
CONVEXITY OF ORLICZ SPACES

HAROLD WILLIS MILNES

In a paper [1] which appeared in 1936, J. A. Clarkson defined a
property of Banach spaces known as uniform convexity. Let |/| | denote
the norm of an element / of such a space and let {fή, fή'} be any
sequence of pairs of elements such that ||/n|=|/n'| = l and lim J|/ή + /ή/||=:l.

The space is said to be uniformly convex if these conditions imply that
lim \\fn—fn\\ = 0 It has been shown [2] that an equivalent definition is

one in which the condition ||/̂ 1I=||/?ΓH=1 may be replaced with the
weaker ||jζ||<Il and | | /Γ | |^1 . Clarkson has been successful in showing
that the Lebesgue spaces Lp are uniformly convex if p Φ1 and that
Lλ is not uniformly convex. The convexity properties of more general
classes of Banach spaces have been investigated by M. M. Day [3], I.
Halperin [4] and E. J. McShane [7].

A concept of convexity related to uniform convexity has been de-
scribed and is termed strict convexity. It is defined in the following
manner. -*t / ' , f" be any pair of elements in a Banach space such
that ||/1I H|/ΊI = 1 a n d έ||/'4-/ήΊI=l. The space is said to be strictly
convex if these conditions imply that ||/' — / " | = 0. In a Euclidean space,
strict convexity corresponds geometrically to the property that the unit
sphere | | / | = 1 does not contain a segment. We remark that, if a space
has the property of uniform convexity, then it possesses that of strict
convexity as well; however, the converse implication is generally untrue.

The principal objective of this paper is to investigate the conditions
which an Orlicz space [9] must satisfy to be uniformly convex. Also
the related problem of determining the conditions for strict convexity
is considered. A solution to both of these questions has been presented
which may be regarded as complete in the sense that both the neces-
sary and sufficient criteria are developed.

We begin by formulating the definitions of Orlicz spaces in accord-
ance with the notations to be used subsequently. Except in minor
details we shall adopt the standard conventions. Let v=φ(u) be a
monotonically nondecreasing function not identically zero, defined for
all 0<I^ such that φ(u)=φ(u — ) and <̂ (0) = 0; also, let φ(u) denote the
associated function φ(u) = φ(u + ). Let u = ψ(v) be the function inverse to
φ(u) which is defined by the relations:
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( i ) Φ(0) = 0,

(ii) ψ(v)=u if φ(u)=v and u is a point of continuity for <p(u),
(iii) ψ(v)=ψ(v-),
(iv) if φ(u)φφ{u), then ψ(v)=u for all φ(u)<Lv<Lφ(u),
(v) if lim^(^) = Z<oo, then ^;(i;)=4-oo for all

Also, let ψ(v) = ψ(v + ) . Since (̂w) and ^(v) are monotonic functions they
are Lebesgue measurable and their indefinite Lebesgue integrals define
the functions:

φ(u) = \Uψ(ΰ)dΰ and Ψ(v)=[Όψ(v)dv .
Jo Jo

Let Δ be a measure space with a ^-finite nonatomic measure μ and a
tf-ring of measurable subsets. Let f(x) be a ^-measurable function
defined on Δ; then, the functions ψ(\f(x)\), Ψ(\f(x)\)9 Φ(\f(x)\), etc., are
also ^-measurable on Δ. For each function f(x), we define:

| |/| |Φ=SUP( \f(x)\g(x)dμ
J Δ

where the supremum is taken for all g(x)'^zO satisfying I Ψ(g)dμ<Ll.
JΔ

The Orlicz space LΦ=LΦ(Δ, μ) is defined to be the collection of all func-
tions f(x)f /^-measurable on Δ, for which | |/ | |Φ<co. It may be shown
(Zaanen, [10]) that the space Lφ is a Banach space with the norm ||/||φ.
If Φ(u)=uι\ l<I;p<αD then Lφ is the classical Lebesgue space Lp.

Necessary and sufficient conditions for both types of convexity will
be expressed directly in terms of the functions <p, ψ, etc. For strict
convexity of Lφ these conditions are simply that ψ(v) and Ψ(v) should
be continuous in the extended sense. By this we mean that if VQ is
defined by VQ= sup?; then ψ{v) and Ψ(v) are continuous for v<^V0 and

(i;)=oo and lim ?Γ(i;)=oo. Of course, requirements additional to
F

Q o

those for strict convexity must be satisfied to imply uniform convexity.
It is found that these conditions are alternative according as Δ is as-
sumed to have finite or infinite measure. If Δ is of infinite measure it
is necessary and sufficient that the space satisfy the following require-
ments: not only must the functions ψ(v) and Ψ(v) be continuous in the
extended sense but the function ψ(μ) may neither increase too rapidly
nor too slowly. Precisely stated, there must be a constant 0 < i V < o o
such that Φ(2u)jΦ(u) <̂  N for all 0 < u (or what is readily shown to be
an equivalent statement, that there exist a constant 0 < i V < o o such
that <f(2u)lψ(u)<LN for all 0 < ^ ) , and also that for each constant
0<^ε<^l/4 there is a corresponding constant l<CRζ<^^> such that if

then R2 <C<p(u)l<p((l — ε)u). When Δ is of finite measure, the func-
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tions φ(v) and Ψ(v), as before, must be continuous in the extended sense;
however, slightly less stringent conditions apply to the functions ψ(u)
and Φ(u). It is required merely that the conditions stated for Δ of
infinite measure apply only in the limiting sense; namely, that there
exist a constant 0<iV<«D such that lim sup Φ(2u)IΦ(u)<LN and that

W->oo

for each constant 0 < ε < l / 4 there is a corresponding constant l<β ε<cx>
such that Rζ<^\im inf ψ{u)lψ({l — e)u).

W->oo

We begin the demonstration by establishing first the statements
relative to strict convexity.

LEMMA 1. If f(x)eLφ is a step function, then

l/k-supf \f\gdμ
{/(αO^o J Δ

where \ Ψ(g) dμ <I 1 and where g(x) is also a step function with the

same regions of constancy as f(x) and g(x)=0 whenever f(x)=0.

Proof. Let \f(x)\=ft on sets et of measure μ(et)=λt^>0 i = l , 2, ••-,

n. Let h(x)^>0 be any function such t h a t I Ψ(h)dμ<Ll. Define:
JΔ

ι=^Γ1\ h{x)dμ=gι on et .

Since Ψ(v) is the integral of a monotone nondecreasing function, it is a
convex function so that by Jensen's inequality [10]:

and therefore:

On the other hand:

f\gdμ=±flgiλi=±fLΛ hdμ\
ί = l 4 = 1 \ Jet J

A \f\hdμ.
JΔ

It is clear that we may take g(x) = 0 where f(x)=0 since the

integral \ \f\gdμ will remain unaltered in value while \ Ψ(g)dμ can
JΔ JΔ
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only become smaller.

