ON THE CONSTRUCTION OF R-MODULES AND RINGS WITH POLYNOMIAL MULTIPLICATION

Ross A. Beaumont and J. Richard Byrne

1. Introduction. Let R be a ring and let R^{+}be the additive group of R. If $R^{+}=S_{1} \oplus S_{2} \oplus \cdots \oplus S_{n}$ is a direct sum of subgroups S_{i}, then each element of R can be written as an n-tuple ($s_{1}, s_{2}, \cdots, s_{n}$), $s_{i} \in S_{i}$, $i=1,2, \cdots, n$, and multiplication in R is given by n mappings

$$
f_{k}: S_{1} \times S_{2} \times \cdots \times S_{n} \times S_{1} \times S_{2} \times \cdots \times S_{n} \rightarrow R^{+}, \quad k=1,2, \cdots, n
$$

where $f_{k}\left(s_{1}, s_{2}, \cdots, s_{n} ; t_{1}, t_{2}, \cdots, t_{n}\right)$ is the k-th component of the product $\left(s_{1}, s_{2}, \cdots, s_{n}\right) \cdot\left(t_{1}, t_{2}, \cdots, t_{n}\right)$. The distributive laws in R imply that the mappings f_{k} are additive in the first n and in the last n arguments. If $S_{1}, S_{2}, \cdots, S_{n}$ are ideals in R, then

$$
f_{k}\left(s_{1}, s_{2}, \cdots, s_{n} ; t_{1}, t_{2}, \cdots, t_{n}\right)=s_{k} t_{k}, \quad k=1,2, \cdots, n,
$$

which is a homogeneous quadratic polynomial with integral coefficients in the arguments.

If R is a commutative ring with identity, and if M is a free (left) R-module with basis $e_{1}, e_{2}, \cdots, e_{n}$, then M is an algebra over R if and only if there exist elements $\gamma_{i j k} \in R$ such that multiplication in M is defined by

$$
\left(\sum_{i=1}^{n} s_{i} e_{i}\right) \cdot\left(\sum_{j=1}^{n} t_{j} e_{j}\right)=\sum_{i, j, k=1}^{n} \gamma_{i \nless k} s_{i} t_{j} e_{k}
$$

The k-th coordinate of the product,

$$
f_{k}\left(s_{1}, s_{i}, \cdots, s_{n} ; t_{1}, t_{i}, \cdots, t_{n}\right)=\sum_{i, j=1}^{n} \gamma_{i j j_{i}} s_{i} t_{j}
$$

is a mapping

$$
f_{n}: \overbrace{R^{+} \times R^{+} \times \cdots \times R^{+}}^{2 n} \rightarrow R^{+}
$$

which is additive in the first n and last n arguments, and which is a homogeneous quadratic polynomial with coefficients in R in the arguments.

These examples suggest the investigation of polynomial mappings with the indicated additive properties, and a discussion of the problem of constructing R-modules and rings which have an additive group which is the direct sum of ideals of a ring R, and for which the multiplication

Received October 12, 1956. Presented to the Amer. Math. Soc. October 30, 1954.
is defined by a polynomial mapping.
In $\S 2$ the basic properties of distributive mappings are given. The form of a distributive polynomial mapping is investigated in §3, and such mappings are characterized in Theorem 2, under the assumption that R is a commutative integral domain. In $\S 4$ and 5 the results of the previous sections are applied to the construction problems mentioned above.
2. Distributive mappings. Let $S_{1}, S_{2}, \cdots, S_{k}$ be additive semi-groups with identity 0 , and let M be an additive abelian group. Let f be a mapping of $S_{1} \times S_{2} \times \cdots \times S_{k}$ into M.

Definition. If there exists an integer m, where $1 \leq m \leq k$, such that
(i) $\quad f\left(s_{1}+s_{1}^{\prime}, \cdots, s_{m}+s_{m}^{\prime} ; s_{m+1}, \cdots, s_{k}\right)$

$$
=f\left(s_{1}, \cdots, s_{n} ; s_{m+1}, \cdots, s_{k}\right)+f\left(s_{1}^{\prime}, \cdots, s_{m}^{\prime} ; s_{m+1}, \cdots, s_{k}\right),
$$

(ii) $\quad f\left(s_{1}, \cdots, s_{m} ; s_{m+1}+s_{m+1}^{\prime}, \cdots, s_{k}+s_{h}^{\prime}\right)$

$$
=f\left(s_{1}, \cdots, s_{m} ; s_{m+1}, \cdots, s_{k}\right)+f\left(s_{1}, \cdots, s_{m} ; s_{m+1}^{\prime}, \cdots, s_{k}^{\prime}\right),
$$

for all $s_{i}, s_{\imath}^{\prime} \in S_{i}, \quad i=1,2, \cdots, k$, the mapping f of $S_{1} \times S_{2} \times \cdots S_{h}$ into M is called m-distributive.

If $k=m$, only (i) of the definition applies, and the mapping f is a homomorphism of $S_{1} \oplus S_{2} \oplus \cdots \oplus S_{k}$ into M. In the examples given in the introduction, $k=2 n$, and the mappings are n-distributive.

The following are rather obvious consequences of the definition.
(1) The m-distributive mappings of $S_{1} \times S_{2} \times \cdots \times S_{k}$ into M form a subgroup H of the additive abelian group G of all mappings of $S_{1} \times S_{2} \times \ldots$ $\times S_{h}$ into M.

