1), and hence (9—1)(A—1)=0, completing the proof.

The following Lemma, and its use in Theorem 2 are due to Israel
Halperin,
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LEMMA 2.2. Let e be a fived idempotent and let 6 range over all
wnvolutions which commute with e. Suppose x arbitrary, but fixed. Then
the principal right ideals (0x)R have a least C. R. 1. containing them and
this C.R.1. is 0, eR, (1—¢)R, or R.

Proof. Let u=2¢—1. For each 6, 6z is an involution commuting
with e. Hence the set (6x)R include all the (Gux)R. Since (6z)R\J
(0(2e—1)x)R = (bex+0(1—e)x)R \J (bex —O0(1 —e)x)R=(0ex)R \ ) (0(1 —e)x)R,
we need only prove that the (fex)R have a least containing C. R. I. which
is 0 or eR, and that the (6(1—e)x)R have a least containing C.R.I.
which is 0 or (1—e¢)R. By symmetry, we need only prove the first.

Now (fex)R < eR for all 6. If eR is not the least containing C.R.I.,
(all fexR) < fR < eR for some idempotent f. Use e¢fe in place of f
so we can assume fe=e¢f=jf 7#%e. Then for every yeR, g=f+(e—f)yf
is an idempotent which commutes with e and satisfies eg=g, fg=7f.
Then 29—1 is a possible 6 and so (29—1)ex=e(29—1)xre fR so that
e(29—1)x=fe(29—1)x. That is, (29—e)x=fx. But 1 is also a possible
0, so ex=ferx=fx. Hence 2gx=2fx for all y. That is, 2(e— flyfx
=0, and hence (¢— flyfx=0 for all yeR. Since e—f is a nonzero
idempotent, by Postulate 3, fx=0. Hence ex=jfax=0, and (fex)R=0
for all §. That is, we have shown that either eR or 0 is a least con-
taining C. R. 1.

The next step is to characterize 4-sets within the unit group. It
will be noted that in Theorem 2 all conditions are multiplicative in
nature, using the results of Theorem 1.

THEOREM 2. A nonvoid Set of involutions ¢ is a 4-set if and only
iof ¢ is a maximal family of involutions satisfying

@) If u, v, w are in ¢, then uwvw=wvn is n ¢.

(o) If u, v are in ¢, then there exists o unique w e ¢ such that
WUW="D.

(¢) An involution u is in N if and only if there exists an involu-
tion ue ¢ such that wu' =u'u.

(d) Ewery s=~=1 in ¢* is of class 2.

Further, +f ¢ 18 a 4-set containing more than one involution, ¢
uniquely determines a C.R. 1., A=J*(¢*). If ¢ contains exactly one in-
volution, then this involution is 1 or —1, in both of which cases ¢ con-
eists of 1 only and J*(¢p*)=R, though A may be 0 or R.

Proof. Assume ¢=4(A)*, where 4 isa C.R.I. (The proof is similar
if ¢=4(A4)".) By 1.5, if u, v, and w are in ¢, uvw=wvu and hence
wvw is an involution. If A=eR for an idempotent ¢, then by 1.2, 1.3,
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we have that %(u+1)=e+ex(1—e), ;ﬂ(v+1)=e+ey(1—e), ;(w+1)=e

+ez(l—e) for some z, y, z in R. By direct computation, uvw=2[¢+
e(x—y+2z)(1—e)]—1, and hence by 1.2 and 1.8 again, J*(@uvw)=A4.
To establish (b), suppose that # and v are in ¢=4(4)*. Let

w=%(u+v), so that

w= —}(u2+uv+vu+v2)= i(2+uvuu+vu)= }1-(2+(wvu+v)zc)
1 1 2
= Z(2+(2u—-v+v)u)= Z(Z+2ec )=1,

using 1.5. So w is an involution, and clearly A <J*(w). Now if ¢, f,
and ¢ are the idempotents corresponding to #, v, and w as in 1.3 (a),

then J*(w)=gR=%(w+1)R= é—(e+ )R, and since ¢R—fR, we have

JHw) < eR=J*(w). Hence equality holds and we¢. Now using 1.5
again, it is readily verified that wuw=v. To show uniqueness, assume
w’' is any involution in ¢ such that wuw'=v. Then wuw =wuw, and
by 1.5, 2w’ —u=2w—u, or w'=w.