THEOREM 1. // Ψ{v) is discontinuous, then Lφ is not strictly convex.

Proof. Since Ψ(v) is defined as the integral of a positive function,
the only type of discontinuity which can arise is of the form Ψ(V0)<^oo
while Ψ(V0-h) = cχD where O < y o < ° ° . (It is to be remarked that the
definition of the space Lφ excludes the case V0=0 as trivial). Let
λ<Lmm[μ(d)l2, l/2^(F0)] be a finite number, A g J , B g J be two sets
such that Af\B=b and μ(A) = μ(B) = λ. Define f'(x) = llλVQ on A and
0 elsewhere, / " ( # ) = 1/ΛFO on B and 0 elsewhere. By Lemma 1, if c',

dr represent positive n u m b e r s :

Ί | Φ = s u p .}_- λcf where Ψ ( \

| /" | Φ =sup -1 λc" where Ψ(c") <; -- .

Since Ψ(VB)<L 1/2/1 and ?P(v)=oo for V0<v the largest value of c' or
c" that may be chosen is c'=c" = yo. Thus | | / ' | | φ = | / " | | φ = l .

But i\f'(x) + f"(x)\=i\ff(x)-f"(x)\ = ll2λV0 on A\jB and 0 else-

where, so that by Lemma 1:

Z || II Δ || c>o Z/ /̂0

where c represents any positive number with Ψ{c)<Lll2λ. As before,
it follows the largest value of c it is possible to choose is: c=V0 so that

THEOREM 2. If ψ{v) is discontinuous, then Lφ is not strictly convex.

Proof. Let vQ= sup v, Vo= sup v. By Theorem 1 it may be assumed

that Ψ(v) is continuous in the extended sense, so that lim^(i;)=oo.

Two cases are distinguished according as ψ{v) is or is not continuous at
v=vQ.

(A) i?0 is a point of discontinuity for Φ(v). Let vQ <^ β <C Vo be a

point of continuity for ψ(v) and choose β large enough so that the re-
lation Ψ{β)=ljλ defines λ<Lμ{Δ)j2 and λ<C<^. It is then possible to
determine sets A^Δ, BξLA such that: μ(A) = μ{B) = λ and A[\B=Q.

For each value of a parameter O<C^<^1 define cLv^=\l~

) and
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j" - A

^ on B ,

(0 on (A\JB)'.

By Lemma 1, | |/J Φ = sup(αp? + bpyj) where Wi^ + Wiy)^!/*. Since Ψ(v)

is the integral of a positive non-decreasing function not identically zero,
Ψ(v) increases continuously to infinity; hence, it is possible to replace
the condition Φ(ζ) + Φ(η)^llλ by Ψ{ξ)-\ Ψ(jj) = Hλ with ξ^>vQ, η^tv0 for
it ξ19 ηv satisfy Ψ{ξ^)-\rΨ(y]^<illλ it is always possible to find f2l>£i,
%^Vι so that Ψ(ξ2)-{-Ψ(wJ = llλ and £2i>^o, %^^o while α ^ + δ ^ ^
ttpfi + δp^. Thus η='η{ξ) is determined as a single-valued function with
vo<Lξ<Lβ. If Ip(ξ)=apς + bpη(ξ)ΐhen\\fPlΦ= sup 7p(ί:). But/^(f) assumes

its maximum subject to ^ 0 ^ f ^ / 5 either for 6=^0, 6=/? or at points
for which d+lp{ξ)\dξ and d~Ip(i)ldξ simultaneously change their signs,
where d+ldξ, d'jdξ denote respectively upper and lower derivatives.
That is, the maximum must be assumed either at a boundary of the
interval vo<Lζ^β or at a turning value or a cusp. But

dξ

so that

If p is any value 0 <C V <C P where

then d-Ip(ξ)!dξ>0, vo<ξ<β; and since Ip(vQ)<Ip(β) it follows: ||/JΦ

Ip(β) = l for all such p. Choose 0 < p / < p / / < P / 2 and define

Then i(f'(x) + f"(x))=ifp,+Ax) so that | |/ /k==I/X=i| |/ / + / X = l . On
the other hand \fr(x)~fff(x)\ is different from zero on B and therefore
its norm is not zero. Thus Lφ fails to be strictly convex in this case.

(B) ô is a point of continuity for ψ(v). Let a be a point of dis-
continuity for ψ(v) so that Φ{oί)<^ψ{a)φ 0. Also, let tf</2<F0 be a
point of continuity for ψ(v) and choose β large enough so that the relation
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Ψ(a) + Ψ(β) = llλ defines λ<Lμ(Δ)l2 and 0</ l<oo. It is then possible
to determine sets AgΞz/, BξZΔ such that μ(A)=μ(B)=λ and AP |S=0.

Consider the equations

Since (̂/9) I> ̂ A(α) > 0 it follows that the determinants of these equations
do not vanish; therefore, the equations may be solved and it may be
observed that the values of a', b', a", b" are all greater than zero.
Define

' a'
λ

V

λ

,0

on

on

on

A

B

(A\JB)'

f

'a"

~λ

b"

λ

0

on

on

on

A

B

(A\JB)'

^l. As in (A)By Lemma 1, | |/Ί|Φ= sup(α'f + b'η) where

above the condition Φ(ξ) + Φ(y)<Lllλ may be replaced with
and ξ^Vo, yJ^Vo and these relationships determine ξ=ξ(η) and η=ij(ξ)
as single-valued functions with vo<lξ<Lδ and vo<Lγ<Lδ respectively
where Φ(δ)=llλ. If d+jdξ, d'jdξ denote respectively upper and lower
derivatives, it may be seen:

d+η _

dξ

d rj __ _

dη dη

where Ψ(ξ)+Ψ(y)=l.
If I\ξ)=a'ξ^b'7]{ξ) then | | / ' | φ = sup I\ξ). As in (A), Γ(ξ) assumes

«osίss

its maximum subject to vo<Lξ <Lδ either for ξ=v0, ξ=δ or at points
for which d+l(ξ)ldξ and d~I(ξ)ldξ simultaneously change their signs.
Now

lim Γ^ί ^ ^ l = α ' -
dξ J ^ n +

since η = δ when f=v0 and ^(<5)>0. Thus, Γ(ξ) increases in the im-
mediate neighborhood of ξ=v0 and ξ=v0 cannot give a maximum. Also
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dξ

since 6 '>0. Thus /'(£) decreases in the immediate neighborhood of ξ=δ
to the value Γ(3) and ξ=δ cannot give a maximum.

