
MONOTONE MAPPINGS OF MANIFOLDS

R. L. WILDER

1. Introduction- Mappings of the 2-sphere, and more generally of
the 2-manifolds, have been studied by various authors. (See, for instance,
[9] and references therein, [7].) Generally, these mappings have been
subjected to certain " monotoneity " conditions on the counter-images of
points. Thus, in Moore's first paper [8] on the 2-sphere, it was required
not only that counter-images be connected, but that they not separate
the sphere. In terms of homology, then, he required of a counter-image
C that pr

a(C) = 0 for r=0, l . Later studies of Moore and others usually
omitted the requirement that pτ(C)=0, thus increasing the possible
number of topological types of images. With the condition pι(C)=0
imposed, the image of the 2-sphere is a 2-sphere, and of a 2-manifold
is a 2-manifold of the same type. Without this condition, the various
types of "cactoids" are obtained.

In the present paper we consider some higher dimensional cases.
As might be expected, we impose higher dimensional "monotoneity"
conditions.

DEFINITION 1. A mapping / : A->5 is called n-monotone if
Hr(f-\b)) = 0 for all beB and r<Ljι. (See [10; p. 904].)

EXAMPLE. Let us consider the mapping induced by decomposing
the 3-sphere into disjoint closed sets each of which is a point, except
that all points on some suitable "wild" arc [5; Ex. 1.1] A are identified.
This mapping is r-monotone for all r, but the image-space is no longer
a 3-sphere; indeed, it is not a 3-manifold in the classical sense at all,
since the point corresponding to A does not have a 3-cell neighborhood.

This example makes it at first appear that because of such "homotopy"
difficulties, it may be useless to look for any well-defined class of con-
figurations in higher dimensions. However, as we show below, the class
of configurations obtained is precisely that of the generalized manifolds.
Moreover, we need not restrict the mappings to the mappings of 3-
manifolds in the classical sense, since the generalized manifolds turn
out to form a class which is closed relative to the mappings considered.
This result forms, then, a new justification for the study of generalized
manifolds.

2. Preliminary theorems and lemmas. In general, spaces are
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Hausdorff, but no conditions of metrizibility or separability are assumed.

Except where noted to the contrary, we use augmented Cech homology

with an algebraic field as coefficient domain. We recall the following

definition [11; p. 237].

DEFINITION 2. If S is a locally compact space, such that for every

pair of open sets P, Q for which P~^> Q and Q is compact, the group

Hn(S:Q,0;P,0) (cf. [11; 166, Def. 18.28]) is of finite dimension, then

S is said to have property (P, Q)n.

REMARK. Since the space is assumed locally compact, the above
definition can be stated in a number of different but equivalent forms.
Thus, Q may be replaced in the definition by any compact set M; that
is, S has property (P, Q)n if for every pair of sets P, M such that P is

open, M i s compact, and PZ)M, then Hn(S: M, O P, 0) is of finite di-
mension. Another variant, but equivalent form of the definition, is
obtained if in either of the above definitions it be required only that

there exist at most a finite number of n-cycles on Q(M) which are lirh
on compact subsets of P (that is, in P).

Another variant would be to require that there exist at most a
finite number of cycles on compact subsets of Q (that is, in Q) that are

lirh on P (or, that are lirh in P). Each of the equivalent forms of the
definition may be found particularly adapted to a given situation.

We express the fact that S has property (P, Q)r for r = 0 , 1 , , n
by stating that S has property (P, Q)J .

THEOREM 1. If S is a compact space having property (P, Q)n, and
f:S->S' is a continuous (n — l)-monotone mapping of S onto a Hausdorff
space S'y then Sf has property (P, Q)n.

Proof Let U\ V be open subsets of S' such that U'ZϊV' and V'

is compact. The sets U=f~1(U')f V*=f-\Vf) are open and closed sub-

sets, respectively, of S, such that UZ^> V*.

In the mapping / ( y * ) = y / , counter-images of points are all r-acyclic

for r = 0 , 1, •••, n — 1. Hence [3] for any cycle γn on V, there exists a
cycle Zn on F* such that

(1) f{Zn)^γn on V .

Since S has property (P, Q)n, there exist cycles Z?, i = l , ••• ,m of

7 * such t h a t if Zn is any cycle of V*, then
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(2) 2*~Sa'2? in U .
i = l

Consequently, since (2) implies

m

(3) /(^)~Σ
i = l

we have, combining (1) and (3), that

It follows that at most m cycles on V are lirh in Z7 and hence that S"
has property (P, Q)w .