If M is a ring, then the set of mappings G is an M-module in the usual way, and the set of m-distributive mappings H is a submodule of G.
(2) The mappings in H satisfy the relation

$$
\begin{aligned}
& f\left(s_{1}, \cdots, s_{m} ; s_{m+1}, \cdots, s_{k}\right) \\
& \quad=\sum_{j=m+1}^{k} \sum_{i=1}^{m} f\left(0, \cdots, 0, s_{i}, 0, \cdots, 0 ; 0, \cdots, 0, s_{\jmath}, 0, \cdots, 0\right)
\end{aligned}
$$

for all $s_{i} \in S_{i}, i=1,2, \cdots, k$.
Statement (2) is proved by induction from (i) and (ii) of the definition.
(3) The mappings in H satisfy

$$
f\left(s_{1}, \cdots, s_{m} ; 0, \cdots, 0\right)=f\left(0, \cdots, 0 ; s_{m+1}, \cdots, s_{k}\right)=0
$$

for all $s_{i} \in S_{i}, i=1,2, \cdots, k$.
Statement (3) is a generalization of the fact that the distributive laws in a ring imply $a \cdot 0=0 \cdot a=0$.
3. Polynomial functions. Let $S_{1}, S_{2}, \cdots, S_{k}$ be subsemigroups (not necessarily distinct) of the additive group R^{+}of a ring R, all of which contain the element 0 of R. Let R^{*} be any ring containing R, and let

$$
f\left(x_{1}, x_{2}, \cdots, x_{1}\right)=\sum a_{j_{1} s_{2} \cdots j_{k}} x_{1}^{j_{1}^{1}} x_{2}^{i_{2}^{2}} \cdots x_{k}^{j_{k}} c
$$

be a polynomial in $R^{*}\left[x_{1}, x_{2}, \cdots, x_{i}\right]$. Then f defines a mapping of $S_{1} \times S_{2} \times \cdots \times S_{k}$ into R^{*} where

$$
f\left(s_{1}, s_{2}, \cdots, s\right)=\sum a_{j_{1} j_{2} \cdots \cdots j_{k}}, s_{1}^{s_{1} s_{2}^{\prime}} \cdots s_{k}^{j_{k}}, \quad s_{i} \in S_{i}, i=1,2, \cdots, k .
$$

The set S of all such mappings (polynomial functions) is a submodule of the left R^{*}-module G of all mappings of $S_{1} \times S_{2} \times \cdots \times S_{k}$ into R^{*}. As above, we let H be the set of m-distributive mappings of $S_{1} \times S_{2} \times \cdots \times S_{k}$ into R^{*}, so that H is a submodule of G. Consequently the set of mappings $H \cap S$ is a submodule of G.

Theorem 1. Each mapping $f \in H \cap S$ is defined by a polynomial of the form

$$
\begin{equation*}
f\left(x_{1}, x_{2}, \cdots, x_{k}\right)=\sum_{l=m+1}^{k} \sum_{i=1}^{m} \sum_{\substack{j_{j} \\ j_{i}, \nu_{i}=1 \\ \sum_{l} \leq t}}^{t-1} a_{j_{i}, l_{l}, x_{i}, x_{i}^{\prime} x_{i}^{\prime} x_{l}^{j_{2}}} . \tag{A}
\end{equation*}
$$

Proof. Let f be defined by a polynomial in $R^{*}\left[x_{1}, x_{2}, \cdots, x_{k}\right]$ of degree t. Since $f \in H$, we have by (2), Section 2

$$
\begin{aligned}
f\left(s_{1},\right. & s_{i}, \\
& \left.=\cdots, s_{k}\right) \\
& =\sum_{l=m+1}^{k} \sum_{i=1}^{m} f\left(0, \cdots, 0, s_{i}, 0, \cdots, 0 ; 0, \cdots, 0, s_{l}, 0, \cdots, 0\right) \\
& =\sum_{l=m+1}^{k} \sum_{l=1}^{m} \sum_{\substack{j_{i}, J_{l}=0 \\
j_{i}+j_{l} \leq l}}^{t} a_{0, \cdots, 0, j_{i}, 0, \cdots, 0, s_{l}, 0, \cdots, s^{j} s_{i}^{j} s_{l}^{j}}^{m}
\end{aligned}
$$

for all $s_{i} \in S_{i}, i=1,2, \cdots, k$. The latter expression can be written

$$
\begin{aligned}
& \sum_{l=m+1}^{k} \sum_{i=1}^{m} \sum_{\substack{j_{i}, j_{l}=1 \\
j_{i}+l_{l} \leq t}}^{t-1} a_{j}, \ldots, v, s_{i}, 0, \cdots, 0, s_{l}, 0, \cdots, o_{i}^{j} s_{l}^{j_{l}} s_{l}^{j_{l}} \\
& +\sum_{i=1}^{m} \sum_{j_{i}=1}^{t} a_{\nu, \cdots, 0, j_{i}, 0, \cdots, 0} s_{i}^{j_{i}}
\end{aligned}
$$

$$
+\sum_{l=m+1}^{l} \sum_{j_{l}=1}^{t} a_{0, \cdots, 0, j_{l}, 0, \cdots, 0} s_{l}^{j_{l}}+a_{0,0, \cdots, 0}
$$

By (3), Section 2,

$$
\begin{aligned}
& 0=f(0,0, \cdots, 0)=a_{0,0, \cdots, 0} ; \\
& 0=f\left(0, \cdots, 0, s_{i}, 0, \cdots, 0 ; 0, \cdots, 0\right)=a_{0,0, \cdots, 0}+\sum_{j_{i}=1}^{t} a_{0, \cdots, 0, j_{i}, 0, \cdots, 0} s_{i^{i}} \\
& =\sum_{j_{i}=1}^{t} a_{0, \cdots, 0, j_{i}, 0, \cdots, 0} s_{i}^{j_{i}}
\end{aligned}
$$

for all $s_{i} \in S_{i}, i=1,2, \cdots, m$;

$$
\begin{aligned}
0=f(0, \cdots, 0 ; 0, \cdots, & \left.0, s_{l}, 0, \cdots, 0\right) \\
& =a_{0,0}, \cdots, 0 \\
& =\sum_{\nu_{l}=1}^{t} a_{0, \cdots} a_{0, \cdots, 0, s_{l}, 0, \cdots, 0,0, s_{l}, 0, \cdots, 0} s_{l}^{j_{l}}
\end{aligned}
$$