Now

a n d

dξ

Since a'φ(β)-b'f(a)=0 and the condition Ψ(ξ) + Ψ(τ](ξ)) = llλ implies that
as f increases, η cannot increase and conversely, a critical examination
of the expressions above establishes the following relations:

if ξ>a then ^ ! < ; o ,

if € = « then ^
dξ dξ

if then

Since that d+Γ(ξ)ldξ1 d~Γ(ξ)ldξ can change sign only once, it follows
that the value ξ=a, η=β gives unique maximum to Γ(ξ). Thus | |/Ί|Φ=

If I"(ξt)=a"ξ + b"η(ξ) then an analogous argument leads to the re-
lations

if then ^
dξ

if ί = « then ^ ί l )

if then

so that ||/"|| ( 1 >=α"α; + δ/'/3=l.
Consider

f'(x) + f"{x)_\
2λ

b' + b"

on A

on B
2λ

0 on (A \J B)'
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Let

•a on A

g(x)=< β on B

0 on {A\JB)r

then

and

Γ±f"
2

' + a'', , δ'
2

Thus by the triangle inequality £| |/'-f/"| |φ=l
A consideration of the defining equation shows that br φ b". There-

fore \f'(x) — f"(x)\ is not zero on B and it may be concluded immediately
that I/' — /"| |φ=£0. Thus Lφ fails to be strictly convex in this case
also.

LEMMA 2. // ψ(v) is continuous in the extended sense and 0<Lv<L Fo,

Proof. If t'^?;7 then the relation certainly holds. If v <^v' then

Ψ(v') = \ φ(v)dv= \ψ(v)dv+ [V <p(v)dv^>¥(v) + <p(v)(v'-v)
JO Jo Jυ

If vy>v' then

Γ ί V Γ v) .

THEOREM 3. / /

(i ) Ψ(v) is continuous in the extended sense,
(ii) φ(v) is continuous in the extended sense,
(iii) f(x)eLφ and |/(#)|=ess sup \f(x)\=M<^ oo on some set of posi-

tive measure and also, when Δ is of infinite measure, f(x) vanishes
outside a set of finite measure; then there is a constant 0 <̂  Cf <̂  oo and

a function gf(x)^0 such that ||/flΦ=\ f{%)gf(x)dμ, where ψ(gf(x)) = Cf\f(x)\

and [ Ψ(gf)dμ = l.
JΔ

Proof. We first establish the existence of a constant Cf and a
function gf(x) which satisfy the last two relations of the theorem. Let
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E = E{\f(x)\>0] and let S^S[\f(x)\=M] with μ(S)=δ^0. Since
x x

Ψ(v) is continuous in the extended sense and increases from zero to
infinity, there is a value v' < Vo such that Ψ(v') = Hδ. With C = Φ{vf)M-1

define g'(x) = v' for xeS and g'(x) = φ(C'\f(x)\) for xeS'. Then
= C/|y(α;)| and

Ψ{g\x)

Two cases will be distinguished according as

(A) \

or

(B) ( Ψ(ψ(C'\f\))dμ>l.
JΔ

(A) For each value of the parameter 1 <̂  k < oo define

, , iψ{C'\f(x)\) for xeS' ,
w lmin[^(CΊ/(α;)|), vf] for

The family of functions gk(x) is then a continuous one satisfying
(̂flrfc(̂ )) = C/|/(a?)| and increasing with k from g1(x) = φ(Cί\f(x)\) to ^(a?).

The integral I(k)=\ Ψ{gk)dμ increases continuously from value <^1 to

values ^ 1 . There is then a value kQ such that I Ψ(gicQ)dμ = l. The

function gjnQ(x)=gf(x) and the constant C'=Cf are those of the theorem.

(B) Let C0=inf C where J y(p(C|/(αOI))Φ^l. Since

limφ(C\f(x)\)=φ(C0\f(x)\)
C-+C +

it follows by Lebesgue's theorem that

Again, let C°=supC where

f Ψ(φ(C\f(x)\))dμ^l .
JΔ

By the continuity of ψ(v) it follows that C°=C0 and since

lim φ(C\f(x)\)=ψ(C0\f(x)\)
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then by Lebesgue's theorem I W(φ(C0\f(x)\))dμ <L1. For each value of
JΔ

the parameter 0<;/b<;i define

then the family of functions gk(x) satisfies Ψ(git(x)) = CQ\f(x)\ and increases
continuously with k from ψ(CQ\f(x)\) to φ(CQ\f(x)\). The integral I(k)=

\ Φ{ΰk)dμ increases continuously from values ^ 1 so that there is a
JΔ

value kQ such that i Ψ{gk^)dμ=l. The constant CQ=Cf and function
J Δ

gJCQ(x)^=gf(x) are those of the theorem.
It is easily seen in either case (A) or (B) that 0 < C / for if Cf=0

then the corresponding function gΛx) <I v0 and hence I Ψ(gf)dμ==0 which
J Δ

is a contradiction of the proof already made that I Ψ(gf)dμ==l .
JΔ

Finally, it follows from Lemma 2 that

Let h(x)^>0 be any function such that \ Ψ(h)dμ<Ll. In Lemma 2 let
JΔ

v=gf(x), v/=h(x); then, integrating over Δ gives

Ψ
Δ

Ψ{h)dμ>\ Ψ(gf)dμ + Cf[ \f(x)\(h(x)-gf(x))dμ
J Δ J Δ

or

\f(x)\9f(x)dμϊ>\ \f(x)\h{x)dμ+ J-4-
J Δ J Δ 0/

Since C r

/ >0 we obtain | | /L=[ \f(x)\gf(x)dμ.
J Δ

THEOREM 4. If

( i ) the hypotheses of Theorem 3 are satisfied,
(ϋ) | | / | | Φ > 0 ,

then

\ Φ{Cf\f\)dμ + l

l/lk= lΔ »

where Cf is the associated constant of Theorem 3.
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Proof, By Young's inequality, for arbitrary 0<l^, 0<lt>,

with equality if and only if at least one of the relations v=ψ(u) or
u=φ(v) is satisfied. Let u=Cf\f(x)\, v=gf(x) then since Ψ(gf(x)) =
Cf\f(x)\ the inequality becomes an equality and

Cf\f(x)\gf(x)^Φ(Cf\f(x)\)+Ψ(gf{x)) .

Since 0<C^ < cχ>, integration over Δ gives the stated result.

THEOREM 5. / /

(i ) Ψ(y) is continuous in the extended sense,
(ii) φ(v) is continuous in the extended sense,

then Lφ is strictly convex.

