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l Introduction* Almost all the operators arising in applications
of the Heaviside operational calculus share two properties. The precise
formulation of these properties may vary, but their general nature is,
in the first case, a commutativity rule relating to the operation of semi-
translation, whilst in the second case it is a condition of continuity of
some sort. Possible precise formulations of these conditions are typified
by postulates (0^, (Ot) and (O2), which appear subsequently. Verifica-
tion of the opening remark is to be found by glancing at the diverse
illustrations of the technique to he found for example throughout [4].

It is the aim of the present paper to base proofs of general repre-
sentation theorems upon such characteristic properties. The appropriate
theorems will depend of course on the topologies envisaged in the con-
tinuity condition. Because of this, neither theorem proved here applies
to all conceivable '' operational expressions " : an outlaw expression would
be exp(/φ)(/£>0), for instance. Modifications are possible, however, and
would lead to theorems covering wider ranges of operational expressions.

As is well known, if the operands are restricted suitably, the ope-
rational calculus can be formulated in terms of the one-sided Laplace
transform. Special attention is given to this case, and the correspond-
ing representation theorem can be looked upon as a solution of the pro-
blem of factor functions for the Laplace transformation. The methods
employed were suggested by those used in [3] to study factor functions
for the Fourier transformation.

The general nature of all results obtained is very close to one given
by L. Schwartz [5, p. 18, Theoreme X].

2. Classes of functions and operators. The widest class of func-
tions to be considered will be denoted by J^~ and will consist of those
functions f=f(t) which are defined and locally integrable on the half-
line j R + = { £ : ί > 0 } . Functions which are equal a.e. are identified. A
fundamental operator mapping J?~ into itself is " semi-translation by s " ,
where s I> 0: this is denoted by Us and is defined by

(2.1) Uf(t) \f{t~s) f o r\
(0 for 0 < ^

The first of the two characteristic properties to be postulated about
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operators T is

(0λ) T commutes with Us for each s I> 0.

The second, which reads

(O2) T is continuous from J^ into J^~,

is interpreted relative to the topology of convergence in mean over each
bounded interval of R+ . This topology on J^~ is defined by the family
of seminorms

(2.2) Pn(f)=[l\f(t)\dt (n=l,2, ...)
Jo

and makes ^ into a Frechet space.
The first of the representation theorems may now be stated.

THEOREM 1. Let T be a linear operator mapping ^ into itself which
satisfies (Oλ) and (O2). Then T is given by truncated convolution with a
certain Radon measure μ concentrated on the closed half-line £l>0, that
is,

(2.3) Tf(t) = μ * /(ί)=Γ f{t-8)dμ{8)
Jo

for f in ^ Γ Conversely, if μ is such a measure, (2.3) defines an opera-
tor T satisfyiug (Ox) and (O2).

The measure μ may fail to be absolutely continuous; for this reason
some care is needed in defining the right members of (2.3). This is
dealt with in the proof of Theorem 1, to be given in § 3.

The second theorem pays special attention to the subspace gf of
composed of functions / for which

(2.4)

holds for some n which may depend on / . & is practically the largest
domain for the Laplace transformation

(2.5)

if / satisfies (2.4), then f(p) is defined for dlp^n. Many of the opera-
tional expressions F(p) appearing in applications of the Heaviside
method act on (<? according to the ritual: take the Laplace transform,
multiply by F(p), and then invert the Laplace transform. The opera-
tional expression F(p) thus acts as a " factor function ". Detailed con-
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sideration of such factor functions is deferred until § 5.
In order to state the second representation theorem it is necessary

to introduce a topology on £?. If ϊfn(n=l, 2, •) denotes the subspace

of έf defined by the inequality (2.4), then g" w C^+i and ^ = 0 ^ .
Furthermore qn is a norm on g; relative to which the latter is a Banach
space. Accordingly, on if one may introduce the inductive limit topo-
logy defined by the 8^ and the qn; see [1, p. 61] : this is the finest locally
convex topology on έf which induces on each &n a topology less fine
than that defined by the norm qn. We shall denote by (0 )̂ the condi-
tion which results from (O2) by replacing therein the Frechet space J^~
by the space CS" equipped with the said inductive limit topology.