To show that (c) holds, assume u' € N¢, and let v be any involution
in ¢. Then wwu'e¢ by definition of N¢. By (b), there exists ue ¢
such that wvu'=wvu=2u—v. Hence v=2'uw’ —uw'vv' =2'unw’ —2u +v.
That is, 2u'uu'=2u, or w'u=uu'. For the converse, assume wu=uu’ for
some # in ¢, and involution #'. We need to show that for every ve ¢,
wvw ep. We note the equivalence of the following conditions: y
e JHuww'); wowy=y; wwy=u'y; Wy e Jr(w)=J*(u); w'y=u'y; wuu'y=y; uy
=y; yeJ*(u). Hence w'vu' e ¢, and u’ € N.

(d) is simply the second part of 1.5, and hence (a), (b), (¢), (d)
hold for an arbitrary 4-set.

Now assume ¢ is a nonvoid maximal family of involutions satisfy-
ing (a), (b), (¢), (d). If ¢ consists of 1 only, then ¢=4Ad(R)*. If ¢
consists of —1 only, then ¢=4(R)-. In either case ¢’ consists of 1
only and J*(¢*)=R. Next we will show that ¢ << 4(4)* or ¢ < 4(4),
where 4 is a C.R.I. Then the maximality of ¢ and the definition of
d-set will imply equality.

If ¢ consists of exactly one involution u, then ¢ < 4(J*(w))* so we
may assume ¢ contains two distinct involutions. Consider any xeR,
such that uz=vx for a fixed u in ¢ and all v in ¢. Form the set of
all 2 with 6 ranging over all involutions commuting with u, or equiva-

lently with e= ; (u+1). Then the (fx)R have a least containing C.R.I.
by 2.2 which is 0, eR, (1—e)R, or R. But as shown in 2.2, the set of
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(6z)R include the set of all (fux)R, and hence if y ranges over all
such that uz=vx for all ve ¢, then the set of all (fy)R also have a
least containing C. R.I. which is 0, eR, (1—e)R, or R.

Now we show that the set of elements in the (fy)R, that is, the
set B consisting of all 6z, where 6 is any involution commuting with
u, and o satisfies ur=vz for all v in ¢, is identical with the set C con-
sisting of all z such that ux=vx for all ve¢. Clearly C < B, since
we may take #=1. But for any 6 such that uf=0u and x such that
ux=vx for all ve¢p, we have v(0r)=00v0x=0w'z, for some w’ in ¢,
and continuing, v(0x)=0ux=u(0x) so that fx is a possible x. That is
u(bx)=v(0z) for all ve ¢. Thus B=C.

Now if we show that A, the least containing C.R.I. containing C
is neither 0 nor R, then A=eR or A=(1—e)R. That is, A=J*(u) or
A=J-(u). But C is clearly independent of #, hence A=J*(v) or A=J-(v)
for each ve ¢.

Let u# and v be any two distinct involutions in ¢, w an arbitrary
involution in ¢. Then uv%~1 and (wu—1)(uvr—1)=0 by 2.1. Hence
(u—w)uv—1)=0. That is, x=uv—15%0 is an element such that ux=wx
for all we¢. Hence B0, and A #40.

Now if o satisfies ur=wvx, u 7% v, then v e J*(uv). That is, C < J*(uv).
But J*(uv) % R or uv(l)=1, and w=w, a contradiction. Hence we have
proved that for every ve ¢, A=J*(v) or A=J (v).

Assume A=J*(u)=J (v) for some u, ve¢. Choose x7#0 in A.