Proof. Let f'(x), fπ{x) be any pair of elements of Lφ such that
Ί Φ =1, 1 / Ί Φ = 1 . Let f(x)=f'(x) + f"(x) and

If μ(S)=Ό let

E=E[\f(x)\^min(n, ( l - ί ) ess sup |/(») | ) ] ( n = l , 2, •••)

if /i(S')^>0 let E=S' (n=l, 2, •••). Let Δn be a sequence of sets snch
n

that 4 £ 4,+1 S zi, μ(Δn) < ex,, μ(Δn-En)> 0 and lim4,=J. If /*(S)=0

define

mini w,^l-—jess sup |/(a?)|J

0

while if M S ) > 0 define

I ess sup |/(α)|

Fn(x)=\\f(x)\

1 o
observing that since ||/||Φ<oo then ess sup | / (^) |< oo in this case. It
follows easily from the definition of the norm in Lφ that ||FJΦ->||// + ///||Φ.
The functions Fn(x) have been constructed in such a way that they satisfy
postulate (iii) of Theorem 3 so that by this theorem and also Theorem

on

on

on

on

on

on

(4,-#») ,

^nΓ\En) ,

Vn-En)

(ΛnΓ\En)
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4, there are constants i < l C w < o o and functions gn(x) satisfying the

relations: Φ{gn{x))=CnFn{x), \ Ψ{gn)dμ=l and \\Fn\φ=\ Fn{x)gn{x)dμ.
J Δ JΛ

Since Fn(x)<:Fn+ί(x) and f Ψ{gn)dμ=l, (rc=l, 2, etc.) it follows that

the sequence Cn decreases to a limit i ^ C < co. Since Φ(gn(^))=CnFn(x)9

Fn(x)<LFn+ι(x) and \ Ψ(gn)dμ==l it follows by the monotone properties

of φ(v) that for each arbitrarily chosen but fixed m0 the sequence gn(x)
ultimately decreases on (Δmf~]Em). When μ(S)>0 we see (Δnf\En)~>
(Δ—S) and {Δn — En)~->S so that in this event the sequence gn(x) de-
creases on £ also. When μ(S) = 0 we see as before {ΔnΓ\En)~>{Δ~S)
and (Δn — En)->S. Thus the sequence gn{x) in both cases converges in
measure to its limit inferior which we denote by g(x).

By Theorem 3

( Fn\gndμ=\ \f' + f"\gndμ
JΔ

Since

it follows that

limf \f\gndμ=\f% and lim \ | /" | f f n ^=I/" | |* .

We show that there is a constant 0<Z) r <co such that Φ(g(x))=
Df\ff(x)\ almost everywhere. If this were not the case there is a con-
stant 0 < 5 < oo and sets T[, T'2 of finite positive measure such that

φ(g(x))>B\f(x)\ on T[

0<Φ(g(x))<B\f(x)\ on T'2 .

By Egoroff 7s theorem we may extract subsets T" ξ^T'u T^ Q T'2 such
that the sequence gn(x) ultimately tends uniformly to g(x) on T" and
T'2\ From TΊ', Tϊ we may extract subsets ΓΓ, ΓΓ of positive measure
such that the sequence is not only bounded on T'" and T'ί' but, since

\ Ψ{gn)dμ<Ll and (̂α?) = lim inf gn(x), it is also bounded away from
J Δ

F o. We may again find subsets 2\ <Ξ 2T and T2gΞ2T such that for
suitably small constants 0 < £ < c » , 0 < α < <» :

(1)
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0 < Φ(gn(x) +1") <B(\f(x)\) , x e T2, 0 ̂  ί" ^ t ,

for all n sufficiently large.

Since \ \ff\gndμ-^\f%1}} for each 0 < e there is an ns such such
J Δ

that if nz<Ln then: I \fr\hdμ— I \f'\gndμ<ie where h(x)7>0 is any

function with \ Ψ(h)dμ<Ll. Also, since g(x) is bounded away from VQ

JΔ

and the sequence gn(x) converges uniformly on Tι to g{x), there is a
constant 0 < β < ^ such that for sufficiently large rc

( 2 ) [ (̂ί7»(α)) dμ ̂  \ φ{g{x) 4- β) dμ < ex, .

Let

Ψ(g(v))dμ Ί
0 < ε < α^ΓJ min ί, -

L

and choose n^nε so that (2) holds. Then, if

(3) ^ Ψ{gn)dμ + \τ Ψ(gn)dμ=b

and if 0 < tι < oo, 0 < ίa < oo also satisfy

(4) [ Ψ(gn(x)-i

we have by the mean value theorem, for some 0<ί 0lτ

(5)

Thus, if

- t\τ Φ{g(χ))dμ

ί t = min ί, —

then ί a ^ ί . Now by (1)

\f\dμ,
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so that by (5)

But if

\ \f\dμ+t%\

h(x)=

Qnix)-^ on 2\

gn(x) + t2 on T2

gn{x) on (Tτ

then by (3) and (4) \ψ(h)dμ=[ψ(gn)dμ=l while

t \f'\hdμ=\ \Γ\gndμ-t\ \Γ\dμΛ-tλ \f'\dμ
JΔ JΔ J n Jr2

which contradicts the demonstration already made that l \f'\hdμ —
JΔ

\f'\gndμ<ie. Thus, there is a constant 0 < D' < oo such that ψ(g(x))=\ \

D'\f'(x)\. Similarly, there is a constant 0 < D / / < oo such that ψ(g(x))=
D"\Γ(x)\

Since \f\x)\ = Ψ(g{x))IΠ and \f"{x)\=Φ(g(x))lD" we see \f{x)\ and
\f"(x)\ differ at most by a constant factor. But U / I Φ H I / Ί I Φ ^ 1 S O t h a t

this factor is unity. Thus, ff(x) and f"(x) differ at most in sign. But
ψ(g(x)) = C\f'(x) + f"(x)\ so that if f\x)=-f"{x) at any point, then
ψ{g{x))=H\f'(x)\=H'\f"{x)\ = Q at this same point. Hence f'(x)=f"(x)
almost everywhere and \\f — / / / lΦ=0.

Theorems 1, 2 and 5 together have established the necessary and
sufficient conditions for the strict convexity of the spaces Lφ. In order
to proceed with the more difficult demonstrations for uniform convexity
we shall require the following important proposition relating to the
norm of an element in Lφ.