REMARK. It is worthwhile noting that the above proof gives the
following: If f:S-*S' is a continuous (n — l)-monotone proper mapping
of a locally compact space £ onto a Hausdorff space S', and P\ Fr are
open and compact subsets of S', respectively, such that P;^F\ then

f\P*:Hn(S:F, P)->Hn{S': Ff, F )

is a homomorphism onto, where F=f-\Fr), P=f-\P), and Hn(S:F,P)
denotes the group of ?z-cycles on F reduced modulo the subgroup of
%-cycles that bound in P. A similar argument shows that f\P*:
Hn-\S: F, P)->Hn-\S': F\ Pf) is an isomorphism onto. These are general-
izations of the Vietoris mapping theorem [2], [3].

THEOREM 2. If S is an lcn compact space, w > 0 , and f:S->S' is

a continuous {n — l)-monotone mapping of S onto a Hausdorff space S',

then S; is lcn.

Proof. By [11; p. 70, Th. 1.6], Sf is 04c. And since S' is a compact
04c space, it has property (P, Q)ϋ. (See [11; p. 106, 3.7]). That S' has
property (P, Q)r for r = l , 2, « ,w follows from Theorem 1. Since, for
compact spaces, lcn and (P, Q)J are equivalent, we conclude that Sf is
lcn (see 11; p. 238, 7.17]).

LEMMA 1. In a locally compact space S, let P and Q be open sets

such that P is compact and PZ^> Q and let M be a closed subset of Q

such that for any open set Qv for which M(ZQV(ZQ, the dimension of

Hr(S:S,S-P; S, S-Q,) [11; 166, Def. 18.29] is the same finite number

k. If Z]., " ,Zr form a base for r-cocycles mod S—P relative to co-

homologies mod S—Q, then for every open set Qv such that



1522 R. L. WILDER

the cocycles Zι

r form a base for r-cocycles mod S—P relative to cohomologies

mod S—Qv.

Proof. Let γι

r, , γf. be a base for cocycles mod S—P relative to

cohomologies mod S—Qv. Then there exist cohomologies:

( 1 ) γί~ Σ clZί mod S-Q , j=l, , k .

Relations (1) hold a fortiori mod S—Qv.

The matrix |c/| | is of rank k, since otherwise there would exist a

cohomology relation between them's, mod S—Qv.

Suppose the Z}.'s are not lircoh mod S—Qy. Then there exists a
relation

But the system of equations

c\xvλ

has a non-trivial solution in the α /s. Hence, multiplying the relations

(1) by xx, , xk , respectively, we get

Σ ffjT-r — Σ aiZi.^0 mod S-Q V .

Thus, the assumption that the Zι

r are not liroch mod S— Qv leads to

contradiction; and since the dimension of Hr(S:S, S~P;S, S—Qv)=k ,

we conclude that the i^'s form a base for cohomologies mod S—Qv.

LEMMA 2. In a locally compact space S, let M be a compact set

such that Hr(M) = 0 and suppose that there exist open sets P, Q such

that MdQCLP and such that Hr(S: Q, 0; P, 0) has finite dimension. Then

there exists an open set Qv such that MCZQ^CZQ and Hr(S: Qv, 0; P, 0)=0.

Proof. Suppose, on the contrary, that for all such Qv, H'(S: Qv,0;P, 0)

7^0. Since Hr(S:Q,0;P,0) is of finite dimension, we may assume Q

shrunk so that all dimensions qf groups Hr(S: Qv, 0; P, 0) are equal to

the same positive integer k for all Qv such that McZQvdQ .

Since

Hr(S: S, S-P; S, S-Qv)^Hr(S:~Qy, 0; P, 0)

[ 1 1 ; 1 6 6 , 1 8 . 3 0 ] , t h e r e e x i s t , b y L e m m a 2 , c o c y c l e s Zl

r9 i = l , •••,&,
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mod S—P, that form a base for cocycles mod S—P relative to cohomologies

mod S-Q~v for all Qv such that MCLQ^CQ. Consider Z\, and IX a fcos

of P such that Z\{\X) exists. Let 33>U be a normal refinement of U

rel. M [11; 140], and let Qv be such that if a simplex of 33 meets Qv,

then it meets M. Since Z^O mod S—Qv, there exists on QV a cycle Z r

such that Zι

r-Zr=l . And by the choice of 33, the coordinate Zr(33) is

on M. Hence π^Z'X^i) is the coordinate on M of a Cech cycle r r

But Hr(M) = 0 and consequently f^O on Λf, and a fortiori, r r W ~ 0

on Q; and since Zr(U) ~ τrUίδZ
r(33) on Q, it follows that Z r (U)~0 on <Q.

