CERTAIN GENERALIZED HYPERGEOMETRIC IDENTITIES OF THE ROGERS-RAMANUJAN TYPE

V. N. Singh

1. Introduction. In a recent paper H. L. Alder [1] has obtained a generalization of the well-known Rogers-Ramanujan identities. In this paper I have deduced the above generalizations as simple limiting cases of a general transformation in the theory of hypergeometric series given by Sears [5]. This method, besides being much simpler than that of Alder, also gives a simple form for the polynomials $G_{k, \mu}(x)$ given by him. In Alder's proof the polynomials $G_{k, \mu}(x)$ had to be calculated for every fixed k with the help of certain difference equations but in the present case we get directly the general form of these polynomials.
2. Notation. I have used the following notation throughout the paper. Assuming $|x|<1$, let

$$
\begin{aligned}
& (a)_{s} \equiv(a ; s)=(1-a)(1-a x) \cdots\left(1-a x^{s-1}\right), \quad(a)_{0}=1
\end{aligned}
$$

$$
\begin{aligned}
& \Pi(a)=\prod_{n=0}^{\infty}\left(1-a x^{n}\right) \\
& \Pi\left(a_{1}, a_{2}, \cdots, a_{r} ; b_{1}, b_{2}, \cdots, b_{t}\right)=\frac{\Pi\left(a_{1}\right) \Pi\left(a_{2}\right) \cdots \Pi\left(a_{r}\right)}{\Pi\left(b_{1}\right) \Pi\left(b_{2}\right) \cdots \Pi\left(b_{t}\right)} \\
& K_{s}=\begin{array}{c}
(k ; s)(x \sqrt{k} ; s)(-x \sqrt{ } k ; s) \\
(x ; s)(\sqrt{k} ; s)(-\sqrt{k} ; s)
\end{array} \\
& K_{s, r}=K_{s}^{\prime}\left(k x^{r+1} ; s\right) \quad x^{\left(x^{-r} ; s\right)} x^{r s} \\
& S_{n, n-1}=\sum_{r_{n}=0}^{r_{n-1}} \frac{k^{r_{n}} x^{r_{n}^{2}}\left(x^{r_{n-1}-r_{n}+1} ; r_{n}\right)}{\left(x ; r_{n}\right)}, \quad S_{1,0}=\sum_{r_{1}=0}^{r} \frac{k_{1}^{r_{1}} x_{1}^{r_{1}^{2}}\left(x^{r-r_{1}+1} ; r_{1}\right)}{\left(x ; r_{1}\right)}
\end{aligned}
$$

where $[a]$ denotes the integral part of a.
The numbers $s, r, r_{1}, r_{2}, \cdots, t, t_{1}, t_{2}, \cdots$ are either zero or positive Received March 19, 1956.
integers. r_{0} and t_{0}, wherever they occur, have been replaced simply by r and t respectively. Empty products are to mean unity.
3. Sears $[5, \S 4]$ has proved the following theorem:

$$
\begin{align*}
& \sum_{s=0}^{\infty} x^{\frac{1}{2} s(s-1)}\left(k x / a_{1} a_{2}\right)^{s} \prod^{s}\left(a_{1}, a_{2} ; x, k x / a_{1}, k x / a_{2}\right) \theta_{s} \tag{3.1}\\
& =\Pi\left(k x, k x / a_{1} a_{2} ; k x / a_{1}, k x / a_{2}\right) \sum_{r=0}^{\infty}\left(k x / a_{1} a_{2}\right)^{r} \prod^{r}\left(a_{1}, a_{2} ; x, k x\right) \\
& \\
& \quad \times \sum_{t=0}^{r} \frac{\left(x^{-r} ; t\right)(-1)^{t} x^{r t}}{\left(k x^{r+1} ; t\right)(x ; t)} \theta_{t}
\end{align*}
$$

wrere $|k x| a_{1} a_{2}\left|<1,|x|<1\right.$ and θ_{s} is any sequence. The theorem holds provided only that the series on the left converges.

Take

$$
\begin{aligned}
& \theta_{s}=\Pi_{\Pi}^{s}\left[\begin{array}{l}
k, x \sqrt{k},-x \sqrt{k}, a_{3}, a_{4}, \cdots, a_{2 \Delta+1} ; \\
\sqrt{k},-\sqrt{k}, k x / a_{3}, k x / a_{1}, \cdots, k x / a_{2, N+1}
\end{array}\right] \\
& \times \underset{\left(a_{3} a_{4} \cdots a_{2 M+1}\right)^{s}}{\left(k^{M-1} x^{K-1}\right)^{s}} x^{\frac{1}{2} s(1-s)}, \quad(M=1,2,3, \cdots)
\end{aligned}
$$