THEOREM 6. / /

(i ) Ψ(v) is continuous in the extended sense,
(ii) Ψ(v) is continuous in the extended sense,
(iii) (a) there is a constant 0<iV<co such that Φ{2u)fΦ{u) <LN,

(0<Cu), when A is of infinite measure,
(b) lim sup Φ(2u)\Φ(u) <C + °° when Δ is of finite measure, then

for each f e Lφ different from zero there is a constant Cf and a function
such that
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\\f\U=\jf\dμ,

Ψ(gf(x))=Cf\f(x)\ and

Proof. Let

If μ(S)=O, let

^ = s[ |/(a?) |^min(re,(l--ί)esssup!/(aj) | )] f (n=l, 2, •••);

if μ(S)^>0 let E=S', (w=l, 2, •). Let Δn be a sequence of sets such that
n

<oo, μ(Δn-En)y>0 and limz/w=zί. If μ(S) = O, define

min 7i, ( 1 - — ) ess sup \f(x)\ on {Δn-En) ,
L \ nJ J

|/(ίc)| on

0 on 4i

while if Λ ( S ) > 0 , define

on (Δn-En)

on
0 on

observing that in this case ess sup \f(x)\ <c« since ||/||φ<^oo. The func-
tions Fn(x) satisfy the postulates of Theorems 3 and 4 so that there are
constants \FJ^X<LCn<ioo and functions gn(%)^0 such that

and functions gn(x)7>0 such that ||Fn|φ==\ Fngndμ where ψ(gn(x))=

Cn.Fn(x) and j j f c ) ^ = l. Since Fn(x)^Fn+1(x)<,\f(x)\ it follows

from the condition \ Ψ(gn)dμ = l that the sequence Cn cannot increase

and since | | / | Φ > | | F J Φ it has a limit 1/lί1 <!C<oo. Since Ψ(gn(x))=

CnFn{x), Fn(x) <LFn+1(x) and I Ψ{gn)dμ=l it follows by the monotone
J Δ

properties of φ(v) that for each arbitrarily chosen but fixed m the
sequence gn(x) ultimately decreases on (Δmf\Em). When μ(S)>0 we
see {Δnf\En)~>(A — S) and (Δn — En)-^S, so that in this event the sequence
gn(x) decreases on S also. When μ(S) = 0 we see (ΔnΓ\En)->(Δ-S) and
{Δn — En)->S. Thus, the sequence gn(x) in both cases converges in
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measure to its limit inferior, which we denote by g{x).
(a) Assume that postulate (iii) (a) holds. In this case there is a

constant 0 < M < c o such that φ(2u)<LMφ(u) for 0 < ^ . Thus, if
Φ(2u)<LNΦ(u) for 0 < ^ then Φ(4u)<LN2Φ(u). Suppose there were a
sequence 0 <. un such that for each natural number ψ(2un) ^> nφ{un),
then

ΰ ^> 2unψ(2un) >_ 2nunψ(un) :> 2nΦ{un)

since unφ(un)^Φ(un). Now

since

I Ψ{ψ{C\f\)) dμ<^ \ lim inf Ψ(gn)dμ <1 lim in

by Fatou's lemma. By Young's inequality

\ Ψ(ψ(2C\f\)dμ^2c\ \f\φ(2C\f\)dμ-\ Φ(2C\f\)dμ
J Δ J Δ J Δ

But for all n sufficiently large φ(2C\f(x)\)2>^gn(x)~^g(x) therefore by
the monotone property of Ψ(v) and Lebesgue?s theorem

1= liminf \^(9n)dμ=^ liminf

Let h(x)^>0 be any function such that \ Ψ{h)dμ<,Λ. In Lemma 2
J Δ

let v=g{x), vf=h{x)\ then integrating over Δ gives

or

\f\(h-g)dμ

- Ψ(h)dμ

C

Since C > 0 we have ||/||Φ=f \f(x)\g(x)dμ. The function g(x) and the

constant C are those of the theorem.
(b) Assume that postulate (iii) (b) holds. Since lim sup Φ{2u)jΦ{u)

W->oo

<±N, there is a v! such that for v! <Lu, Φ(2u)IΦ(u)<L2N. Then for
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u' O , Φ(4:u)<L(2NyΦ(u). With appropriate modifications of the corre-
sponding demonstration in (a) above we easily show that there is a
constant 0<CΛf<°° and a value nx such that forw^w, ψ(u)l<p(u)<LM.
Recalling that Δ is of finite measure, let ^ > 0 be a value such that
Ψ(vλ)<LHμ(Δ), then

since φ(C\f(x)\)<^g(x) and by Fatou's lemma

i = \ lim inf Ψ(gn) dμ <ΞI lim inf
J Δ

By Young's inequality

But p(2C|/(αO|)^0rw(α:)^0(a?) for all n sufficiently large, so that by
Lebesgue's theorem and the monotone property of ψ(v)

Ψ(g)dμ=[\im inf Ψ(gn)dμ=\im inf

The remainder of the proof is as in (a) above. The constant C and
the function g(x) are those of the theorem.

The above theorem may be generalized in several ways. The author
has secceeded in obtaining a number of analogous conclusions [8] when
the function ψ(v) is discontinuous and when the hypotheses relative to
the function Φ(u) do not hold. It is interesting to observe that for
spaces in which conditions (iii) (a) or (iii) (b) do not apply, there is al-
ways an element / of the space for which the norm is not attained;

that is to say, there is no function h(x)^0 such that | | / | | Φ = \ \f\hdμ
JΔ

with \ Ψ(h)dμ=l. In this case, however, there is a constant 0 < C
JΔ

such that

( nψ(C\f\))dμ=l-a ,
J Δ

where 0 < a < 1 is a constant for any larger constant D^>C the inte-
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gral I Ψ(φ(D\f\)dμ is infinite. It is further remarkable that in this

case

The proofs and complete statements of these propositions will not be
presented since they are not essential to the discussions relating to
convexity. Theorem 4 admits an obvious generalization not only to
spaces which satisfy the postulates of Theorem 6, but to the more
general case when only the first of these conditions holds. The problem
of determining the constant C which appears in all of these theorems
in terms of elementary properties of f(x) has hot met with a suitable
and satisfying solution despite the author's attempts to find one.

We proceed now to a consideration of the necessary and sufficient
conditions for uniform convexity of Orlicz spaces. It was remarked in
the introduction that every uniformly convex space is strictly convex
but that the converse statement need not be true; therefore, it is clear
that any necessary condition for strict convexity must be also a necessary
condition for uniform convexity. Thus by Theorems 1 and 2 we must
assume at least that Ψ(v) is continuous in the extended sense and ψ(v)
is continuous in the extended sense. For a similar reason, the following
theorems furnish us with further necessary conditions.

THEOREM 7. [5] Every uniformly convex space is reflexive.

THEOREM 8. [6] Necessary and sufficient conditions that an Orlicz
space be reflexive are that there exist a constant 0 <C iV <̂  oo, such that

(a) Φ{2u)IΦ{u)<LN and Ψ(2v)[Ψ(v)<LN, (0<>, 0 < » when A is
of infinite measure]

(b) lim sup Φ(2u)lΦ(u) <̂  N and lim sup Ψ(2v)IΨ(v) <i N when Δ is of

finite measure.
The conditions implied in Theorems 1, 2 and 8 must be supplemented

with an additional necessary condition in order to insure uniform con-
vexity. This is expressed in the next theorem.

THEOREM 9. A necessary condition that Lφ should be uniformly
convex is that for every constant 0 < α < o o there is a constant l< iΓ α <co
such that (a) when Δ is of infinite measure then φ(u + au)l<p(u)y> Ka,
(0<^u); and (b) when Δ is of finite measure then lim inf φ(u-hau)l<p(u)

>Ka.