But then Zr(U)'Z]

r(ϊl) = 0, in contradiction to the choice of Zr(VL). We

conclude, then, that for some Qv, Hr(S: Qv, 0; P, 0) = 0 .

THEOREM 3. A necessary and sufficient condition that a locally com-

pact space S be lcn is that if M is any compact subset of S such that

Hr(M) = 0, for some r<Ln, then for any open set P containing M there exist

an open set Q such that MCZQCZQCZP and such that Hr(S: Q, 0; P, 0) = 0.

Proof of sufficiency. Trivial. (See [11; 193, 6.14]).

Proof of necessity. With M and P as in the hypothesis, and any

open set Q such that Q is compact and MCIQCZQCZP, the dimension

of Hr(S:Q,0;P,0) is finite [11; 193, 6.16]. Lemma 2 now gives the
desired result.

LEMMA 3. ifS is an orientable n-gm and M a compact subset of S

which is r- and (n — r — iyacyclic for some r such that r<^n — 2y then

for any open set P containing M, there exists an open set Q such that

MCZQCΪQ CLP and such that all compact r-cycles in Q — M bound in P—M.

Proof. Since S is lcn [11; 244], there exists by Theorem 3 an open

set Q containing M such that QCZP and such that all r- and (n — r — ί)-

cycles in Q bound in P. Suppose there exists a cycle Zr in Q-M that

does not bound in P—M.
By Lemma VIII 5.4 of [11; 255] there exists a cocycle Zn_r=τ*Zr

in Q-M such that Zn-r^JΓn~Zr in Q-M, where Γn is the fundamental
Ή-cycle of S. And since Zr^0 in P, we may assume that Zn-r^0 in
P. There exists a covering IX and a relation.

( 1 ) <5Cn-r.1(U) = Zn. r(U) in P.

The chain Cn.r^(l\) is clearly a cocycle mod P - Λ f = S - [ ( E x t P)\J M].
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And if C^-xooO mod S-[(Ext P)UM], then by [11; 164, 18.19] there
exists a cycle zn-r~l on (Ext P)\J M such that CΛ_r_1 Z w - r - 1 =l. Since
Z n - r - 1 =Z 1 + Z 2, where Zλ is on Ext P and ^ on M, we may neglect Zx

(as Cn-y-̂ U) is in P) and write Cn-r-1 ίΓa=l. But Z2~0 on M since
M is (n —r —l)-acyclic, implying Cn_r-i-Z2=0. We conclude, then, that
Cn-r-^0 mod P-Λί. There exists, therefore, a covering 33>U and a
relation

where L^^SS) is in P-M.
Applying δ to (2) and utilizing (1), we get

That is, # w - r ~ 0 in P - M . But this implies Zr~0 in P - M , contrary
to supposition.

REMARK. In the hypothesis of Lemma 3 it was assumed that
r<n — 2, that is, n — r — 22>0. The necessity for this is shown by the
following example: Let S be the 2-sphere, 8\ and in 8 let M be a
circular disk, and U and V open circular disks concentric with M and

such that MCVCVCU. Then in V-M an S1 which encloses M car-
ries a Z1 which fails to bound in U—M.

Note also that if M is an S1 in S\ then M is 2-acyclic but in any
open set P containing M there exist 2-dimensional cycles linking M.
This shows the necessity for the assumption that M be (n — r — l)-acyclic
in the hypothesis.

LEMMA 4. Let Zn~ι be a cycle carried by a closed subset K of an
orientable n-gcm S> and M a connected subset of S—K. If Zn^^0 on
S, then must Zn~ι^0 on a compact subset of S—M.

Proof. This is analogous to that of Lemma XII 3.12, p. 375 of [11].