THEOREM 2. Let T be a linear operator mapping into itself which
satisfies (Ox) and (0'2). Then T admits a representation (2.3), where now
the measure μ satisfies a condition

(2.6)

for some n {which may depend on μ, that is, on T); and conversely.
It may be noted here and now that Theorem 2 applies in particular

to any T satisfying (O:) and (O2) which happens to map ^ into g\
This is so because any such T has a restriction to £f which is neces-
sarily continuous for £f's topology, which assertion is most easily es-
tablished by applying the generalised closed graph theorem [2, p. 36,
Exercice 13]. Condition (O2) is easily seen to imply that the restriction
of T to έf has a closed graph when considered as a map of if into
itself1.

3- Proof of Theorem 1. The first thing is to define μ * / f or / e
J^ and any measure μ concentrated on the half-line £^>0. An analo-
gous process works in connection with Theorem 2 for functions fe &
and measures μ satisfying (2.6) for some n.

In the present case we note that for fixed / in J^ Usf is a conti-
nuous function with values in J?~ and that pn(Usf)=0 for s > w . It
is therefore certain that the abstract integral

(3.1) J U8f dμ(8)

exists as an element of J^~: this element is μ * / . To see how this

1 It is necessary merely to observe that, for each n, the topology of $f induces on
cSn a topology less fine than that defined by qn. So, by definition, the inductive limit
topology is finer than that induced on g by 5?'s topology. This being so, it is trivial to
verify that the restriction of T to £f has a closed graph.
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definition is related to the " pointwise " one, we note that the dual of
Jf may be identified with the space of bounded, measurable functions
ψ on R+ which vanish a.e. outside bounded intervals, the linear form
associated with such a φ being given by

(3.2) <f,φ>=\~f(t)φ(t)dt.
Jo

Now the definition of (3.1) is such that for all φ one has

so that by (3.2)

\~f * fit) ψ(t)dt^dμ(s)^f(t-s)φ(t)dt

for all <p. If /(£ —s), qua function of s, is integrable for μ over bound-
er

ed intervals, and if I f(t — s)dμ(s) is locally integrable (Lebesgue), the
Jo

integral on the right can be rewritten as

\~ψ(t)dt[f(t-8)dμ(8).
Jo Ju

Comparison shows that, under these conditions, μ * / is the function

defined a.e. as I f(t — s)dμ(s). This latter definition covers in particular
Jothe truncated convolution of two functions in

Consider then the operator T defined by Tf=μ* f. By what has
been said, T maps J^~ into itself. Linearity of T is obvious. Since
also UsUa=UaUs for α ! > 0 , s ^ O , and Ua is continuous on ^ " , the ab-
stract definition gives at once

=Ua^ Usf.dμ(s)=UaTf;

thus T satisfies (Ox).
To prove the continuity of T it is merely necessary to take stock

of the fact that pn(U8f) vanishes for s^>n and is everywhere at most
pn(f). As a consequence,

where m is the | μ |-measure of the interval 0<Ls<Ln. Thus (O2) is
satisfied. The converse part of Theorem 1 is thus established.

Suppose now that T satisfies (Oα) and (O2). If / and g belong to
we have
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T(f * flr)=r(JViflf./(8)ώ)=:\~TUsg f(s)ds

= \~UsTg-f(s)ds=f*Tg.
Jo

This is applied to a sequence g=gv(p=l> 2, •••) forming an " approxi-
mate identity " for the truncated convolution. A simple example of such
a sequence is furnished by the functions

v for

0 for t>l/v .

It is easily verified that / * gv -> / in J^, and that pn(gv) <1 1 for all n
and all v. Since T(f * g^)=f * Tgv, if we let y tend to infinity there
follows

where hv=Tgv. Now the sequence (#v) is bounded in J?~ and T is con-
tinuous; so the sequence (hv) is likewise bounded in J7~, that is,

Supv

for each n. By dropping terms if necessary, we may assume that the

sequence (kv) converges weakly to a measure μ concentrated on the half-

line £l>0. Accordingly, if / is continuous, f * hv(t) will converge point-

wise to \ f(t—s)dμ(s) for each t. However, f*h^->Tf in J^ and it
Jo

follows at once that the two limits must coincide. Thus Tf=μ * / holds
at any rate for / continuous. Such functions are dense in J^ and both
members of this equality are continuous on ^ 7 So equality holds for
all / . This completes the proof of Theorem 1.

