RETRACTIONS IN SEMIGROUPS

A. D. WALLACE

Let S be a semigroup (that is, a Hausdorff space together with a continuous associative multiplication) and let E denote the set of idempotents of S. If $x \in S$ let

$$L_x = \{y | y \cup Sy = x \cup Sx\}$$

and

$$R_x = \{ y | y \cup yS = x \cup xS \} .$$

Put $H_x = L_x \cap R_x$ and for $e \in E$ let

$$H = \bigcup \{H_e | e \in E\}$$
 ,
 $M_e = \{x | ex \in H ext{ and } xe \in H\}$,
 $Z_e = H_e imes (R_e \cap E) imes (L_e \cap E)$

and

$$K_e = (L_e \cap E) \cdot H_e \cdot (R_e \cap E)$$
.

Under the assumption that S is compact we shall prove that K_e is a retract of M_e and that K_e and Z_e are equivalent, both algebraically and topologically. This latter fact sharpens a result announced in [6] and the former settles several questions raised in [7].

I am grateful to A. H. Clifford and to R. J. Koch for their several comments. This work was supported by the National Science Foundation.

LEMMA 1. Let $Z=S \times S \times S$ and define a multiplication in Z by

$$(t, x, y) \cdot (t', x', y') = (txy't', x', y);$$

then Z is a semigroup and, with this multiplication, the function $f: Z \to S$ defined by f(t, x, y) = ytx is a continuous homomorphism.

The proof of this is immediate. We use only the above defined multiplication in Z and not coordinatewise multiplication. It is clear that $f(Z_e) = K_e$.

Since the sets H_e , $e \in E$, are pairwise disjoint groups [1] it is legitimate to define functions

$$\eta: H \!
ightarrow E , \qquad heta: H \!
ightarrow H$$

Received August 10, 1956.

by " $\eta(x)$ is the unit of the group H_e which contains x" and " $\theta(x)$ is the inverse of x in the group H_e which contains x". If $x \in M_e$ then $ex, xe \in H$ so that $\eta(ex), \eta(xe)$ are defined. Define $g: M_e \to Z$ by

$$g(x) = (exe, \eta(ex), \eta(xe))$$

and note that the continuity of η implies the continuity of g. For $x \in M_c$ let

$$\rho(x) = \eta(xe) x \eta(ex)$$

so that ρ is continuous if η is continuous.

LEMMA 2. For any $x \in K_e$ we have $fg(x) = x = \rho(x)$ and $g(K_e) = Z_e$. The function $f|Z_e$ takes Z_e onto K_e in a one-to-one way and is a homeomorphism if η is continuous. If η is continuous then ρ retracts M_e onto K_e .

Proof. Let $t \in H_e$, $e_1 \in R_e \cap E$ and $e_2 \in L_e \cap E$. Since $L_{e_2} = L_e$ it is immediate that $ee_2 = e$ and since t is an element of the group H_e whose unit is e (Green [3]) we also have et = t = te. Similarly we see that $e_1e = e$. It is important to observe that the sets $\{L_x | x \in S\}$, $\{R_x | x \in S\}$ and $\{H_x | x \in S\}$ are disjointed covers of S so that, for example $L_x \cap L_y \neq \Box$ implies $L_x = L_y$. We see that $ee_2te_1 = te_1$ and $e_2te_1e = e_2t$ so that $ee_2te_1e = t$. We note next that $te_1 \in H_{e_1}$ and thus $\eta(te_1) = e_1$. For $e \in R_e \cap L_e = R_{e_1} \cap L_i$ and $e^2 = e$, give $te_1 \in R_t \cap L_{e_1}$ in view of Theorem 3 of [2]. But

$$R_t \cap L_{e_1} = R_e \cap L_{e_1} = R_{e_1} \cap L_{e_1} = H_{e_1}$$

and H_{e_1} being a group with unit e_1 we have, from the definition of η , $\eta(te_1)=e_1$. In a similar fashion we show that $\eta(e_2t)=e_2$. If $x \in K_e$ then we have $x=e_2te_1$ with the above notation and

$$fg(x) = f(exe, \eta(ex), \eta(xe)) = \eta(xe)exe \eta(ex)$$
$$= \eta(e_2t)t \eta(te_1) = e_2te_1 = x .$$

It will suffice to show in addition that gf(z)=z for $z \in Z$ since fg(x)=xgives $x=\rho(x)$. Now let $z=(t, e_1, e_2) \in Z_e$ so that $f(z)=e_2te_1 \in K_e$ and

$$g(f(z)) = (ef(z)e, \eta(ef(z)), \eta(f(z)e)) = (t, e_1, e_2)$$

in virtue of the computation given earlier.