For the purposes of the proof of the next theorem, let us recall
the following form of the definition of an orientable n-gcm: An n-
dimensional compact space 8 such that (1) pn(S) = l and all π-cycles on
closed proper subsets of S bound on S; (2) S is semi-r-connected for all
r such that l<Ξ><Irc —1; (3) S is completely ?*-avoidable at all points
for all r<^tt-2; (4) S is ^-extendible at all points. (This is IX 3.6, p.
273, of [11]). (By Lemmas VII 5.2, 5.3, p. 224 of [11], condition (4)
may be replaced by the requirement that S is locally (^-l)-avoidable
at all points; this fact will be utilized in the proof of Main Theorem A
below.)
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3. Main theorems*

MAIN THEOREM A. Let S be an orientable n-gcm and f: S-+S' an
(n — ϊ)-monotone continuous mapping of S onto an at most n-dimensional
nondegenerate Hausdorff space S'. Then S' is an orientable n-gcm of the
same homology type as S.

Proof. Since S' is nondegenerate, / is ^-monotone and therefore
by the Vietoris-Begle Theorem [2], pn(S')=pn(S)=l. And since p%S')>0,
S' is at least ^-dimensional, and therefore, by the dimensionality as-
sumption of the hypothesis, is exactly ^-dimensional. And if F' is a
proper closed subset of S', and Zn a cycle on F', there exists on the
set F=f-\F') a cycle γn such that f(γn)^Zn on Fr (see [2; § 5J). As
F is a proper closed subset of S, γn^0 on S and therefore f(γn)^0 on
S'—implying that Zn^Ό on S'. Thus S' satisfies condition (1) above.

That condition (2) is satisfied, follows from the fact that S' is Tcn

by Theorem 2.
Let p'eS', and U an open set containing p\ Then U=f-\Ur) is

an open set containing the set M=f~ι{pf). Let r be any integer such
that l<Lr<Ln-2. Since Hr(M)=Hn-r-\M)=0, there exists by Lemma

3 an open set P such that MCZPCZPC.U and such that all r-cycles in
P-M bound in U-M. Let W be an open set such that p' e W C W C U\
and such that f-\W')CZP- Let Q' be an open set such that preQrC
Q'CZW. As S' is ΐcn, there exists a finite base Zϊ, - - -, Zl of r-cycles
of F(W) relative to homologies in U'-Q'. Let W=f-\W), Q=f-\Q),
and consider any cycle Z\. There exists a cycle y\ on f~\F(W')) such
that firD^Zl on F{W). And as γl^O in U-M, Z\ must bound in
Uf—P'. Finally, since there are only a finite number of the r-cycles

Z\, there must exist an open set Rf such that p' e R' (Z.B! dQ and such

that all r-cycles on F(W) bound in Ur — Rr. Thus Sf satisfies condition

(3).
To show that S' satisfies condition (4), let p\ Uf, U and M be as

before. Since by hypothesis pn~Ί(M) = 0, there exists by Theorem 3 an
open set V such that McZVcZVClU such that all (w-l)-cycles of V

bound on U. LetP ; be an open set such that p' e P ' CZPf CZU' and such
that if Fr=F(Pf), then the set F=f~\F') lies in V. Let Q' be an open

set such that p' e Q' C.Q' C-P''. As above, there exist cycles Zf"1,
i = l , * ,A;, of F' forming a base for (n — l)-cycles of F' relative to
homologies in Sf — Qf. And for each Zf~ι there exists a cycle γf~ι on F

such that / ( rΓ 1 )^^?" 1 on ί\ But since r Γ 1 ^ 0 on £7, hence on S, it
follows from Lemma 4 that r Γ ' ^ 0 in S—M. Therefore each Z^^O
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in S' — p', and it follows that, as above, an open set R exists such that

p'eRCQ and all Zf1 bound in S'-R'. Thus 8' is locally (n-ϊ)-
avoidable.

The necessity for assuming that S' is at most ^-dimensional above
may be avoided if the monotoneity condition on / is strengthened. We
recall that for the Vietoris Mapping Theorem to hold when the coef-
ficient group is not a field or an elementary compact topological group,
it is necessary to phrase the monotoneity condition in terms of the in-
dividual coordinates of cycles (just as, for example, may be done with
the r-lc condition; compare [11; 176, Defs. 1.1, 1.2]). In terms of the
generalized Vietoris cycles such as Begle employed [2], the condition is
defined as follows:

DEFINITION 3. A mapping / of a space X onto a space Y is a
Vietoris mapping of order n if for each covering IX of X and y eY
there exists a refinement 33=3S(ϊt, y) of U such that every r-cycle of
X(yi)Λf-\y) [11; 131], r^n, bounds on X{U)Af'ι(y). (By X(U) is
denoted the complex consisting of all simplexes σ such that the vertices
of a are points of X and diameter of σ < Π . )

When the coefficient group is a field or elementary compact group,
this definition is equivalent to that of ^-monotone. It will be convenient,
then, to retain the term " w-monotone" with, however, a qualification

regarding the coefficient group employed. Also, for working with Cech
cycles, the definition is more suitable in the following form:

DEFINITION 3'. A mapping / of a space X onto a space Y is n-
monotone over (an abelian group) G if for each covering U of X, yeY
and M=f~ι{y), there exists a refinement 33 of Π such that for every
r-cycle Zr(S5) over G, r<^n, on $ Λ M the projection πχmZr(^&) bounds
on UAM.