Then uz=vx, vo=—=z, %(u+v)x=0, and <; (u+v)>2$=0. But by 2.1,
(uv—1)(vu —1)=0, that is, uv+vu=2. Hence ;(u+v) is an involution

and (%(u-k v))zx=x;é 0, a contradiction. Hence A=dJ*(w) for all we ¢,

or A=J-(w) for all we ¢. That is, ¢ < 4(4)* or ¢ < d(A)~ and the
assumption of maximality implies equality.

Now J*(¢p*)=/\ J*(uv) for all pairs uv in ¢*, or equivalently, J*(¢%)
is the set of all z such that uwve=x for every u, v in ¢, or equivalent-
ly, the set of all  such that uax=wvx for all u, ve¢. Hence J*(¢*)
=C<L A. Since A=J*(u) for allue ¢ or A=J (u) for uep, A= J*(¢%).
Hence if ¢ contains more than one involution, a C. R. 1., 4, is uniquely
determined by ¢ by the relation J*(¢p*)=A4, and $=4(A)* or ¢p=4d(A)"
=—4(A)*.

To complete the proof, we need only show that a nonvoid 4-set
¢, has the desired property of maximality. Assume ¢ < ¢’, and that
¢’ is a maximal family of involutions satisfying (a), (b), (¢), (d). Then
by the second part of this proof, ¢’ is a 4-set which contains an ele-
ment in common with the 4-set ¢. By definition of 4-set, ¢p=¢’ which
completes the proof of Theorem 2.
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We have actually shown a little more than required in the proof of
Theorem 2. We restate part of these results in the following form.

THEOREM 3. Mapping A onto 4(A4), and mapping [¢p, —¢] onto
J*(¢p*) constitute reciprocal and therefore one-to-one correspondences
between the set of all nonzero complemented right ideals of the ring
R and the set of all 4-systems in the unit group of E.

3. The lattice of complemented right ideals. We have shown in
the preceding sections that the complemented right ideals ean be mapp-
ed in a one-to-one fashion upon the set of 4-systems within the unit
group. It remains to show that the set of C.R.I.’s form an irreduci-
ble, complemented, modular lattice and that the order relation in the
lattice can be determined by an order relation among the 4-systems,
and conversely.

First, we state, without proof, a result given by Baer [1, p. 203]
which depends only on Postulate 1.

LEMMA 3.1. The following properties of an involution u and an ele-
ment a€ U are equivalent.

1) au=ua

2) aJ*(u) < J* (), and aJ-(u) < J-(u).

If A and B are C.R.I.’s such that A < B, then any C.R.I., C,
satisfying B=A @ C is called a relative complement of A in B. The
existence of relative complements is guaranteed by the following pro-
position.

PropPOSITION 8.2. If fR <eR and e, f are idempotents, then there
exist idempotents ¢ and 5 such that eR=iR & jR, fR=iR, ij=71=0,
te=ei=1, je=¢j=74, and e=1-+7.

Proof. Since feeR, ef=f and efe=fe. Let i=fe. Then ¢ is
an idempotent which also generates fR. That is, iR=fR.

Let j=e—¢. Then j is an idempotent in eR and iR \J jR=eR. The
relations te=ei=1, je=ej=4, and ij=7i=0 are clear. We need only
show the sum <R \J jR is direct. Since 4= fe(e— fe)=fe— fe=0, for
any xeiR N\ jR we have z=ix=1ijr=0. Hence the sum is direct which
completes the proof.

We say a complemented lattice is irreducible if the zero and unit
of the lattice (0 and R) are the only elements with unique complements.
A stronger result can be shown, namely that relative complementation
is also not unique except in trivial cases, but this will not be necessary.



790 J. ELDON WHITESITT

THEOREM 4. The complemented right tdeals of R form an trreduci-
ble, complemented, modular lattice.