It remains to prove the continuity of η when S is compact. This was announced in [7] but no proof of this fact has been published. Let

$$\mathscr{L} = \{(x, y) | L_x = L_y\}, \qquad \mathscr{R} = \{(x, y) | R_x = R_y\}$$

and let $\mathscr{H} = \mathscr{L} \cap \mathscr{R}$.

1514

LEMMA 3. If S is compact then \mathcal{H} , \mathcal{L} and \mathcal{R} are closed.

Proof. Let

$$\mathscr{L}' = \{(x, y) | Sx \subset Sy\}$$

and assume that $(a, b) \in S \times S \setminus \mathscr{L}'$. Then $Sb \subset S \setminus a$ and hence $Sb \subset S \setminus U^*$ for some open set U about a since Sb is closed and S is regular. Again from the compactness of S we can find an open set V about b such that $SV \subset S \setminus U^*$. Hence $(U \times V) \cap \mathscr{L}' = \Box$ and we may infer that \mathscr{L}' is closed. There is no loss of generality in assuming that S has a unit [3]. Hence if $h: S \times S \to S \times S$ is defined by h(x, y) = (y, x) then $h(\mathscr{L}')$ is closed and thus $\mathscr{L} = \mathscr{L}' \cap h(\mathscr{L}')$ is closed. In a similar way it may be shown that \mathscr{R} is closed. Moreover, \mathscr{H} is closed because $\mathscr{H} = \mathscr{L} \cap \mathscr{R}$.

THEOREM 1 [7]. If S is compact then H is closed, $\eta: H \to E$ is a retraction and $\theta: H \to H$ is a homeomorphism.

Proof. Define $p: S \times S \to S$ by p(x, y) = x. Then

 $H = \bigcup \{H_e | e \in E\} = p(\mathscr{H} \cap (S \times E))$

is closed since \mathscr{H} and E are closed. We show next that θ is continuous and to this end it is enough to prove that $G = \{(x, \theta(x)) | x \in H\}$ in virtue of the fact that H is compact Hausdorff. If $m: S \times S \to S$ is defined by m(x, y) = xy then $\mathscr{H} \cap (H \times H) \cap m^{-1}(E)$ is closed and we will show that this set is the same as G. For $(x, \theta(x))$ in G implies $m(x, \theta(x)) =$ $x\theta(x) \in E$ in virtue of the definition of θ . Since x and $\theta(x)$ are in the same set H_e , $e \in E$, it is clear that $(x, \theta(x)) \in H \times H$ and it is easily seen from the definition of $H_x = L_x \cap R_x$, and $\mathscr{H} = \mathscr{L} \cap \mathscr{R}$ that also $(x, \theta(x))$ $\in \mathscr{H}$. Now take x, y such that $xy = e \in E$, $x, y \in H$ and $(x, y) \in \mathscr{H}$. The last fact shows that $H_x = H_y$ and the penultimate condition, together with this shows that $x, y \in H_{e_1}$ for some $e_1 \in E$. But $e = xy \in H_{e_1}$ and the fact that H_{e_1} is a group implies that $e = e_1$. Now the uniqueness of inversion in the group H_e shows that $y = \theta(x)$. Hence θ is continuous and η is continuous because $\eta(x) = x\theta(x)$ from the definition of η and θ .

G. B. Preston raised the question as to the continuity of a certain generalized "inversion"—Suppose that there is a unique function α : $S \to S$ such that $x\alpha(x)x=x$ and $\alpha(x)x\alpha(x)=\alpha(x)$ for each $x \in S$. If S is compact then α is continuous. To see this let \mathscr{N} be the set of all $(x, y) \in S \times S$ such that xyx=x and yxy=y and define $\varphi: S \times S \to S \times S$ by $\varphi(x, y)=(xyx, x)$. If D is the diagonal of $S \times S$ then $\varphi^{-1}(D)$ is closed. Similarly $\psi^{-1}(D)$ is closed where $\psi(x, y)=(y, yxy)$ and $\mathscr{N}=\varphi^{-1}(D) \cap \psi^{-1}(D)$ is therefore closed. The uniqueness of α implies that $\{(x, \alpha(x))|x \in S\} = \mathscr{N}$ so that α is continuous if S is compact. For a discussion of the existence and uniqueness of such functions as α , see [2, pp. 273-274] as well as references therein to Liber, Munn and Penrose, Thierrin, Vagner and the papers of Preston in London Math. Soc., 1954.