A routine argument shows that the two Definitions 3 and 3' are
equivalent.

LEMMA 4. If f is an n-monotone mapping over the additive group
I of integers of a compact space S onto a Hausdorff space S', then f is
n-monotone over every abelian group G.

(Remark. As will be seen from the proof below, it is sufficient to
assume the condition of the Definition 3' only for r = n and n — 1.)

Proof. For n=0 the lemma follows at once since, as is easily
shown, 0-monotone over any group G is equivalent to the connectedness
of f-\x) for all xeS\
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For n > 0 we proceed as follows (see Cech [4; 11-13], where a
similar type of argument is employed for quite different purposes):
Given a covering Ui of S and xeS\ M — f-\x), we choose U 2 >U! such
that for every 72-cycle Zn{Xiλ) over / on U2 Λ M, the projection π12Z

n(\l2)
thereof from Π2 to Ux bounds on l^ AM; and U 3 > U 2 such that for every
(rc-l)-cycle Zn-\M6) over / on U 3 Λ l , the projection π^Zn'ι(ll3) thereof
bounds on Mz Λ M.

There exists a base for w-chains over 7 for the complex U3/\M
consisting of chains Cf(1l3), i = l , « , α w , such that

where
Consider any cycle Zn(U.ό) over G of U 3 Λ l . Then

And since Zn(llό) is a cycle,

Σsw?crTO=o,
i = i

implying that

( 1 ) flri7? = 0 for

Also, since for βn-hl<Lί<Lan the chain Cf(U3) is a cycle, there exist
chains Hΐ+1(Ui) over / of Ux Λ M such that

( 2 )

Furthermore there exist chains Z??(1I2) over / of H 2 Λ l such that

And since the chains π23C?(Π3) — ??Z??(U2) are cycles over /, we also have
relations

on UxΛΛf. From (1), (2), and (3) we get

Σ ) - Σ ^2^

on U , Λ l .
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MAIN THEOREM B. Let S be an orientable n-gcm and f: S-+S' a
continuous mapping of S, (n — l)-monotone over the integers, onto a finite-
dimensional nondegenerate Hausdorff space S\ Then S' is an orientable
n-gcm of the some homology type as S.

Proof. The defining properties of an orientable n-gcm S utilize
an algebraic field Jf as coefficient domain, and in particular specify
that if F is a proper closed subset of S, then Hn(F; ^Γ) = 0. It follows
that since S' is nondegenerate, / is ^-monotone as defined in Definition
1, and consequently [2; 542-3] is ^-monotone over ^ as defined in
Definition 3'. Furthermore, / is ^-monotone over /. For it is trivial
that 92-monotoneity over a cofinal system of coverings of a space is
sufficient for w-monotoneity, and S has a cofinal system Σ of coverings
of dimension n; and since a cycle Zn(%$), 93 eΣ, over 7 is a fortiori a
cycle over J?~, for a projection πmZn(3$), U e Σf to bound implies
7τUςgZw(SS) = O. We conclude then that / is n-monotone over I.

Now suppose the dimension, dim S\^>n. Then ([6]; [1]) there
exists a closed set CCZS' and cycle Zn over Rτ (the additive group of
the reals mod 1) such that Zn~0 on S' but Zn^0 on C. As / is n-
monotone over Rλ by Lemma 4, there exists [2; § 5] a cycle γn on f~\C)
such that f(γn)~Zn on C. But since Zn^0 on S', it follows [2; 542]
that γn^0 on S. As S is w-dimensional, this implies γn=0 and a
fortiori that ^ ^ O o n C and consequently f(τn)/^O on C, implying Zn<^-Q
on C, contrary to the choice of Zn.

The theorem now follows from Main Theorem A, since by Lemma
4, γ is (n — l)-monotone over . i^ .
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