for all $s_{l} \in S_{l} ; l=m+1, \cdots, k$. Denoting $a_{\nu, \cdots, 0, j_{i}, 0, \cdots, 0, j_{l}, 0, \cdots, 0}$ by $a_{j_{i}, j_{l}}^{(i, l)}$, we have

$$
f\left(s_{1}, s_{2}, \cdots, s_{k}\right)=\sum_{l=m+1}^{k} \sum_{i=1}^{m} \sum_{\substack{j_{i}, \nu_{l}=1 \\ j_{i}+j_{l} \leqq t}}^{t-1} a_{j_{i}, j_{l}}^{(i, l)} s_{i}^{j_{i}^{j} s_{l}^{j_{l}} l}
$$

for all $s_{i} \in S_{i}, i=1,2, \cdots, k$, which completes the proof.

The following examples show that for an arbitrary ring R, the converse of Theorem 1 does not hold, and that Theorem 1 is the best possible theorem in the sense that there exist rings for which every polynomial function defined by a polynomial of form (A) is m-distributive.

Example 1. Let $R=I$, the ring of ordinary integers, let $R^{*}=R$, and let $S_{1}=S_{2}=R^{+}$. Let $f: S_{1} \times S_{2} \rightarrow R$ be defined by $f\left(x_{1}, x_{2}\right)=x_{1}^{2} x_{2}$. Then f is defined by a polynomial of form (A) with $m=1$. However $f \notin H$ for $f(1+1 ; 1)=f(2,1)=4$, and $f(1 ; 1)+f(1 ; 1)=1+1=2$.

Example 2. Let R be the ring with additive group $R^{+}=\{u\}$, the cyclic group of order 9 , and with multiplication defined by $(i u) \cdot(j u)=3 i j u$. Then R is a commutative ring [2] such that $R^{3}=0, R^{2} \neq 0$.

Let f be any mapping of $S_{1} \times S_{2} \times \cdots \times S_{k}$ into an extension R^{*} of R, where $S_{1}, S_{2}, \cdots, S_{k}$ are any subsemigroups of R^{+}containing 0 , such that f is defined by a polynomial of form (A). Then

$$
\begin{aligned}
f\left(s_{1}, s_{2}, \cdots, s_{k}\right) & =\sum_{l=m+1}^{k} \sum_{i=1}^{m} \sum_{\substack{j_{i}, i_{l}=1 \\
j_{i}+j_{l} \leq t}}^{t-1} a_{j_{i}, j_{l}}^{(i, l)} s_{i}^{j_{i}} s_{l}^{j_{l}} \\
& =\sum_{j=m+1}^{k} \sum_{i=1}^{m} a_{1,1}^{(i, l)} s_{i} s_{l},
\end{aligned}
$$

since $R^{3}=0$. It is evident that f is m-distributive, that is, $f \in H \cap S$.
In the sequel we will be concerned with m-distributive polynomial mappings of $S_{1} \times S_{2} \times \cdots \times S_{k}$ into R. Since a polynomial with coefficients in an extension R^{*} of R may have its values in R, we obtain a larger class of mappings by allowing the coefficients of $f\left(x_{1}, x_{2}, \cdots, x_{k}\right)$ to be in $R^{*} \supseteqq R$. For example, polynomials with (ordinary) integral coefficients have values in R, and if R does not have an identity, we may consider the coefficients to be in an extension R^{*} of R. Moreover it is a consequence of the theorem that if R is an ideal in R^{*}, then f has values in R.

The following lemma is well known (see for example [6, pp. 65$66]$), but is given here in the form in which it is most useful for our purposes.

Lemma. Let

$$
f=\sum a_{\rho_{1}, j_{2}, \cdots, j_{k}} x_{1}^{j_{1}^{j} 1 x_{2}^{j} j_{2}^{j}} \cdots x_{k}^{j_{k}} \in R^{\star}\left[x_{1}, x_{2}, \cdots, x_{k}\right]
$$

where R^{*} is a commutative integral domain, and let f be of degree m_{i} in $x_{i}, i=1,2, \cdots, k$. Let $\left(s_{i}^{(1)}, s_{i}^{(2)}, \cdots, s_{i}^{\left(n_{i}\right)}\right)$ be a set of distinct elements of R^{*} where $n_{i}>m_{i}, i=1,2, \cdots, k$, such that $f\left(s_{1}^{\left(l_{1}\right)}, s_{2}^{\left(l_{2}\right)}, \cdots, s_{k}^{\left(k_{k}\right)}\right)=0$ for $l_{i}=1,2, \cdots, n_{i}, i=1,2, \cdots, k$. Then $f=0 \in R^{*}\left[x_{1}, x_{2}, \cdots, x_{k}\right]$.

Theorem 2. Let R^{*} be a commutative integral domain, let R be a subring of R^{*}, and let $S_{1}, S_{2}, \cdots, S_{k}$ be non-zero ideals in R. A mapping f from $S_{1} \times S_{2} \times \cdots \times S_{k}$ into R^{*} is in $H \cap S$ if and only if f is defined by a polynomial of the form

$$
\begin{equation*}
f\left(x_{1}, x_{2}, \cdots, x_{k}\right)=\sum_{l=m+1}^{k} \sum_{i=1}^{m} \sum_{s_{i}, s_{l}=0}^{r} a_{p^{s_{i}, w^{s} l}}^{(i, l)} i_{i}^{s_{i}} x_{l}^{\nu^{s_{l}}} \tag{B}
\end{equation*}
$$

when R has characteristic $p>0$, and by

$$
\begin{equation*}
f\left(x_{1}, x_{2}, \cdots, x_{k}\right)=\sum_{i=m+1}^{k} \sum_{i=1}^{m} a_{i l} x_{i} x_{l} \tag{C}
\end{equation*}
$$

when R has characteristic zero.

