SOME INEQUALITIES BETWEEN LATENT ROOTS AND
MINIMAX (MAXIMIN) ELEMENTS OF
REAL MATRICES

Louis GUTTMAN

1. Introduction. Because of the usual tediousness of computing
latent roots, any quick information about them is often welcome and
useful. We develop here some lower bounds to the absolute value of
the major latent root (the one largest in absolute value) of any real .
symmetric matrix that depend only on a simple inspection of its ele-
ments. Also, lower bounds are developed for the largest latent root of
a Gramian matrix of the form AA’ that require inspection only of the
elements of A. The latter case is especially important in linear regres-
sion theory of statistics, in factor analysis theories of psychology, and
elsewhere,

The original motivation for our inequalities was to study the relation-
ship between latent roots and the von Neumann value of a two-person
zero-sum game matrix. We actually use the von Neumann theory to
establish our bounds to latent roots, and in return we show how latent
roots can be used to bound the game value of a matrix. The latter
kind of bound will be useful whenever it is easier to get at the appro-
priate latent root than at the desired game value.

The bounds to latent roots are first exhibited in §§ 2-3, and then
proved in § 4. How to reverse their emphasis to provide bounds for
game values is shown in §5.

2. Lower bounds to the major latent root. Let A be any real
matrix of order mxmn. Let a,, be the typical element of A (¢=1, 2,
cee,m; j=1,2, .-+, m), and let p, and ¢; be defined respectively as

Q:=1’ 2’ -..’m>

J J 7j=1,2, .-+, 1

Furthermore, let p and ¢ be defined respectively as
(2) p=maxp , g=ming,.

From (1), it immediately follows that

(3) p<a, <4, (@_21’2"""”),
J=1,2,.-+,m
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and in particular that p <gq.

Let 22 be the largest latent root of AA4’, where A’ is the transpose
of A. We shall prove in §4 below that both of the following inequalities
hold :

(4) I =pv'n
(5) M= -av'm .

Inequality (4) is a useful lower bound to [4] if and only if p>0,
while (5) is useful if and only if ¢<0. If p<<0<g, we obtain no infor-
mation about |4].

One interesting feature of (4) and (5) is that they show that 2 is
generally at least of the order of m or of =, depending on whether
q<<0 or p>0.

Corresponding inequalities can be developed by considering A’ in
place of A. Let p; and ¢; be defined respectively as

(6) p;=mina,; , ¢,= max a;, (7,:1, 2, +--, m> ,
i ’ j=1,2, +--,m
so that
(7) Py =a,; < ¢ (@zl, 2, ,m>
j=1,2, -+, n

Let 9" and ¢’ be defined by

(8) p’'= max p; . q'=mingq; ,
J 3

whence, from (7), p' <¢'.

Now, AA’ and A’A have the same nonzero latent roots, which are
all positive. So if 2* is the largest latent root of AA’, it is also the
largest latent root of A’A. In addition to (4) and (5), we can write

(9) 1 =pv'm
(10) M==-dvn .

Notice that the roles of m and » in (9) and (10) are reversed from
those in (4) and (5). If p' >0, 2* is at least of order m, while if ¢’ <0,
2 is at least of order n. If either of p or p’ is positive, or if either
of ¢ or ¢’ is negative, we get some information about |4].

Matrices of the form AA’ or A’A are called Gramian, or nonnegative
definite symmetric. In statistics, any correlation matrix R is Gramian.
A good deal of work in psychology, for example, is aimed at “factoring”
an R into the form R=AA’. Given such a factoring, our inequalities
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immediately given lower bounds to the largest latent root of B from
the minimax and maximin element of A. The latter are easily ascertain-
able by inspection.

3. The case of symmetric matrices. If m=%~mn, A itself has no
latent roots defined. However, if A is square, then it does have a
characteristic equation and latent roots. A particularly important case
is where A is symmetric, or A=A’. Then the latent roots of A are all
real, and their squares are the latent roots of 4A4'=A% If 2 is the
largest latent root of 4A4’, then 2 must be a root of A largest in abso-
lute value, and conversely. In this symmetric case, we have not only
m=mn, but also p=p’, ¢=¢. So (9) and (4) are redundant, as are also
(10) and (5). The inequalities can now be interpreted as referring to
the major latent root of A itself, and not merely to a root of AA’.

When A is symmetric, we can usually improve on (4) and (5).

Let I be the unit matrix of order %, ¢ be an arbitrary constant,
and A* be defined as

(11) A*=A—cI .