Proof. That the set is a complemented modular lattice follows im-
mediately from the definitions, Postulate 2, Proposition 1.1, and the
fact that the modular law holds in the set of all right ideals and hence
holds in the lattice. The lattice join is of course the ideal sum, |/,
and lattice meet is set theoretic intersection, /.

That the lattice is irreducible follows immediately from 1.4. If 0
< eR <R, there exists f % e such that eR=fR. Hence (1—¢)R and
(1—f)R are distinct complements of eR, by 1.1 (c).

The following lemma assures us of the existence of a particular
type of complement.

LEMMA 3.3. If R=A® B C, where A, B, C are C.R.1L.’s, and
B, C are nonzero, then there exists a complement, B, of B such that
A<B but C<B.

Proof. It is an immediate consequence of 1.1 that there exist
mutually orthogonal idempotents 4, j, &, such that A=iR, B=jR, C
=kR. By Postulate 3, there exists an xw € R such that juk=%0. Let y
=g(1—1). Then jyk=jxk 0. Also jyi=jx(1—17)=0.

Let 7/=j+jy(1—7). Then jR=j'R, ji=7i+jy(l—j)i=5yi=0, and
' k=3k+5y(1—9)k=jyk %~ 0. Hence k is not in (1—j' )R but ¢ is in
(1—j)R. Hence for B=(1—j)R we have A <<B and C<£ B, which
completes the proof.

LEMMA 3.4. If A and B are C.R.1.s, then the following are
equivalent :

1) A<Bor B<LA

(2) 4(4) < NA(B)

(3) 4(B) =< N4(A)

In (2) and (3), 4(4) is understood to mean the set of all involutions
in either 4(A)* or in 4(A4)-.

Proof. TFirst we assume A<<B. Let u be any involution in 4(4)*
and e= % (u+1) so that A=eR. If B=fR for the idempotent f, choose

g=f+fe(l1—f)=f+e(1—f) since A<B. Then B=gR and ge=e. But
eg=ef +e(1—f)=e. That is, eg=ge and uv=vu where v=29—1 is an
involution in 4(B)*. By Theorem 2 (c), u€ N 4(B) and hence 4(A)*<
N4(B).



THE LATTICE OF COMPLEMENTED IDEALS 791

Next, let v be any involution in 4(B)*, and f =-§- (v+1) so that

B=fR. By 3.2 there exists an idempotent ¢ such that A=eR and ef
=fe=e. Hence if u=2¢—1, uv=vu where ue 4(A)*. By Theorem 2
(c), ve NA(A) and hence 4(B)* <X N4(A). The case for B< A is clear
by symmetry, and if we note that 4(4)-= —4(A4)*, and 4(B)-=—4(B)*,
we have shown that (1) implies (2) and (3).

Next we assume A L B and B¥X A, and will show (2) and (3) fail
to hold. There exist nonzero C.R.1.’s A’ and B’ such that A=(4 N B)
@A and B=(ANB)®B by 32. Then A\UB=(ANB A DB
To show that this sum is direct we note that if xe B’ N\ [(A N\ B) \U 4']
then xe B’ and xe(ANB)\UA'=ANBYA') by the modular law.
That is, xe B’ N\ (A N\ B)=0. Interchanging A’ and B’ in this argu-
ment completes the proof that the sum is direct.

But A\UB is a C.R.I. by Postulate 2 and hence there exists a
C.R.I. V such that R=(ANB DA ©B' ®V. Further, by 3.3 there

exists a complement A’ of A’ suchthat (ANB)® V<A but B" L A’.
Now choose idempotents 4, 4, § such that AN B=hiIR, A®B &V
=(1—=h)R; A’=iR, A’/=(1—9)R; B'=jR, and (ANB)® A’ ® V=(1—j)R.
Then we note the following consequences of this choice:

(a) 47%0 since J € (1—9)R.

(b) ji=ih=hi=hj=4jh=0 since 1€ (1—7)R, etc.

