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1* Introduction, Let P^'a)(v) denote ultraspherical polynomials and
let

g=l-2vt 4-ί2,

with the roots to be those assuming the value 1 for έ=0. Then this
note will prove that

( 2 ) J

= Σ

+ 2α-c; , -, Γc, 1-4 2α-c; 1 -,

lΛ-a Z -i L \-\~a Δ J

)n & u \P^(v)tn ,
n L 1 + (Xf l 4 _ 2 α ; J

valid for t sufficiently small. In (2), c is an arbitrary parameter. Equa-
tion (2) is a direct generalization of Rice's result given in [8, equ. 2.14],
to which it reduces for α=0. (A different generalization of Rice's
result is given in [3].) For c the non-positive integer —k, the left side
of (2) reduces to a product of ultraspherical polynomials:

?**\r-y)

- π ι.9rγ\ I— n > ~k> l + Z

= Σ }n,FΛ u

In addition, this note will show other results on ultraspherical
polynomials. Further, it will provide a new way of deriving some results
of Weisner. These will be shown later.

The author desires to thank the referee for helpful suggestions re-
garding the simplification of proof.

2, A preliminary result• It will be established in this section
that
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~ (h) r ~ n > a> η r ~ ~ n , clf c2, - - , c p ; η
( 4 ) Σ - - f

n 2 ^ i x \p+iFq\ u\tn

- » , a; χ -j
" - " W n • • ( < ? , ) „ ( ! - « ) " « ! L b .xt

f o r

| ί | < l , \tul(l-t)\<l , xt + l-tφθ, p<^q.

Start with

r-k, a; Ί

(5) ( l - ί r ^ a r f + i - ί ) - ^ 1 " I
L 5 . 1 — t + xt J

, a;

δ (α?-l)(l-ί)

A ̂  tn rb + n+k> a'> Ύ 1

Multiply the first and last lines of (5) by

and sum on fc from 0 to ω, A shift of indices will then give equation
(4). The restrictions given insure the absolute convergence of the vari-
ous series which are multiplied together.

It should be here noted that (4) includes two results by Weisner as
special cases. See [7, equ's. 4.3 and 4.6]. The first follows from (4)
by taking

(7) p=l, (7=1, cx=dy dx=-b

and summing the result by Chaundy's equation 25 in [4].

The second Weisner result follows from (4) by taking

(8) p = 0 , (7=1, d^b,

and summing by the formula of Rainville as quoted in [5, p. 267, equ. 25].
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3 Proof of (2). The use of a quadratic transformation [6, p. 9]
on a standard form of the ultraspherical polynomials converts them
into

-w, α + 1/2;

2α + l

(Λ Λ-ΓV\ r — n, α + 1/2; Ί

«>*\x) = ( 1 + ")-»z-n

tF1\ 1 -z 2

with 2x=z + ljz. This is equivalent to a formula by Weisner [7, p.
1038]. Let

(10) v= l(2-x)(l-x)-^ , α-α + 1/2 , b=2a-hl ,
Li

replace t by t(l — x)~ιri in (4), and let w, g, y, r be defined by (1). Then
(4) becomes

(ii) Σ ( ; 1 - Γ P+I^J

n~Λ-ll2 V (Cl)w* * *\Cv)n n.nK*-
— y 2JΓ 7 T /~X~y

Λ-ott)» "

In (11), take

(12) p=2, g=2, d 1=

and apply the formula given in [2, equ. 17]. Result (2) above follows
immediately.

For an additional result from (11), take

(13) p = 0 , (7=2, di=

and use the result from Bateman [1], that

(14) ^ . ( - l + α; ^ ~ - • 1 ) ) β F 1 ( - l + α;

This gives

^ 1 } )(15) g"

_ f, (1 4- 2a)n



1322 FRED BRAFMAN

Two further results are obtainable from (11) on ultraspherical poly-
nomials. However they are both special cases of the results by Weisner
mentioned above, and so are merely presented here for completeness.
For the first, take in (11)

(16) p=(7=l , ^ = 1 + 20:, c^a,

and sum the result by [2, equ. (18)] to get

Γα/2, (a+ 1)12; ., 2 1 V 1

(17) g—^l-ywyjFA >y V
L 1 + a (l-2/w)-J

If a is a non-positive integer —k then (17) becomes

n L ι + a .

For the other result of Weisner's, in (11) take

(19) p = 0 , (7=1, ^ =

and sum to get:

(20) ^ - ^ e ^ o

= Σ i ^ ii

(l + ) -1 +2a
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