Proof. By Theorems 1, 2 and 8 and our above remarks we may
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and shall assume that Ψ(v) and ψ{v) are continuous in the extended
sense and that lim sup Φ(2u)!Φ{u) <LN and lim sup Ψ(2v)lΨ(v)<LN for

some constant 0<iV<cχD. We see then that ψ(v)-+^ for if ^vφ
φ(u)du=oD for

o

which contradicts lim sup Φ(2u)lΦ(u) <J N. Similarly the condition
W->oo

lim sup Ψ(2v)/Ψ(v) <: N implies that ψ(v) -> co.

Suppose there were a value 0 < a < co and a sequence un such that
alternatively according to the respective hypotheses

(a)

(b) liminf

There is then a sequence of pairs: {vn=<p(un), vn=ψ(un

Jraun)} such that
vn\vn-+l. Let λn=ll(Ψ(vn) + Ψ(vn)) and define wn by 2Ψ(wn) = ljλn; then
vn ^ ^ Λ ^ ^^ and 7;w/̂ w -> 1, vnjwn -> 1. We remark that in the second
case un -> oo so that vn -> oo and ultimately Λw <̂  ̂ (^)/2. Determine sets:
yln, βw of positive measure such that il nf\Sw=0, μ(An) = μ(Bn)=μn

= min [μ(d)l2, 4 ] ; and define functions/^), f'ή{x) respectively as

fix)-

(1 + α)
on

on

on (An\JBnγ

on An ,

on Bn ,

. 0 on (i4n\J£ny.

With C'n^C'n =[{!•¥a)vn + vn~\μnun we see: ψ(gn)=C'nf'n, ψ(g'ή)=Cnf'n' where

vΛ on ^4W

ί;n on S n

0 on ( 4 U 5 J

^w on

^w on

0 on

and for all n sufficiently large so that λn=μn we have
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Thus, by Theorem 6

f"|| _ f f"
n | |Φ— I J n

JA

Now

1

o n Λ

on (Λ

so that by Lemma 1 and Theorem 6

since vnlwn-+l and vnjwn—*-l. Again

on

on (An\JBJ

so that

and Lφ is not uniformly convex.

LEMMA 3. Let 0 < ε < l / 4 and l < i Γ s < T < α D , 0 < δ 6β constants
such that alternatively

(a) ( 0 < u ) f

is a constant 0 <Γ Lε swc/«. ί/?,αί
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Φ(V') ̂  Ψ(V) + φ(v){v' -V) + L,Φ(W ~V\)

1471

when respectively

(a)

(b)

\U —1

max

(1-εf ^

Γb, ( 2 ε ~ e "" )
L (1-ef

where {it, v), (u'f vr) are related by either v=ψ(u) or u = ψ(v) and v' = <p(u')
or ιι'—φ(y'}.

Proof, Assume n' ^ u and consider the first diagram

We note first

(a) (1 -ε)V ^ u > 0 (b) (1 - e ) 2 u ' ^ u ^ b

according to the respective hypotheses. Since ψ(u) is a monotone non-
decreasing function we find from the definition of Ψ(v)

Ψ(v')-Ψ(v)=AτesL (OCT)~Area (OBA)

I>Area (4SST) + Area (PQRS)

so that:

Observing that respectively

(a)
(l-e)*

•u' >_ u > 0 ,
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(b) v!
(1-e)

> v! >̂ u > b ,

by corresponding hypotheses with u'l(l — ε) instead of u, we see that

φ((l-ε)u')^(lIKs)φ(uΊ Thus

- ^ )φ{ιϊ).

Also

Hence

- e)u'φ{u')

-^)e(l-e)φ{\u'-u\)

Thus with Pβ=(l-l/JBΓβ)ε(l-e)>0 we have

Ψ{v')>,Ψ{v) + ψ{v)(v'-v) + P2Φ(\u'-u\) .

Assume vl <Cu and consider the second diagram.

/9(u)

v'

w (f-ί)2u (hί)u b υ

We note first that

:> (2ε - ε
(1-e) 2

so that (1 — ε)2u^>u'. Since ψ(u) is monotone nondecreasing, from the
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definition of Ψ(v) we find:

Ψ(v)-Ψ(v') = Aΐea (OBA)-Area (OCT)

^Area (ABDT)-Area (PQRS)

so that

Ψ(v')>_Mv)-Area (ABDT) + Area

But

= φ((l-ε)u)-φ((l-εγU)

where, if we are considering the second set of hypotheses, we make

use of the fact that b<u. Also RP=εu; therefore

> Ψ(v) + ψ(v)(v'-v) + (l- ) ε- Φ(u)

;> y(v) + ̂ ) ( v ' - v) + Qε^( k ; - ^ I)

where Qβ==(l-l/JBΓβ)(e/Γ)>O.
Taking L ε-=min(P ε, Qε) we have the stated result.

THEOREM 10. Let ψ(v) be continuous, u=ψ(v) and yf = ψ{v') and let
0<Cε<^l/4, l < ^ i 2 ε ^ N < ^ o o be constants such that alternatively

(a) ( i ) Φ^<^N, (0 0 )

(ii) Rs

(iii) |M'
(1-e)'

or

(b) ( i ) lim sup i 5 ( 2 w ) <; JV ,
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(ii) lim sup j}"\-z
^((1 — ε)u)

(m\ W ?yl>(m) | u - u | ^

then there is a constant Lε > 0 such that

Proof, (a) By the same reasoning employed in Theorem 6, we
may use hypothesis (a) (i) to show that there is a constant 0 < M < α >
such that <p(2u)l<p(u)<LM, 0 < ^ . Writing (1 — εfu for u and noting that
ψ(2(l-eγu)>:φ((l-ε)u), 0<e<l/4 we have

M > Ά^Σ-J^l > JK(1" Φ). , (0 < M) .

Again writing (l — ε)u for % in (ii) we have

With M=T, Rs=Kζ we may apply Lemma 3 to obtain the stated result.
(b) As in the proofs of Theorem 6 we may use (b) (i) to show that

there is a constant 0 < M < C X D such that lim sup φ(2u)jφ(u)<L M; this

implies that for each 0 <C e <C 1/4 there is a value uλ <^ co such that if
( l - ε y ^ O then φ(2u)l<p(u)^2M.