If 2 is a latent root of A4, then 2—c¢ is a latent root of 4*, and con-
versely. Let p* and ¢* be the maximin and minimax of elements of
A* respectively, or, if 0;; is Kronecker’s delta,

12) p*=max min (a,;—¢d;;) , ¢*=min max (a,,—¢d;) .
k3 J i J

Then in place of (4) and (5), we can write
(13) 2—clZ=p*v'n, N—cz=Z—-¢"Vn  (4=4),

where 1—c is the major latent root of A*. In special cases, a judicious
choice of ¢ may be apparent that will make maximum |1—¢| correspond
to a 4 which is either the most positive or the most negative latent root
of A, and with a better bound than given by (4)-(5).

An especially important symmetric case is where A is a correlation
matrix £, with all diagonal elements equal to unity. In such a case,
the largest latent root of R cannot be less than 1, for the trace of R
is n and all » latent roots are nonnegative. For this case, if p >0,
then choose ¢=1—p. This implies that the main diagonal elements of
R* are all equal to p. Then, clearly p=p*; and since 1>>1 for any R,
[A—1+p|=2—1+p when p >0, and (13) becomes

(14) 1Z1+p(1Vn—1)  (p=0, A=R).

Similarly, if ¢< 0, by choosing ¢=1—¢ in (13) we get
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(15) A1Z1-q9(vV'n—-1) (¢=<0, A=FR).

4. Proof of the inequalities. Let P, denote the space of all k-
dimensional probability row vectors. That is ze P, if and only if zis a
row of %k nonnegative numbers whose sum equals unity. Let 2 denote
the column vector that is the transpose of 2. Then 2z’ is the sum of
squares of the components of 2z, and it is easily established and well-
known that

1

(16) zg 22 <1 (ze P,) .

The equality on the left of (16) is always attained by letting z=z,,
where 2z, is a vector whose components all equal 1/k (and hence z, € P,).

von Neumann [1] has shown how each real matrix A has associated
with it a unique real number v with certain important minimax pro-
perties. Since his theorem was developed in the context of his theory
of games, we shall call v the game value of A. Our present interest
of course is to regard von Neumann’s theorem as a general theorem on
real matrices, without necessary reference to the theory of games.

von Neumann’s theorem is as follows. If A s a real matric of
order mxn, then there exist an x, and o y,, where x,€ P, and y,€ P,,
and o unique real number v, such that

an Ay, < v < x4y for all xzeP,, yekP,.
Furthermore,
(18) P=v<gq,

where p and q are as defined in (2).
To use this theorem for establishing our own inequalities, apply
Schwarz’s inequality to (17) to see that

(19) —V (@) (A Aye) = v <V (yy) (@, Ad'w;) (@€ P,, yeP,).
Let 22 be the largest latent root of A4’ and A’A. Then
(20) mAA T < Pwgwy <2, YA Ay, < Py <

the second inequalities in each part of (20) following from the second
inequality in (16). From the first inequality in (16),
(21) {l?(l)/:Zl—, yy’_—>—;}“ (xepmy yePn)’

m n

and we have noted that the equalities in (21) are always attainable, by
best possible @, and y, for this purpose. Using (20) and the equalities
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of (21) in (19) yield

—|2] 1]
(22) ol<es Ul

Then (4) and (5) follow from (22) and (18). Inequalities (9) and (10)
follow from the restatement of (22) for the game value v' of A’:

(23) ]/ng <1/mA .

Inequalities (22) and (23) are of course sharper than those stated in
§ 2 above. If game values are known, they can be used in place of p,
q, ', or ¢’ in the latter inequalities. We have stated our inequalities
in the form most practical to use, since p and ¢ can be determined by
inspection, whereas v usually cannot, except in the special case where

p=q=".

5. Application to game values. Let us now consider the converse
problem of bounding game values. If an upper bound to || is known,
this will serve to bound » and +' via (22) and (23). Thus, useful bounds
to v can be set that may sometimes be better than (18) when pgq.
Perhaps more important, (22) and (23) show how the magnitudes of v
and v compare with those of m and n in general, given some notion
of the size of |4].

For the purpose of bounding v and v’, (22) and (23) ean be improved
on. Let A, be the m xn matrix whose typical element is a,;—¢, where
¢ is an arbitrary constant. Thus A, is obtained by subtracting ¢ from
each element of A (so 4,5 A* if ¢40). It is easily verified that the
game value of 4, is v—e¢, and optimal probability vectors «, and y, for
A are optimal also for A,. Let 22 be the largest latent root of 4,4, (or
of 4,4,). Then we can replace (22) and (23) by the more general in-
equalities

_ Al A
(24) c %_S_vgc-{—vg
and
(25) c—y%gwgwy%.

Evidently, the best choice of ¢ is that which will minimize 22. A4
practical way to approximate this choice is to minimize instead the
sum of all the latent roots of A,A,, or the trace of A,4,. This requires
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minimizing
(26) 53 @y,
for which the minimizing value is ¢=a, where
_ 1 m n
(27) a= S
mmn i=1 j=1
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