Now %~-+4 is an idempotent which generates 4, and w=2(h+i)—1
is an involution such that A=J*(w). We show that wj¢ B. Otherwise,
since 2 +j generates B, (2+j)wj=wj, or equivalently, (A+7)[2(h+17)—1]j
=[2(h+%)—1]j. TUsing (b) this reduces to —j=2¢j—j and hence =0
which contradicts (a). Hence wj ¢ B.

We have found an involution w e 4(A)* such that wB L B, or equi-
valently wJ*(u) L J*(u) for any ue 4(B)*. By 3.1, wuzuw for any
ue 4(B)*, and hence by Theorem 2 (¢), 4(4) £ N4(B). Exchanging A4
and B in the above argument shows 4(B) X N4(4). This completes the
proof of the equivalence of (1), (2), and (3).

LEMMA 3.5. If e, f, g are mutually orthogonal idempotents where
e, g are nonzero and such that R=eR ® fR ® gR, then an element se U
has the property (s—1)R < eR < (e+ f)R < J*(s) if and only if s—1=exg
for some x in R.

Proof. Assume an element se U has the property that (s—1)R
<eR and (e+f)R<J*(s). If we let n=s—1, the condition (e+ )R
< J*(s) is equivalent to n(e+ f)R=0. Hence n(e+[f)=0, and n=n(1)
=n(e+ f+g)=ng. Further, nR < ¢R implies n=e¢n. Hence n=en=eng
as required.
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Now assume (s—1)=ewg for some xze R. Clearly (s—1)R <¢R.
Let y be any element in (e+ f)R. Then (s—1)y=(s—1)(e+ fly=exg(e+ f)y
=(0. Hence sy=y, and ye J*(s). This completes the proof.

COROLLARY 3.6. If ¢, f, g are as in 3.5, then there exists an ele-
ment s 71 an U such that s=uv for involutions u and v satisfying J*(u)
=J*(v) and such that (s—1)R < eR < (e+ f)R < J*(s).

Proof. By Postulate 3, there exists an aeR such that exg 0.
Then s=1+exg~1, and by 3.5 (s—1)R <l eR < (e+ R L JH(s).

Next, exg=29< —;f>xg=2(l —g)e(——; )xg, since ey =0. Hence

emg=2[(1—g)+(1——g)<é-ew>g——(l—g)]=2(k—k), where k=1—g and 2

are idempotents generating the same ideal, eR® fE. If u=2h—1, and
v=2k—1, then » and » are involutions such that J*(u)=J*(v) and
hence vu—1=v(u+1)—v—1=u+1—v—1=u—v. Now exg=2(h—k)=u—v
=pu—1. Then s=1+exg=vu as required.

LEmMA 3.7. Let A, B, and X be C.R.1.’s. Then

(a) 0=A N B, or R=A\J B if and only if 4(A)* N 4(B)*=1.

) 0CANBLX=<=A\UB<R if and only if 1< 4(A)} N 4B)
< 4(X).

Proof. First we prove the following: If seU, and A is a C.R.I.
then s=uwv for involutions # and » such that J*(u)=J*(v) is equivalent
to J*(s) is a C.R.I. and (s—1)R <A < J*(s). To prove this, assume
s=uv, where J*(u)=J*(v)=A=eR for the idempotent e. J*(s) is a
C.R.I. by 1.7. Also, as in the first paragraph of the proof of 1.9,
s—1=ez(1—e) for some ze R. If the ¢, f, g of 3.5 are replaced by e,
0, 1—e respectively, then 3.5 gives (s—1)R < eR <J*(s). Conversely,
assume J*(s)=¢gR for idempotent g and (s—1)R < A < J*(s). s—1leJ*(s)
implies (s—1)*=0. Now as in 1.8, and # and v exist such that s=uw
and J*(u)=J*(v)=A. This completes the proof of the statement, and
as an immediate consequence we have,

(%) s is in [4(A)* N 4(B)1] if and only if s=wuv for involutions u, v,
(s—DR<ANB, and 4A\J B J*(s).