4* Proof of Theorem 2. The general plan of the proof is very
similar to that of Theorem 1. As before, the existence of the abstract
integrals is dealt with first. In this connection it is useful to note the
inequality

(4.1) qn(μ * / ) ^Lqn(μ) Qn(f) >

where qn(μ) denotes the left member of (2.6), provided both factors on
the right are finite. Thus if μ satisfies (2.6) for a certain n, and if /
belongs to ?fN for some integer N, then (4.1) shows that μ* f belongs
to &M, where M=max(n, N). It shows also that the operator T defined
by Tf=μ*f has the property that its restriction to each subspace 8^
is continuous relative to the norm qn. Hence [1, p. 62] T is continuous
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from έf into itself. In this way the converse part of Theorem 2 is es-
tablished.

The direct part also runs much as before. The sequence (hv) is
constructed again and will this time be bounded in g\ The limiting
measure μ exists, but it remains to show that μ satisfies (2.6) for some
n. This will follow as soon as it is shown that the hv lie in some gζ,
where n is fixed independent of v, and remain bounded in c£n. This
does not follow directly from the boundedness of (Av) in gf by virtue
of [2, p. 8, Proposition 6] since έf is not a strict inductive limit. Never-
theless the desired result can be proved as follows.

LEMMA. Let B be a bounded subset of %?. There exists an integer
n such that B C c<£n and B is bounded relative to the norm qn.

Proof. The dual of έf may be identified with the space & of
measurable functions φ on R+ which satisfy

rjψ)= ess sup | entφ(t) | < -f oo
t>0

for all n, the linear form associated with such a ψ is given by (3.2).
Since B is bounded in ĝ  the quantity

is finite for each φ in &. Now ^?, equipped with the seminorms rn(n^=
1, 2, •••), is a Frέchet space. Further Q is a seminorm on &ΐ which
is plainly lower semicontinuous, this last since Q is expressly defined
as the upper envelope of continuous seminorms. It follows from this
that Q is in fact continuous on &. This signifies precisely that there
is an integer n and a number C such that

for all ψ in :7J C is independent of φ. Thus

(" h(t)ψ(t)dt
Jυ

^L C ess sup
ί > 0

enιφ{t)

holds for all ψ in & and all h in 5. From this it is an easy deduction
that

for all h in B, which is the result stated.
This lemma permits the proof of Theorem 2 to be effected.
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5. Factor Operators on <K By a factor operator we shall mean
one which is defined via a factor function for the Laplace transformation.
The factor function F(p) is assumed to be defined on some half-plane
3ίp2>%, where n may depend on F, and to have the property that, for

each / in έf the function F(p) f(p) concides on some right-hand half-
plane with the transform g{p) of some r; in &. This g, whose existence
is postulated, is then unique. The corresponding factor operator T is
then defined by Tf=g.

Such a factor operator T plainly satisfies (OO, but continuity of T
is not at all obvious. The relation

(5.1) Tf*g=f*Tg,

which plays a crucial role on the above proofs, has hitherto been deduced
from (OO by means of continuity. In the case of a factor operator,
(5.1) is verifiable right from the start due to basic properties of the
Laplace transformation. This fact permits us to deduce continuity of
T and thus renders possible an appeal to Theorem 2.

As we shall now see, continuity of T will follow if (5.1) is known
to hold for all / and for all g of a quite restricted class, say G. For
this purpose we use again the generalised closed graph theorem. Ac-
cording to this, in order to show that T is continuous it will suffice to
show that: if a directed family {ft) converges to 0 in such a way that
Tft converges to a limit, say /, then / is necessarily 0. However, we
have seen in §4 that convolution is continuous in each factor, so that Tft

-> g implies Tf.L * g -+ f * g for each g in if. Assuming that g belongs
to G, (5.1) permits this to be written f.t *Tg-+f *g. Since /*->(), the
left member tends to 0. Hence / * # = 0 for all g in G. If this holds,
even for quite small classes G, it follows that / = 0 .

In this way we see from Theorem 2 that the factor functions F are
precisely those which are themselves Laplace transforms of measures
μ satisfying (2.6) for some n.

REFERENCES

1. N. Bourbaki, Elements de Mathematique, Espaces Vectoriels Topologiques, Chap. I—II
(Actual. Scient. et Ind., n° 1189, Paris, Hermann, 1953).
2. , Elements de Mathematique, Espaces Vectoriels Topologiques, chap. Ill—V
(Actual. Scient. et Ind., n° 1229, Paris, Hermann, 1955).
3. R. E. Edwards, On factor functions, Pacific J. Math. 5 (1955), 367-378.
4. Sir Harold Jeffreys and Lady Jeffreys, Methods of mathematical physics (3rd ed.
Cambridge, 1956).

BIRKBECK COLLEGE