Proof. Let f be defined by a polynomial of form (B) when R has characteristic $p>0$. Then

$$
\begin{aligned}
& f\left(s_{1}+s_{1}^{\prime}, \cdots, s_{m}+s_{m}^{\prime} ; s_{m+1}, \cdots, s_{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=m+1}^{k} \sum_{i=1}^{m} \sum_{s_{i}, s_{l}=0}^{r} a_{p^{s} i, p^{s}, l}^{(i, l)}\left(s_{i}^{p^{s_{i}}}+s_{i}^{\prime p^{s} i}\right) s_{i}^{p^{s_{l}}} \\
& =f\left(s_{1}, \cdots, s_{m} ; s_{m+1}, \cdots, s_{k}\right)+f\left(s_{1}^{\prime}, \cdots, s_{m}^{\prime} ; s_{m+1}, \cdots, s_{k}\right) \text {, }
\end{aligned}
$$

so that f satisfies (i) of the definition for m-distributiveness. Similarly (ii) is satisfied, so that $f \in H \cap S$.

It is immediate that a mapping f defined by a polynomial of form (C) is m-distributive.

Conversely, we divide the proof into three parts.

1. R is infinite and has characteristic $p>0$.

If $f \in H \cap S$, then f is defined by a polynomial of form (A) by Theorem 1. Then we have for each $i(1 \leq i \leq m)$ and for each l ($m<l \leq k$),

$$
\begin{aligned}
& f\left(0+0, \cdots, s_{i}+s_{i}^{\prime}, \cdots, 0+0 ; 0, \cdots, s_{l}, \cdots, 0\right) \\
& =\sum_{\substack{j_{i}, j_{l}=1 \\
j_{i}+j_{l} \leq t}}^{t-1} a_{j_{i}, j_{l}}^{(i, l)}\left(s_{i}+s_{i}^{\prime}\right)^{j_{i}} s_{l}^{s_{l}} \\
& =f\left(0, \cdots, s_{i}, \cdots, 0 ; 0, \cdots, s_{l}, \cdots, 0\right) \\
& +f\left(0, \cdots, s_{i}^{\prime}, \cdots, 0 ; 0, \cdots, s_{l}, \cdots, 0\right) \\
& =\sum a_{j_{i}, j_{l}}^{(i, l)} s_{i}^{j_{i}} s_{l}^{j_{l}}+\sum a_{j_{i}, j_{l}}^{(i, l)} s_{i}^{j_{i}} s_{l}^{j_{l}},
\end{aligned}
$$

for all $s_{i}, s_{i}^{\prime} \in S_{i}, s_{l} \in S_{l}$. Therefore we have the identity

$$
\begin{align*}
& \sum_{j_{i}=2, j_{l}=1}^{t-1} a_{j_{i}, j_{l}}^{(i, l)}\left[\begin{array}{c}
j_{i} s_{i}^{j_{i}-1} s_{i}^{\prime}+\begin{array}{c}
j_{i}\left(j_{i}-1\right) \\
2!
\end{array} s_{i^{j_{i}-2}} s_{i}^{2}+\cdots
\end{array}\right. \tag{3.1}\\
& \left.+\begin{array}{c}
j_{i}\left(j_{i}-1\right) \\
2!
\end{array} s_{i}^{2} s_{i}^{j_{i}-2}+j_{i} s_{i}^{s_{i}^{\prime j_{i}-1}}\right] s_{l}^{s_{l} l}=0 .
\end{align*}
$$

Since R is an infinite integral domain, each ideal $S_{i} \neq 0$ is infinite. Therefore the polynomial in $R^{*}[x, y, z]$ which has the same coefficients as the above expression, vanishes for infinitely many values of each argument x, y, z in R^{*}. By the lemma, each coefficient is zero. Now the coefficient of $x^{j_{i}-r} y^{r} z^{j_{l}}\left(0<r<j_{i} ; 1<j_{i}<t ; 0<j_{l}<t\right)$ is $\binom{j_{i}}{r} a_{j_{i}, j_{l}}^{\left(i, l_{l}\right)}=0$. If j_{i} is not a power of p, then at least one of the binomial coefficients $\binom{j_{i}}{r}, r=1,2, \cdots, j_{i}-1$, is prime to p. Since R, and consequently R^{*}, has characteristic p, this implies that $a_{j_{i}, j_{l}}^{(i, l)}=0$, for j_{i} and j_{l} in the stipu-
lated ranges, whenever j_{i} is not a power of p.
Using (ii) of the definition of an m-distributive mapping, a similar argument shows that $a_{j_{i}, j_{l}}^{(i, l)}=0$ for $j_{i}=1,2, \cdots, t-1 ; j_{l}=2,3, \cdots, t-1$ whenever j_{l} is not a power of p.

Since the above argument holds for each i and each l, the polynomial of form (A) which defines f has all coefficients zero except for coefficients $a_{p^{i}, p_{l} s_{l}}^{(i, l)}, s_{i}=0,1,2, \cdots, s_{l}=0,1,2, \cdots$. Thus f is defined by a polynomial of form (B).
2. R is finite and has characteristic $p>0$.

Since R is a commutative integral domain, R is a finite field $G F\left(p^{n}\right)$ and each ideal $S_{i} \neq 0$ in R is R itself. Since $s^{\nu^{n}}=s$ for all $s \in R$, each polynomial function of $S_{1} \times S_{2} \times \cdots \times S_{k}$ into R^{*} is defined by a polynomial of form (A) of degree at most p^{n-1} in each argument. Since the degree in each argument is less than the number of elements in each $S_{i}=R$, the lemma can be applied to the identity 3.1 , and the proof of 1 . is valid in this case also.
3. R has characteristic zero.