To establish (a) of the lemma, assume first A N\ B=0. By (%),
(s—1)R=0 for every se 4(A) " 4(B)* and hence s=1. Next if A\U B
=R, then by (%), J*(s)=R for every se 4(4)* N 4(B)’, and hence s=1.

Suppose 4(A)* N 4(B)*=1, and assume by way of contradiction that
0<ANB, and A\Y B<R. There exist mutually orthogonal idempo-
tents e, f, and ¢ such that A\ B=eR, (e+ f)R=A\J B, and R=¢R
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® fR® gR. Since e¢ and g are nonzero, by 3.6 there exists an s=uv
# 1 for involutions # and v such that (s—1)R<A N B and A\ B
< J*(s). By (%), s is in 4(A4)* N 4(B),, which is a contradiction. Hence
either A N\ B=0, or A\ B=R, which completes the proof of (a).

Now assume 0 <ANBXX<AUB<R. By (a),1<4(Ay N 4B).
Let s be any element of 4(A4)* N 4(B):. Then by (%), s —1)R< AN B,
and A\J B<J*(s). Hence (s—1)R < X <J*(s). By the first statement
of this proof, se 4(X).

Conversely, assume 1 < 4(4)* N 4(B)* < 4(X)*. By (a), 0<<ANB
and A\JB<R. Let e, f, g be chosen as in the proof of (a) and we
will complete the proof in two steps by indirect arguments.

Suppose first that A "\ BL X. Let X=X\ A N B and denote by
C the relative complement of X’ in A "\ B. Then C N X=0, and C40.
By 3.2, orthogonal idempotents ¢ and j exist such that C=iR, X'=jR
and 4+j=e. Then ¢, (j+f), ¢ are mutually orthogonal and ¢, g are
nonzero. By 3.6 there exists an s'=u’v’ % 1 for involutions #’, v’ such
that 0~ (" —1)R <R < (1+5+ R < J*(s’). By (), s’ e 4(A)* N 4(B).
But (s'—1)R L X since iR\ X=0. Hence s’ ¢ 4(X)?, a contradiction,
and hence A N\ B < X.

Next assume X L A\J B. Since gr=0 is equivalent to e (1—g)R
=A\J B, there exists 2’ ¢ X such that gz’ 4 0. By Postulate 3 there
is an element ye R such that eyga’ %40. By 3.5, s’=1+eyg satisfies
the conditions (s'"—1)R <A N\ B and A\ B=J*(s’). By 3.6 and (x),
s’ e [4(4)* N 4(B)]. But X L J*(s') since 2’ € X and sa’'=uz'+eyge’ # a'.
By 1.8. s’ ¢ 4(X)*, a contradiction. Hence X << A\ B, which completes
the proof.

If A4, B, and X are C.R.I.’s, we say X is between A and B if
A< X<B, or B<X<A. Betweenness of C.R.I.’s is characterized
within the unit group by the following theorem.

THEOREM 5. If A, B and X are C.R.1.’s in R, then A and B are
both different from 0 and R and X is between A and B if and only if

(a) 4(A) < NA(B), or equivalently 4(B) < NA(A).

(b) 1 <T[4(Ay N 4B)T= 4AX).

Proof. Suppose first that neither A nor B is 0 or R and X is
between A and B. We may assume 0< A < X< B<R. Then 3.4
and 3.7 give conditions (a) and (b).

Conversely, assume (a) and (b) hold. (a) implies by 3.4 that A< B
or B<<A. Suppose A<B. Then by (b) of 3.7 we have 0 <A< X
<B<R. If B<A we have a similar result. This completes the
proof.

Theorems 1, 2, 3, 5 show that the lattice of C.R.I.’s can be con-
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structed within the unit group of the ring and that the order relation
in the lattice is completely determined by the order relations among
the structures 4(4) and N4(A) in the unit group, and conversely.
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