Writing (l — ε)2u for % we see

Since ψ(v) is continuous, it follows that if 0 < 6 is any constant then
^((l-ε) 2δ)>0; since ψ(2u)l<p(u)<L2M when (l-εYuλ<,u it follows that
φ(2u1) <C °° therefore

Thus with

we have
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The second hypothesis implies that there is a u2 < oo such that

•efu) 2

Let 3? = (2ε-ε2)/(l-ε)2, then J ? > 0 . Let

S= inf

Suppose S = l , then there would exist a sequence ^^un^u^ such that
f((l —ε)ww)/^((l — ε)Vw)->l. From this sequence a subsequence wnl could
be extracted which either increases or decreases to a limit η < vl < ?Λ2.
If MW1 increases to %', then the left continuity of φ(u) implies that
φ((l — ε)ur)lφ{(l — ε)V) = l ; while if wnl decreases to ur then the right
continuity of φ(u) implies that ^((1 — e)u')lφ{{l — ε)V)=l. In either event
this would imply that ψ{v) had a discontinuity at alternatively v=

φ((l-ε)ur) or v=φ((l-e)u'), since ^ ) £ ( l - £ ) V < ( l - e K ^ ^ ) . Since
ψ{v) is continuous by hypothesis, we conclude: S^> 1. If we let
lf8=min[S, (ϋίe + l)/2], δ=(2ε-ε2)/(l-ε)2 and Γ as above, we see that
the hypotheses of Lemma 3 are satisfied and we have established the
proposition.

We shall suppress the proofs of the two following lemmas since
they may be found readily in the reference cited.

LEMMA 4. [10] If f(x) e LΦ and f(x) ^ 0 on a set of positive measure,
then

i/CCS?')*-*1-1/IIΦ

LEMMA 5. [10] // f(x)eLΦ and if there is a constant 0<Λ Γ <oo
such that (a) Φ(2u)/Φ(u) <LN, 0 O when Δ is of infinite measure or
(b) lim sup Φ(2u)jΦ(u) <1 N when Δ is of finite measure, then

\ Φ(\f(x)\)dμ <co .
J Δ

LEMMA 6. If {fn(x)} is a sequence of elements of LΦ such that

\ Φ(\fn(%)\)dμ-+0 and if there is a constant 0<iV<oo such that
J Δ

either (a) Φ(2u)IΦ(u)<Ξ,N, 0<Cu when Δ is of infinite measure; or
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(b) lim sup Φ(2ιι)jΦ(ΐi) r< N and also ψ(v) is continuous, token Δ is of finite
?i-»oo

measure, then ||/n | |φ->0.

Proof, (a) let p [> 1 be any positive integer and choose np suffi-

ciently small so that \ Φ(\fn{x)\)dμ<^llNp for all nv<Ln. Then

so that if ffnίaO^O and \ Ψ{gn)dμ <L 1 by Young's inequality

2> \fn\gndμ^\ Φ(2*\fn\)dμ+\ Ψ(gn)dμ^2
JΔ JΔ

so that ||Λ||Φ <I 2/2p, (np<Ln). Since p may be chosen arbitrarily large,
the proposition is demonstrated.

(b) Since lim sup Φ(2u)jΦ(u) <1 N it follows that there ίs a ^ < ω

such that: Φ(2u)/Φ(u) <;2N, u' <Lu and Φ{2ur)<^<^. Since ψ(v) is con-
tinuous and ^(0) = 0, it follows that <p(u)>0, 0 < ^ and hence $(V)>0,
0<Cu; therefore, if 0<Cιι"<Luf be any number we see Φ(2u)lΦ(u) <I
Φ(2u')lΦ(u")<oo when u" <*u^u' so that if JVtt,,=max[2iV, Φ(2u')IΦ(u")]
we have Φ(2u)IΦ(u)<^Nu,, <C oo, u" <du. Let p ^ l be any number
and choose 0 < w" ^ 1/2"; let S n=#[|/ n(ατ)| ^ % " ] . If ^ n ( » ) ^ 0 and

μ <L1 then by Young's inequality
Δ

2*\fn\gndμ <:[ Φ(2*\fn\)dμ+\ Ψ(gn)dμ
J Δ J Δ

,Φ(2»\fn\)dμ+l

By choosing n sufficiently large, we have \ Φ(\fn\)dμ<^{Nu»)~~v so that

Taking 29 sufficiently large we see that | |/J|Φ->0 since

LEMMA 7. If a, β cere real, then
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Proof. If ac^β^O then |tf-/9| = lk*Hi9ll and \ct\ + \β\ = \a + β\. If

= 0^/3 then \oc\ + \β\ = \cc-β\ and \a + β\ = \\a\-\β\\. If 0 > α ^ / H h e n
l / Ή I ^ + βl and \a — β\ = \\a\ — \β\\. The remaining cases in which
a hold by symmetry.

LEMMA 8. If η <; 1 then Φ{rju) <ί ηΦ{u) and if η :> 1 £ / ^ Φ(μu) 2>

Proof. Since ^(^) is monotone nondecreasing if ^ < 1 we have

φ(u)du<Lη\ φ(u)du=ηΦ(u) .

o Jo

If η>Λ and f = l / ^ l then Φ{ξu')<LξΦ{uf)\ so that, if fw'=^, we have

LEMMA 9. (a) // there is a constant 0 < i V < oo such that Φ(2u)lΦ(u)
V then

/or arbitrary 0<LuL, 0 <^u2;

(b) if / o r e α c ^ 0 <C ̂ r / i/^re is a constant 0
Φ(2u)IΦ(u)<L_Nu», u" <Lu, then

Φ(μλ 4- ̂ ) <ς ̂ (2^r/) + iV^,^^) 4- Φ(u2)]

for arbitrary 0 <±ulf 0 <i u.z.

Proof, (a) Let %3=max[%1, i62] so that w14-u2<^2^3. Then

(P(«6t 4- u2) ^ Φ(2^3) ̂  iV^(^3) S. NlΦi

(b) Let %3=max[%1, ^ 2 ] . If uz<Lun, then

If uzy-u" then

THEOREM 10. Let Ψ(v) and ψ(v) continuous and let 0 < ε < l / 4 ,
^ A/" <C °° &e constants such that alternatively

(a) wΛe% z/ is of infinite measure
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(i) Φ(2u)IΦ(u)^N, (0 0 ) ,

(ϋ) R. <-&&—, (0<u);

ψ((l)u)

or
(b) when A is of finite measure

(i) lim sup Φ(2u)jΦ{u) <^ N ,

(ii) lim sup . fM >Rt

u-»- <f((l-ε)u)

then Lφ is uniformly convex.

Proof We first assume that/ n(^) IΞ> 0, /ήX^^O, that ||/fί

/||φ=||/»Ί)Φ

!=1

and that £lf'n + f'nlq>-+l; a n d we shall prove that \\fή~ fή'U ~* 0.
Let ^ = (2e — e2)/(l — e)2; we observe that lim?? = 0. By Theorem 9

there is a constant 0 < L 7 ? < C Ό such that, corresponding to the alterna-
tive hypotheses, when

(a) \u' — u\^>?juy>0 ,

(b) \u' — u\ ί> max (??, ^ ) ,

then

(*) Ψ(v') > !P (v) + ̂ (v)(v' - v) 4- L^(|%' -%|)

where u=ψ(v) and u' = ψ(v'). By Theorem 6, let 1 < D W < C X D , 1 < C , ; < C O

be constants, #n(α?) ̂  0, A'(a ) >; 0 be functions such that

Let alternatively

(a) #n(?)