Since R and each ideal $S_{i} \neq 0$ in R have infinitely many elements, the proof of 1 . can be followed to obtain

$$
\binom{j_{i}}{r} a_{j_{i} j_{l}}^{(i, l)}=0 \quad \text { and } \quad\binom{j_{l}}{r} a_{j_{i} j_{l}}^{(i,)_{l}}=0
$$

for j_{i}, j_{l}, and r in the ranges previously stipulated. Since R, and consequently R^{*}, has characteristic zero, this implies that $a_{j_{i}, j_{l}}^{(i, l)}=0$ except for $j_{i}=j_{l}=1$. Consequently f is defined by a polynomial of form (C).

The following result was obtained in the proof of the theorem.

Corollary. Let $R=G F\left(p^{n}\right)$ and R^{*} be a commutative integral domain containing R. A mapping f of

$$
\frac{k \text { terms }}{R \times R \times \cdots \times R}
$$

into R^{*} is in $H \cap S$ if and only if f is defined by a polynomial of form (B) with $r=n-1$.
4. Application to the construction of R-modules. Let $S \neq 0$ be an ideal in a ring R. The set of $(k-1)$-tuples $V=\left\{\left(s_{2}, s_{3}, \cdots, s_{k}\right), s_{i} \in S\right\}$ with equality, addition and left scalar multiplication defined componentwise is a left R-module. The group of the module is the direct sum

$$
\frac{k-1 \text { terms }}{S^{+} \oplus S^{+} \oplus \cdots \oplus S^{+}}
$$

For $r \in R, s_{i} \in S$, the i-th component $r s_{i}$ of the scalar product $r\left(s_{2}, s_{3}, \cdots, s_{k}\right)$ is a 1 -distributive polynomial function f of the arguments $r ; s_{2} s_{3}, \cdots, s_{k}$. In this section we characterize the most general polynomial function f for which $V=S^{+} \oplus S^{+} \oplus \cdots \oplus S^{+}$is an R-module, where R is a commutative integral domain with characteristic zero.

Now V is a left R-module if and only if there exists a mapping f from $R \times V$ into V which satisfies the module identities

$$
\begin{equation*}
f\left(r_{1}, v_{1}+v_{2}\right)=f\left(r_{1}, v_{1}\right)+f\left(r_{1}, v_{2}\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
f\left(r_{1}+r_{2}, v_{1}\right)=f\left(r_{1}, v_{1}\right)+f\left(r_{2}, v_{1}\right) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
f\left(r_{1} r_{2}, v_{1}\right)=f\left(r_{1}, f\left(r_{2}, v_{1}\right)\right) \tag{3}
\end{equation*}
$$

for every $r_{1}, r_{2} \in R$ and every $v_{1}, v_{2} \in V$. Denoting the components of $f(r, v)=f\left(r ; s_{2}, \cdots, s_{k}\right)$ by $f_{i}\left(r ; s_{2}, \cdots, s_{k}\right), i=2,3, \cdots, k$, we observe that f is given by a set of $k-1$ mappings f_{i} from

$$
\overbrace{R \times S \times S \times \cdots \times S}^{k \text { terms }}
$$

into $S \subseteq R$. Setting $R=S_{1}, S=S_{2}, \cdots, S=S_{k}$ to agree with the notation of the preceding sections, the identities $\left(\mathrm{M}_{1}\right)$ and $\left(\mathrm{M}_{2}\right)$ are just the conditions (i) and (ii) that each mapping f_{i} be 1-distributive. Interpreting M_{3} for the components f_{i} we have

$$
\begin{equation*}
f_{i}\left(r_{1} r_{2} ; s_{2}, \cdots, s_{k}\right)=f_{i}\left(r_{1} ; f_{2}\left(r_{2} ; s_{2}, \cdots, s_{k}\right), \cdots, f_{k}\left(r_{2} ; s_{2}, \cdots, s_{k}\right)\right) \tag{4.1}
\end{equation*}
$$

for every $r_{1}, r_{2} \in R$ and every $s_{i} \in S ; i=2,3, \cdots, k$.
We now assume that R^{*} is an ideal-preserving extension of R, that is, R^{*} is a ring containing R with the property that if S is an ideal in R, then S is an ideal in R^{*}. For example, there exists a ring with identity containing R which is an ideal-preserving extension of R. Let $f_{i}, i=2,3, \cdots, k$, be a mapping from $R \times V$ into R^{*} defined by a polynomial

$$
\begin{equation*}
f_{i}\left(x_{1} ; x_{2}, \cdots, x_{k}\right)=\sum a_{j_{1} j_{2}} \cdots j_{k} x_{1}^{j_{1}} x_{2}^{j_{2}^{2}} \cdots x_{k}^{j_{k}} \tag{4.2}
\end{equation*}
$$

with coefficients in R^{*}. Denote the system consisting of the group V and the mappings f_{i} defined by (4.2) by (V, f_{i}). We obtain the following application of Theorem 2.

Theorem 3. Let R^{*} be a commutative integral domain with characteristic zero which is an ideal-preserving extension of R. Then $\left(V, f_{i}\right)$ is a left R-module with scalar multiplication defined by $r \cdot\left(s_{2}, s_{3}, \cdots, s_{k}\right)=$ $\left(f_{2}, f_{3}, \cdots, f_{k}\right)$ if and only if each f_{i} is defined by a polynomial of the form

$$
\begin{equation*}
f_{i}\left(x_{1} ; x_{2}, \cdots, x_{k}\right)=\sum_{l=2}^{k} a_{l}^{(i)} x_{1} x_{l}, \quad a_{l}^{(i)} \in R^{*} \tag{4.3}
\end{equation*}
$$

such that the matrix $A=\left(a_{l}^{(i)}\right)$ is idempotent; that is $r \cdot\left(s_{2}, s_{3}, \cdots, s_{k}\right)=$ $r\left(s_{2}, s_{3}, \cdots, s_{k}\right) A^{\prime}$, where the right member is an ordinary matrix product in which A^{\prime} is the transpose of the matrix A.