Then

$$
\begin{align*}
& \sum_{s=0}^{\infty} K_{s} \frac{\left(a_{1} ; s\right)\left(a_{2} ; s\right) \cdots\left(a_{2 M+1} ; s\right)}{\left(k x / a_{1} ; s\right)\left(k x / a_{2} ; s\right) \cdots\left(k x / a_{2 M+1} ; s\right)} \frac{\left(k^{M} x^{M}\right)^{s}}{\left(a_{1} a_{2} \cdots a_{2 M+1}\right)^{s}} \tag{3.2}\\
& =\Pi\left(k x, k x / a_{1} a_{2} ; k x / a_{1}, k x / a_{2}\right) \sum_{r=0}^{\infty}\left(k x / a_{1} a_{2}\right)^{r} \prod_{1}^{r}\left(a_{1}, a_{2}, ; x, k x\right) \\
& \quad \times \sum_{t=0}^{r} K_{t, r} \begin{array}{l}
\left(a_{3} ; t\right)\left(a_{4} ; t\right) \cdots\left(a_{2 M+1} ; t\right)(-1)^{t} x^{\frac{1}{2} t(1-t)}\left(k^{M-1} x^{M-1}\right)^{t} \\
\left(k x / a_{3} ; t\right)\left(k x / a_{4} ; t\right) \cdots\left(k x / a_{2 M+1} ; t\right)\left(a_{3} a_{1} \cdots a_{2 M+1}\right)^{t}
\end{array} .
\end{align*}
$$

Now let $a_{1}, a_{2} \cdots, a_{2 \mu n n 1} \rightarrow \infty$ in (3.2). Then we get

$$
\begin{align*}
& \sum_{s=0}^{\infty} K_{s}(-1)^{s} k^{\boldsymbol{\mu} s} x^{\frac{1}{2} s}\left\{^{(2 \boldsymbol{M}+1) s-1\}}\right. \tag{3.3}\\
& \quad=\Pi(k x) \sum_{r=0}^{\infty} \frac{k^{r} x^{r^{2}}}{(x ; r)(k x ; r)} \sum_{t=0}^{r} K_{t, r} k^{(M-1) t} x^{(M-1) t^{2}} .
\end{align*}
$$

And in (3.2) if we take $(M-1)$ for $M, a_{1}=x^{-r}$ and let $a_{2}, a_{3}, \cdots, a_{2 M-1}$ tend to ∞, we have

$$
\begin{align*}
& \sum_{t=0}^{r} K_{t, r} k^{(M-1) t} x^{(M-1) t^{2}} \tag{3.4}\\
& \quad=\left(k x ; r \cdot \sum_{t=0}^{r} \frac{k^{t} x^{t^{2}}\left(x^{r-t+1} ; t\right)}{(x ; t)} \sum_{s=0}^{t} K_{s, t} k^{(M-2) s} x^{(H-2) s^{2}} .\right.
\end{align*}
$$

On repeated application of (3.4) on the right-hand side of (3.3) it follows that

$$
\{\Pi(k x)\}^{-1} \sum_{s=0}^{\infty} K_{s}(-1)^{s} k^{M s} x^{\frac{1}{2} s\left\{\left({ }^{2 N}+1\right) s-1\right\}}=\sum_{r=0}^{\infty} \frac{k^{r} x^{x^{2}}}{(x ; r) \prod_{n=1}^{N-2}} S_{n, n-1},
$$

there being ($M-2$) terminating series on the right since

$$
\begin{equation*}
\sum_{s=0}^{t} K_{s, t}=0 \tag{3.5}
\end{equation*}
$$

by Watson's transformation [(2); § 8.5 (2)] of a terminating ${ }_{8} \phi_{7}$ into a Saalschützian ${ }_{4} \phi_{3}$.

Now it is easily verified that

$$
\prod_{n=1}^{M-2} S_{n, n-1}
$$

can, by suitable rearrangements, be simplified to

$$
\sum_{t_{1}=0}^{(M-2) r} \begin{gathered}
k^{t_{1}} x^{t_{1}^{2}}\left(x^{r-t_{1}+1} ; t_{1}\right) \\
\left(x ; t_{1}\right)
\end{gathered} \sum_{t_{2}=0}^{\left[\begin{array}{ll}
M-3 \\
M-3 \\
\left.t_{1}\right]
\end{array}\right.}\left(x^{t_{1}-2 t_{2}+1} ; 2 t_{2}\right) x^{-2 t_{2}\left(t_{1}-t_{2}\right)}\left(x ; t_{2}\right)\left(x^{r-t_{1}+1} ; t_{2}\right) \prod_{n=3}^{n-2} T_{n, M},
$$

where $t_{h}=r_{h}+r_{h+1}+\cdots+r_{M-2}, \quad(h=1,2, \cdots, M-2)$.
Thus on putting $r+t_{1}=t$, we finally have

$$
\begin{align*}
& \{\Pi(k x)\}^{-1} \sum_{s=0}^{\infty} K_{s}(-1)^{s} k^{\mu s} x^{\frac{1}{2 s}\{(2 M+1) s-1\}} \tag{3.6}\\
& \quad=\sum_{t=0}^{\infty} \frac{k^{t} x^{t^{2}}}{(x ; t)} \sum_{t_{1}=0}^{\left[\begin{array}{l}
M-2 \\
M-1
\end{array}\right]} \frac{\left(x^{\left(-2 t_{1}+1\right.} ; 2 t_{1}\right) x^{-2 t_{1}\left(t-t_{1}\right)}}{\left(x ; t_{1}\right)} \prod_{n=2}^{N-2} T_{n, \Delta} .
\end{align*}
$$

This is a k-cum- M generalization of the Rogers-Ramanujan identities. For any assigned values of M and t, the repeated terminating series can, by dividing out by the denominator factors, be evaluated as polynomials in x.