(b) Sn( 7) EEE S max

Write v'=gn(x), v=h'n{x) in (*) above and integrate over 2£n(??) to obtain
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Ψ(K)dμ+\ C;j^x){gn{x)-h'n{x))dμ

+ L, )dμ.

But, by Lemma 2, Ψ(vr) ̂ > Ψ(v) + ψ(v)(v'-- v); so that making the same
substitutions as before and integrating over Eή(V) we may assert

Hence

\ , Ψ(K)dμ+ \ , C«f»(x)(gn(x)-K(x))dμ .

n) dμ > j ^ Ψ(K) dμ + C/nJ Δ C,;/

+ L, ( φ(\c'nf'n(χ)- P» (f'n(χ) +fή'(x))\) dμ ,
J C ) \| 2 |/

so that

By Lemma 8, since 1 r%_ C'n <C °° we have

- 2C' (fή+fή')\)dμ

Now

But

and

and also

= j Λ fή(χ)gn(χ)dμ + j£fn{χ)gn(χ)dμ <:

<fn{χ)gn{χ)dμ<L

<L \\fn\\
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so that:

fή(x)(hn{x) - gn(x))dμ -> 0

Thus by (+) since 0 < Lv < OD ,

on E'n{η) alternatively

(a) A {/(

(b) f'Jx) - ", (fή(x) + f'ή{x)) <L_ max • ^,, ηf'n{χ) <; max [rj, ηf'n(x)~\

so that, since η <-Λ, by Lemma 4 and 8 we have alternatively as e->0

(a) L ' c / ( | / ; i ~ 2C' ( / ; i + / ; ; ) | ) ^ — \F'M

Φ(Ύlf'n)dμ

<,.?i\r,iΰΦ{fn)dμ^ri^^

(b) Φ f _ f"\) ^ ^ \ , Φ(v)dμ
/ JEn(η^

+ \JE,(J
rKvfή)dμ:>:Φ(η)μ(Δ) + ^Φ(rif;)dμ

< Φ(VMΔ) + V\ ̂  Φ{fύ)dμ r£ Φ{V)μ(Δ) + η -> 0

since μ{Δ) is finite. Combining these results with (**) we see that

Thus by Lemma 6

f '-'n ( j" I f"λ

2c;r*

and this implies in turn that
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But έ||/; + / ; | φ ^ l = ||/);||φ so that DJCή -> 1. It then follows that

from which we have immediately that

We now prove the theorem for the general case when the functions

fή(x), fn{%) are not necessarily positive. We use the equivalent definition

of uniform convexity which has been noted in the introduction. Let

|/ήlφ=5l/»Ί|φ=l and suppose \fή + fή% -+ 2. We define

(\f'n(x)\ if (fή(x) + fή'(x)) has the sign of f\x)

l 0 otherwise

»'(*)l if (fή(x)+fή'(x)) has the sign of fn\x) ,

0 otherwise .

Clearly

o <L F IX) <, \fn{χ)\, o ̂  F;;(X) ^ \fn\x)\,

and

so that | | i q Φ < ; i , I I K H Φ ^ I , liminf||F7; + K Ί | φ > 2 and \fn'-fή'l^
2\\Fή — Fή'\\φ. Our result for positive functions applied to Fή(x) and F'ή(x)
now gives \f'n—fn%-+0 and LΦ is uniformly convex.

THEOREM 11. Necessary and sufficient conditions that LΦ be uniformly
convex are

(a) in case A is of infinite measure
( i ) Ψ(v) is continuous,
(ii) ψ(v) is continuousj
(iii) there is a constant 0 < i V < o o such that Φ(2u)jΦ(u)<Ξ:N9

Φ(2v)IΨ{v)<LN, (0 0 , 0 < v ) .

(iv) for each constant 0 <C ε <^ 1/4 there is a constant 1 <C ̂ ε <C °°
such that <p(u)l<p((l — e)u)>Rz, ( 0 < % ) ;
r :

(b) irc case J is of finite measure
(i ) Ψ(v) is continuons,
(ii) ^(v) is continuous,
(iii) £Λere is a constant 0 < i V < c o



1482 HAROLD WILLIS MILNES

lim sup Φ(2u)/Φ(u) <I N , and lim sup Ψ(2v)lΨ(v) <

(iv) /or each constant 0 < ε < 1/4 ί/̂ ere is α constant 1 < Λ8 < oo
lim inf ψ

Proof. The theorem is simply a summary of the results of Theorems
1, 2, 7, 8 and 9 and of Theorem 10.

It is interesting to remark (a) that the condition φ((l + e)u)lφ(u)^>
R2y>l implies that Ψ(2v)jΨ(v)<LN for some constant 0 < i V < o o , and
(b) that the condition lim inf φ((l 4- e)u)jφ(u) > RΞ > 1 implies that

lim sup Ψ(2v)jΨ{v) <L N for some constant 0 < N < oo but the implica-

tions converse to (a) and (b) are untrue. To prove the direct statement
we choose an integer 0 < p such that ((Re + l)/2) p> 2. Now, respectively
(a) for all 0 < > ,

2

and (b) there is a value 0 < > ε such that if us<ίu, then

Then if (a) 0 O , (b) us<Cu, we see that

Letting v=φ(u) we have (1 + e)V(^)^^(2v) when alternatively:
(a) OO,
(b) v2<Cv where ve=φ(u9). But then

(a)

where 0<[v,

(b) (l +

where vs ^ v, and since Ψ(2vB) < co and ^(v) -> co we see that
lim sup Ψ{2v)jΨ{v) ^ 2 ( l + e)2' < oo. To prove the converse construct the
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following function. Let ih=Of v{ = 0, un=2n, vn = 2n, uή=(l + ε)un, vή=
(2n + i); (n=2, 3, •••)• Join the points (uxvx) to (u^); (unvn) to (uήvή);
(Un, vή) to (un+1, un+1) each by straight line segments and let this function
be φ(u). Then

ψ{{l±ε)nn) _ψ{un) _ < _ 2 n + i ^ 1

ψ(un) φ(un) Vn 2n

while ψ(2v)<L4φ(v), (0<v) and therefore Ψ(2v)IΦ(v)<L8, ( 0 < » . It is
also clear that condition (i) is implied by the condition lim sup Ψ{2v)jΨ(v)

^ i V a n d consequently by (iv). Thus, if we wished to do so, we might
delete any statement relative to the function Ψ(v) from Theorem 11.
It is true, however, that the remaining conditions are independent for
none of them is implied by any combination of the other hypotheses.
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