Proof. If (V, f_{i}) is a left R-module, then by the foregoing discussion, the mappings f_{i} are 1-distributive polynomial mappings with values in $S \subseteq R^{*}$. By Theorem 2, with $S_{1}=R, S_{2}=S_{3}=\cdots=S_{k}=S$, and $m=1$, each f_{i} is defined by a polynomial of form (C)

$$
f_{i}\left(x_{1} ; x_{2}, \cdots, x_{k}\right)=\sum_{l=2}^{k} a_{1 l}^{(i)} x_{1} x_{l}=\sum_{l=2}^{k} a_{l}^{(i)} x_{1} x_{l}
$$

Since each f_{i} must satisfy the identity (4.1) we have

$$
\begin{aligned}
\sum_{l=2}^{k} a_{l}^{(i)}\left(r_{1} r_{2}\right) s_{l} & =\sum_{l=2}^{k} a_{l}^{(i)} r_{1}\left[\sum_{j=2}^{k} a_{j}^{(i)} r_{2} s_{j}\right] \\
& =\sum_{l=2}^{k} \sum_{j=2}^{k} a_{j}^{(i)} a_{l}^{(j)} r_{1} r_{2} s_{l}
\end{aligned}
$$

for every $r_{1}, r_{2} \in R$ and every $s_{l} \in S$. This implies $a_{l}^{(i)}=\sum_{j=2}^{k} a_{j}^{(i)} a_{l}^{(j)}$ or that the matrix $A=\left(a_{l}^{(i)}\right)$ is idempotent. Since

$$
f_{i}\left(r ; s_{2}, \cdots, s_{k}\right)=\sum_{l=2}^{k} a_{l}^{(i)} r s=r \sum_{l=2}^{k} a_{l}^{(i)} s_{l}
$$

we have $r \cdot\left(s_{2}, \cdots, s_{k}\right)=r\left(s_{2}, \cdots, s_{k}\right) A^{\prime}$ where the right member is an ordinary matrix product.

Conversely, it is readily observed that if f_{i} is defined by (4.3) with $A=\left(\alpha_{l}^{(i)}\right)$ idempotent, then f_{i} has values in S since S is an ideal in R^{*}, f_{i} is 1 -distributive, and f_{i} satisfies (4.1). Therefore $\left(V, f_{i}\right)$ is a left R module.

If we specialize to the case where $R=F$ is a field, we have $S_{2}=S_{3}$ $=\cdots=S_{k}=F$ and $R^{*}=F$, so that (V, f_{i}) is the group of $(k-1)$-tuples with elements in F for which scalar multiplication is defined by (4.2). Theorem 3 characterizes the $\left(V, f_{i}\right)$ which are F-modules, and we let (V, A) denote the F-module (V, f_{i}) with scalar multiplication defined by (4.3) where $A=\left(a_{i}^{(i)}\right)$ is idempotent. Let $E_{m}=\left(\begin{array}{cc}I_{m} & 0 \\ 0 & 0\end{array}\right)$, where $0 \leqq m \leqq k-1$. The following theorem completely classifies the F-modules $\left(V, f_{i}\right)$.

Theorem 4. The left F-module (V, A) is F-isomorphic to the F module $\left(V, E_{m}\right)$ for some $m, 0 \leq m \leq k-1$. Moreover $\left(V, E_{m}\right)$ is not F isomorphic to $\left(V, E_{n}\right)$ if $m \neq n$.

Proof. If A is similar to B, then (V, A) is F-isomorphic to (V, B). For in (V, A),

$$
r \cdot\left(s_{s}, s_{3}, \cdots, s_{k}\right)=r\left(s_{2}, s_{s}, \cdots, s_{k}\right) A^{\prime},
$$

and in (V, B),

$$
r \cdot\left(s_{2}, s_{3}, \cdots, s_{k}\right)=r\left(s_{3}, s_{3}, \cdots, s_{k}\right) B^{\prime}=r\left(s_{2}, s_{3}, \cdots, s_{k}\right) P A^{\prime} P^{-1}
$$

for some non-singular matrix P. The mapping φ defined by

$$
\varphi\left[\left(s_{2}, s_{3}, \cdots, s_{k}\right)\right]=\left(s_{2}, s_{3}, \cdots, s_{k}\right) P^{-1}
$$

is an F-isomorphism.
Since A is idempotent, A is similar to E_{m} for some $m, 0 \leqq m \leqq k-1$ [1, p. 88], which completes the proof of the first part of the theorem.

In (V, E_{m}),

$$
r \cdot\left(s_{2}, s_{3}, \cdots, s_{k}\right)=\left(r s_{2}, r s_{3}, \cdots, r s_{m+1}, 0, \cdots, 0\right),
$$

so that the submodule $1 \cdot\left(V, E_{m}\right)=\left(s_{2}, s_{3}, \cdots, s_{m+1}, 0, \cdots, 0\right)$ is the vector space over F of dimension m. Any F-isomorphism of (V, E_{m}) onto (V, E_{n}) induces an F-isomorphism of $1 \cdot\left(V, E_{m}\right)$ onto $1 \cdot\left(V, E_{n}\right)$, but if $m \neq n$ these submodules cannot be F-isomorphic since they are vector spaces of different dimensions over F.

Corollary. The F-modules (V, A) and (V, B) are F-isomorphic if and only if A and B have the same rank.

In the above discussion, the (V, f_{i}) were all $(k-1)$-tuples for a fixed k. We now consider $\left(V_{k}, f_{i}\right)$ and $\left(V_{l}, f_{i}\right), k \neq l$. By Theorem 4, it is sufficient to consider (V_{k}, E_{m}), $0 \leqq m \leqq k-1$ and (V_{l}, E_{n}), $0 \leqq n \leqq l-1$.