From Theorem 1 and Lemma 2 we obtain at once

THEOREM 3. Let S be compact and let $e \in E$; then K_e is topologically isomorphic with

$$Z_e = H_e \times (L_e \cap E) \times (R_e \cap E)$$

and K_e is a retract of M_e .

It is not asserted that K_e is a subsemigroup of S. The first corollary is a topologized form of the Rees-Suschkewitsch theorem, see [6], [7] and [2] for a bibliography of relevant algebraic results.

COROLLARY 1. If S is compact, if K is the minimal ideal of S and if $e \in E \cap K$ then K is topologically isomorphic with $eSe \times (Se \cap E) \times (es \cap E)$ and K and each "factor" of K is a retract of S.

Proof. We rely, without explicit citation, on the results of [1]. It is immediate that $M_e = S$. Now $L_e = Se$, Re = eS and $H_e = eSe$ so that (by definition and [1]) $K_e = Se \cdot eS \in eS \subset K$ and, being an ideal, $K_e = K$. Clearly $x \to exe$ retracts S onto eSe. Now $Se \subset K \subset H$ and $\eta | Se$ retracts Se onto $Se \cap E$.

It is clear, when S is compact, that K enjoys all the retraction invariants of S, for example, if S is locally connected so is K. We do not list these nor do we give here the applications of Corollary 1 that were mentioned in [6].

COROLLARY 2. If S is a clan [7], if $K \subset E$ and if $H^n(S) \neq 0$ for some n > 0 and some coefficient group, then dim $K \geq 2$.

Proof. If $K \subset E$ then $H_e = \{e\}$ and K is thus topologically the product $Se \times eS$ since $Se, eS \subset K$. Now $H^n(Se) \approx H^n(S) \approx H^n(eS)$ [9] and hence Se, eS are non-degenerate continua. It follows that dim $K \geq 2$.

It is possible to put some of the above in a more general framework. Let T be a closed subsemigroup of S and let

$$L_x \!=\! \{ y | x \cup Tx \!=\! y \cup Ty \}$$
 ,

with similar definitions for R_x and H_x . If $e \in E$ then H_e is a semigroup and H_e is a group if $eT \cup Te \subset T$. If $\mathcal{H}, \mathcal{L}, \mathcal{H}$ are defined analogously then $\mathcal{L} \circ \mathcal{R} = \mathcal{R} \circ \mathcal{L}$. Moreover we have $\mathcal{L} \circ \mathcal{R} = \mathcal{J}$, where

1516

RETRACTIONS IN SEMIGROUPS

$$\mathscr{J} = \{(x, y) | x \cup Tx \cup xT \cup TxT = y \cup Ty \cup yT \cup TyT\},\$$

when S is compact [5]. In this case $\mathcal{H}, \mathcal{L}, \mathcal{R}, \mathcal{L} \circ \mathcal{R}$ and \mathcal{J} are closed. It is easy to see that many of the results of [3] and [2] are valid in this setting. If we define a left *T*-ideal as a non-void set A such that $TA \subset A$, then the basic propositions about ideals are also available. Many of these results follow from general theorems on structs [8].

References

1. A. H. Clifford, Semigroups containing minimal ideals, Amer. J. Math. **70** (1948), 521–526.

2. — — and D. D. Miller, *Regular D-classes in semigroups*, Trans. Amer. Math. Soc. **82** (1956), 270–280.

3. J. A. Green, On the structure of semigroups, Ann. Math. 54 (1951), 163-172.

4. R. J. Koch and A. D. Wallace, *Maximal ideals in compact semigroups*, Duke Math. J., **21** (1954), 681-685.

5. and —, Stability in semigroups, Duke Math. J., 24, (1957), 193–196.

6. A. D. Wallace, The Rees-Suschkewitsch theorem for compact semigroups, Proc. Nat. Acad. Sci. **42** (1956), 430-432.

7. — , The structure of topological semigroups, Bull. Amer. Math. Soc. **61** (1955), 95-112.

8. ..., Struct ideals, Proc. Amer. Math. Soc. 6 (1955), 634-642.

9. , Inverses in Euclidean mobs, Math. J. Okayama Univ. 3 (1953), 23-28.

THE TULANE UNIVERSITY OF LOUISIANA