Let us now write

$$
G_{M, t}(x)=x^{t^{2}} \sum_{t_{1}=0}^{\left[\begin{array}{c}
M-2 \tag{3.7}\\
M-1
\end{array}\right]} \frac{\left(x^{t-2 t_{1}+1} ; 2 t_{1}\right) x^{-2 t_{1}\left(t-t_{1}\right)} \prod_{n=2}^{M-2} T_{n, M} .}{\left(x ; t_{1}\right)}
$$

Then, as usual, for $k=1$ and $k=x$ respectively, the left-hand side of (3.6) can be expressed as a product by means of Jacobi's classical identity

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}(-1)^{n} x^{x^{2}} z^{2}=\prod_{n=1}^{\infty}\left(1-x^{2 n-1} z\right)\left(1-x^{2 n-1} / z\right)\left(1-x^{2 n}\right) \tag{3.8}
\end{equation*}
$$

and we get Alder's generalization of the first and second Rogers-

Ramanujan identities in the form
and
(3.10) $\prod_{n=0}^{\infty}\left(1-x^{(2 \mu l+1) n+2}\right)\left(1-x^{(2 \mu \lambda+1) n+3)}\right) \cdots\left(1-x^{(2 \mu+1) n+2 \mu-1}\right)=\sum_{t=0}^{\infty} \begin{gathered}x^{t} G_{M, t}(x) \\ (x ; t)\end{gathered}$
where $G_{\mu, t}(x)$ is given by (3.7). The polynomials $G_{\mu, t}(x)$ can be seen by easy verification to be identical with $G_{k, \mu}(x)$ of Alder.

I am grateful to Dr. R. P. Agarwal for suggesting this problem and for his kind guidance in the preparation of this paper.

Added in Proof. If in (3.2) we take $a_{1}=-\sqrt{k x}$, make a_{2}, a_{3}, \cdots, $a_{2 M+1}$ tend to ∞, and proceed as in $\S 3$, we get for $k=1$ and $k=x$ the respective identities

$$
\begin{aligned}
& \prod_{n=1}^{\infty}\left(1-x^{2 \mu N-\left(\mu-\frac{1}{2}\right)}\right)\left(\begin{array}{l}
\left(1-x^{22 \mu} n-\left(\mu+\frac{1}{2}\right)\right)\left(1-x^{2 \mu \mu}\right) \\
\left(1-x^{n}\right)
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \times \frac{\left(x^{t-2 t_{1}+1}\right)_{t_{1}}}{\left(-x^{\frac{1}{2}+t-t_{1}}\right)_{t_{1}}} \prod_{n=2}^{n-2} T_{n, \mu}
\end{aligned}
$$

and

$$
\begin{aligned}
& \prod_{n=1}^{\infty} \frac{\left(1-x^{2 \mu n-1}\right)\left(1-x^{2 \mu n-(2 \mu-1)}\right)\left(1-x^{2 \mu n}\right)}{\left(1-x^{n}\right)} \\
& =\{\pi(-x)\}^{-1} \sum_{t=0}^{\infty} \frac{x^{\frac{1}{2} t(t+1)}(-x)_{t}}{\sum_{t}^{\left[\begin{array}{l}
M-2 \\
M-1
\end{array}\right]} \sum_{t_{1}=0}^{\frac{1}{2} t_{t}} x^{-t_{1}\left(t-\frac{3}{2} t_{1}\right)}}(x)_{t_{1}} \\
& \times \underset{\left(-x^{\left(x^{t-2 t t_{1}+1}\right)_{2 l_{1}}} \prod_{n=2}^{N-2} T_{n, \mu} .\right.}{(2)_{l_{1}}}
\end{aligned}
$$

References

1. H. L. Alder, Generalizations of the Rogers-Ramanujan identities, Pacific J. Math., 4 (1954), 161-168.
2. W. N. Bailey, Generalized Hypergeometric Series (1935), Cambridge Tract No. 32.
3. - Identities of the Rogers-Ramanujan type, Proc. Lond. Math. Soc. (2), 50 (1949), 1-10.
4. , Some identities in combinatory analysis, ibid., 49 (1947), 421-435.
5. D. B. Sears, Transformations of basic hypergeometric functions of special type, ibid., 52 (1951), 467-483.

Lucknow University