Theorem 5. The F-modules $\left(V_{k}, E_{m}\right)$ and (V_{l}, E_{n}) are F-isomorphic if and only if $m=n$ and either $k=l$ or F^{+}has infinite rank. ${ }^{1}$

Proof. Suppose first that φ is an F-isomorphism of (V_{k}, E_{m}) onto $\left(V_{l}, E_{n}\right)$. Then as in Theorem 4, $1 \cdot\left(V_{k}, E_{m}\right)$ and $1 \cdot\left(V_{l}, E_{n}\right)$ are F isomorphic vector spaces of dimension m and n respectively over F. Hence $m=n$. Assume that $k \neq l$, and let M and N be the submodules of (V_{k}, E_{m}) and (V_{l}, E_{m}) respectively which are annihilated by $1 \in F$. Then φ induces an isomorphism of M onto N as additive groups.

$$
M=\left\{\left(0, \cdots, 0, s_{m+1}, \cdots, s_{k-1}\right), s_{i} \in F\right\}=\overbrace{F^{+\oplus \cdots \oplus} \cdot F^{+}}^{k-1-m}
$$

[^0]and
$$
N=\left\{\left(0, \cdots, 0, s_{m+1}, \cdots, s_{l-1}\right), s_{i} \in F\right\}=\overbrace{F^{+} \oplus \cdots \oplus F^{+}}^{l-1-m} .
$$

If F^{+}has finite rank, then M and N have different rank, and are not isomorphic. Hence F^{+}has infinite rank.

Conversely, if $m=n$ and $k=l$, there is nothing to prove. Suppose, then, that $m=n$ and that F^{+}has infinite rank. Now $\left(V_{k}, E_{m}\right)=$ $1 \cdot\left(V_{k}, E_{m}\right) \oplus M$ and $\left(V_{l}, E_{m}\right)=1 \cdot\left(V_{l}, E_{m}\right) \oplus N$, where M and N each have the decomposition into a direct sum of copies of F^{+}given above. Since F^{+}has infinite rank, M and N have the same rank and are isomorphic as additive groups. But since F annihilates M and N, this isomorphism is an F-isomorphism. Finally, $1 \cdot\left(V_{k}, E_{m}\right)$ is F-isomorphic to $1 \cdot\left(V_{l}, E_{m}\right)$ since they are vector spaces of the same dimension.
5. Application to the construction of rings. As in the previous section, we let $S \neq 0$ be an ideal in a ring R and consider the set of n-tuples $V=\left\{\left(s_{1}, s_{2}, \cdots, s_{n}\right), s_{i} \in S\right\}$ with equality and addition defined componentwise. Now V is a ring if and only if there exists a mapping f from $V \times V$ into V which satisfies

$$
\begin{equation*}
f\left(v_{1}+v_{2}, v_{3}\right)=f\left(v_{1}, v_{3}\right)+f\left(v_{2}, v_{3}\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
f\left(v_{1}, v_{2}+v_{3}\right)=f\left(v_{1}, v_{2}\right)+f\left(v_{1}, v_{3}\right) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
f\left(f\left(v_{1}, v_{2}\right), v_{3}\right)=f\left(v_{1}, f\left(v_{2}, v_{3}\right)\right) \tag{3}
\end{equation*}
$$

for every $v_{1}, v_{2}, v_{3} \in V$.
Denoting the components of $f\left(v_{1}, v_{2}\right)=f\left(s_{1}, \cdots, s_{n} ; t_{1}, \cdots, t_{n}\right)$ by $f_{i}\left(s_{1}, \cdots, s_{n} ; t_{1}, \cdots, t_{n}\right), i=1,2, \cdots, n, f$ is given by a set of n mappings f_{i} from

$$
\overbrace{S \times S \times \cdots \times S}^{2 n \text { terms }}
$$

into $S \subseteq R$. The identities R_{1} and R_{2} are just the conditions (i) and (ii) that each mapping f_{i} be n-distributive. In this application, $k=2 n$, and $S_{i}=S, i=1,2, \cdots, k$ in the notation of $\S 2$. Interpreting R_{3}, the associative law, for the components f_{i}, we obtain

$$
\begin{align*}
& f_{i}\left(f_{1}\left(s_{1}, \cdots, s_{n} ; t_{1}, \cdots, t_{n}\right), \cdots, f_{n}\left(s_{1}, \cdots, s_{n} ; t_{1}, \cdots, t_{n}\right) ; u_{1}, \cdots, u_{n}\right) \tag{5.1}\\
= & f_{i}\left(s_{1}, \cdots, s_{n} ; f_{1}\left(t_{1}, \cdots, t_{n} ; u_{1}, \cdots, u_{n}\right), \cdots, f_{n}\left(t_{1}, \cdots, t_{n} ; u_{1}, \cdots, u_{n}\right)\right)
\end{align*}
$$

for every $s_{i}, t_{j}, u_{k} \in S$.
We assume that R^{*} is an ideal-preserving extension of R and that each $f_{i}, i=1,2, \cdots, n$ is defined by a polynomial

$$
\begin{equation*}
f_{i}\left(x_{1}, \cdots, x_{n} ; y_{1}, \cdots, y_{n}\right)=\sum a_{j_{1}} \cdots j_{n_{1}^{k}} \cdots k_{n} x_{1}^{i_{1}} \cdots x_{n}^{j_{n} n} y_{1}^{k_{1}} \cdots y_{n}^{k_{n}^{k}} \tag{5.2}
\end{equation*}
$$

with coefficients in R^{*}. Denote the system consisting of the group V and the mappings f_{i} defined by (5.2) by $\left(V, f_{i}, n\right)$. We obtain the following application of Theorem 2.

Theorem 6. Let R^{*} be a commutative integral domain which is an ideal preserving extension of R. Then $\left(V, f_{i}, n\right)$ is a ring with multiplication defined by $\left(s_{1}, \cdots, s_{n}\right) \cdot\left(t_{1}, \cdots, t_{n}\right)=\left(f_{1}, \cdots, f_{n}\right)$ if and only if each $f_{i}, i=1,2, \cdots, n$ satisfies (5.1) and is defined by a polynomial of the form

$$
\begin{equation*}
f_{i}\left(x_{1}, \cdots, x_{n} ; y_{1}, \cdots, y_{n}\right)=\sum_{l=1}^{n} \sum_{j=1}^{n} \sum_{s_{j}, s_{l}=0}^{r}{ }^{(i)} a_{s_{j}, s_{l}}^{(j, l)} x_{j}^{n^{s}} y_{l}^{s_{j}{ }^{s^{s}} l} \tag{5.3}
\end{equation*}
$$

or

$$
\begin{equation*}
f_{i}\left(x_{1}, \cdots, x_{n} ; y_{1}, \cdots, y_{n}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{j l}^{(i)} x_{j} y_{l} \tag{5.4}
\end{equation*}
$$

according as R has characteristic $p>0$ or 0 .
Proof. If (V, f_{i}, n) is a ring, then we have observed above that the mappings f_{i} are n-distributive mappings with values in $S \subseteq R^{*}$. Since the f_{i} are polynomial mappings into R^{*}, it follows from Theorem 2 , that they are defined by polynomials of form (B) or (C) according as the characteristic of R is $p>0$ or 0 . We have seen that the associative law implies (5.1).

Conversely, if multiplication in (V, f_{i}, n) is defined by $\left(s_{1}, \cdots, s_{n}\right)$. $\left(t_{1}, \cdots, t_{n}\right)=\left(f_{1}, \cdots, f_{n}\right)$, where each f_{i} is defined by (5.3) or (5.4) according as the characteristic of R is $p>0$ or 0 , then by Theorem 2, each f_{i} is n-distributive. Thus, multiplication in (V, f_{i}, n) is distributive with respect to addition. Since each f_{i} satisfies (5.1), multiplication is associative, and (V, f_{i}, n) is a ring.

Example 3. Let R be a field F with characteristic zero. Then $R^{*}=F, S=F$, and ($V, f, 1$) is the group F^{+}and the mapping f defined by $f(x ; y)=\sum a_{j k} x^{i} y^{k}, a_{j k} \in F$. By Theorem $6,(V, f, 1)$ is a ring with multiplication defined by $s \cdot t=\sum a_{j k} s^{j} t^{k}$ only if f is defined by $f(x ; y)=$ $a x y, a \in F$. If $a \neq 0,(V, f, 1)$ is isomorphic to F under the correspondence $s a^{-1} \leftrightarrow s$, so that we can conclude that the only non-trivial rings with additive group F^{+}and with multiplication defined by a polynomial function of $F \times F$ into F are fields isomorphic to F [3, p. 177].

Example 4. Let R be the finite field $G F\left(3^{2}\right)$. Then $R^{*}=G F\left(3^{2}\right)$,
$S=G F\left(3^{2}\right)$, and ($V, f, 1$) is a ring only if multiplication is defined by (see the Corollary to Theorem 2).

$$
s \cdot t=f(s ; t)=a_{00} s t+a_{01} s t^{3}+a_{10} s^{3} t+a_{11} s^{3} t^{3}, \quad a_{i j} \in G F\left(3^{2}\right) .
$$

Selecting $a_{00}=a_{10}=1, a_{01}=a_{11}=0, f(s ; t)=s t+s^{3} t$, and $f(s ; t)$ satisfies (5.1). Hence ($V, f, 1$) is a ring. Let ξ be the primitive eighth root of unity which generates the multiplicative group of $G F\left(3^{2}\right)$. Then $\xi^{2} \cdot 1=f\left(\xi^{2} ; 1\right)$ $=\xi^{2}+\xi^{6}=\xi^{2}\left(1+\xi^{4}\right)=0$. Hence $(V, f, 1)$ has zero divisors, and in this case we have an example of a non-trivial ring with additive group $G F\left(3^{2}\right)^{+}$ and with polynomial multiplication which is not isomorphic to $G F\left(3^{2}\right)$.

It should be remarked in conclusion, that when R has characteristic zero and (V, f_{i}, n) is a ring, the multiplication rule (5.4) is the same as that for an algebra over R^{*} (see Introduction); and if R^{*} has an identity, (V, f_{i}, n) can be regarded as a subalgebra of an ordinary algebra of dimension n over R^{*}. Hence the coefficients $a_{j l}^{(i)}$ of the polynomials f_{i} play the same role as the multiplication constants of an algebra, and the associative law (5.1) can be interpreted as a matrix identity [5, p. 294].

References

1. A. A. Albert, Modern Higher Algebra, Chicago, 1937.
2. Ross A. Beaumont, Rings with additive group which is the direct sum of cyclic groups, Duke Math. J., 15 (1948), 367-369.
3. and H. S. Zuckerman, A characterization of the subgroups of the additive rationals, Pacific J. Math. 1 (1951), 169-177.
4. Irving Kaplansky, Infinite Abelian Groups, University of Michigan Press, 1954.
5. C. C. MacDuffee, Modules and ideals in a Frobenius algebra, Monatsh. Math. Phys., 48 (1939), 293-313.
6. B. L. van der Waerden, Modern Algebra, New York, 1949.

[^0]: ${ }^{1}$ The additive group F^{+}of a field F of characteristic 0 is a divisible torsion-free group and therefore is the direct sum of α copies of the additive group of rational numbers. The cardinal number α, which is an invariant, is called the rank of $F^{+}[4, \mathrm{pp} .10-$ $11]$.

