ON THE CONSTRUCTION OF *R*-MODULES AND RINGS WITH POLYNOMIAL MULTIPLICATION

ROSS A. BEAUMONT AND J. RICHARD BYRNE

1. Introduction. Let R be a ring and let R^+ be the additive group of R. If $R^+ = S_1 \oplus S_2 \oplus \cdots \oplus S_n$ is a direct sum of subgroups S_i , then each element of R can be written as an n-tuple (s_1, s_2, \dots, s_n) , $s_i \in S_i$, $i=1, 2, \dots, n$, and multiplication in R is given by n mappings

$$f_k: S_1 \times S_2 \times \cdots \times S_n \times S_1 \times S_2 \times \cdots \times S_n \to R^+, \quad k=1, 2, \cdots, n$$

where $f_k(s_1, s_2, \dots, s_n; t_1, t_2, \dots, t_n)$ is the k-th component of the product $(s_1, s_2, \dots, s_n) \cdot (t_1, t_2, \dots, t_n)$. The distributive laws in R imply that the mappings f_k are additive in the first n and in the last n arguments. If S_1, S_2, \dots, S_n are ideals in R, then

$$f_k(s_1, s_2, \dots, s_n; t_1, t_2, \dots, t_n) = s_k t_k$$
, $k=1, 2, \dots, n$,

which is a homogeneous quadratic polynomial with integral coefficients in the arguments.

If R is a commutative ring with identity, and if M is a free (left) R-module with basis e_1, e_2, \dots, e_n , then M is an algebra over R if and only if there exist elements $\gamma_{i,jk} \in R$ such that multiplication in M is defined by

$$\left(\sum_{i=1}^n s_i e_i\right) \cdot \left(\sum_{j=1}^n t_j e_j\right) = \sum_{i,j,k=1}^n \gamma_{ijk} s_i t_j e_k$$
.

The k-th coordinate of the product,

$$f_k(s_1, s_2, \dots, s_n; t_1, t_2, \dots, t_n) = \sum_{i,j=1}^n \gamma_{ijk} s_i t_j$$

is a mapping

$$f_i \colon \overbrace{R^+ \times R^+ \times \cdots \times R^+}^{2n} \to R^+$$

which is additive in the first n and last n arguments, and which is a homogeneous quadratic polynomial with coefficients in R in the arguments.

These examples suggest the investigation of polynomial mappings with the indicated additive properties, and a discussion of the problem of constructing R-modules and rings which have an additive group which is the direct sum of ideals of a ring R, and for which the multiplication

Received October 12, 1956. Presented to the Amer. Math. Soc. October 30, 1954.

is defined by a polynomial mapping.

In § 2 the basic properties of distributive mappings are given. The form of a distributive polynomial mapping is investigated in § 3, and such mappings are characterized in Theorem 2, under the assumption that R is a commutative integral domain. In § 4 and 5 the results of the previous sections are applied to the construction problems mentioned above.

2. Distributive mappings. Let S_1, S_2, \dots, S_k be additive semi-groups with identity 0, and let M be an additive abelian group. Let f be a mapping of $S_1 \times S_2 \times \dots \times S_k$ into M.

DEFINITION. If there exists an integer m, where $1 \le m \le k$, such that

$$egin{align} (egin{align} & i \) & f(s_1 + s_1^{'}, \ \cdots, \ s_m + s_m^{'}; \ s_{m+1}, \ \cdots, \ s_k) \ \\ & = f(s_1, \ \cdots, \ s_m; \ s_{m+1}, \ \cdots, \ s_k) + f(s_1^{'}, \ \cdots, \ s_m^{'}; \ s_{m+1}, \ \cdots, \ s_k) \ , \end{array}$$

(ii)
$$f(s_1, \dots, s_m; s_{m+1} + s'_{m+1}, \dots, s_k + s'_k)$$

= $f(s_1, \dots, s_m; s_{m+1}, \dots, s_k) + f(s_1, \dots, s_m; s'_{m+1}, \dots, s'_k)$,

for all $s_i, s_i \in S_i$, $i=1, 2, \dots, k$, the mapping f of $S_1 \times S_2 \times \dots S_k$ into M is called m-distributive.

If k=m, only (i) of the definition applies, and the mapping f is a homomorphism of $S_1 \oplus S_2 \oplus \cdots \oplus S_k$ into M. In the examples given in the introduction, k=2n, and the mappings are n-distributive.

The following are rather obvious consequences of the definition.

(1) The *m*-distributive mappings of $S_1 \times S_2 \times \cdots \times S_k$ into M form a subgroup H of the additive abelian group G of all mappings of $S_1 \times S_2 \times \cdots \times S_k$ into M.

If M is a ring, then the set of mappings G is an M-module in the usual way, and the set of m-distributive mappings H is a submodule of G.

(2) The mappings in H satisfy the relation

$$f(s_1, \dots, s_m; s_{m+1}, \dots, s_k)$$

$$= \sum_{i=m+1}^k \sum_{i=1}^m f(0, \dots, 0, s_i, 0, \dots, 0; 0, \dots, 0, s_j, 0, \dots, 0)$$

for all $s_i \in S_i$, $i=1, 2, \dots, k$.

Statement (2) is proved by induction from (i) and (ii) of the definition.

(3) The mappings in H satisfy

$$f(s_1, \dots, s_m; 0, \dots, 0) = f(0, \dots, 0; s_{m+1}, \dots, s_k) = 0$$

for all $s_i \in S_i$, $i=1, 2, \dots, k$.

Statement (3) is a generalization of the fact that the distributive laws in a ring imply $a \cdot 0 = 0 \cdot a = 0$.

3. Polynomial functions. Let S_1, S_2, \dots, S_k be subsemigroups (not necessarily distinct) of the additive group R^+ of a ring R, all of which contain the element 0 of R. Let R^* be any ring containing R, and let

$$f(x_1, x_2, \dots, x_1) = \sum a_{j_1 j_2 \dots j_k} x_1^{j_1} x_2^{j_2} \dots x_k^{j_k}$$

be a polynomial in $R^*[x_1, x_2, \dots, x_n]$. Then f defines a mapping of $S_1 \times S_2 \times \dots \times S_k$ into R^* where

$$f(s_1, s_2, \dots, s_i) = \sum a_{j_1, j_2, \dots, j_k} s_1^{j_1} s_2^{j_2} \dots s_k^{j_k}, \quad s_i \in S_i, i=1, 2, \dots, k.$$

The set S of all such mappings (polynomial functions) is a submodule of the left R^* -module G of all mappings of $S_1 \times S_2 \times \cdots \times S_k$ into R^* . As above, we let H be the set of m-distributive mappings of $S_1 \times S_2 \times \cdots \times S_k$ into R^* , so that H is a submodule of G. Consequently the set of mappings $H \cap S$ is a submodule of G.

Theorem 1. Each mapping $f \in H \cap S$ is defined by a polynomial of the form

(A)
$$f(x_1, x_2, \dots, x_k) = \sum_{l=m+1}^k \sum_{i=1}^m \sum_{\substack{j_i, j_l=1 \\ j_j+j_l \le t}}^{t-1} a_{j_i j_l}^{(i,l)} x_i^{j_i} x_i^{j_l}$$

Proof. Let f be defined by a polynomial in $R^*[x_1, x_2, \dots, x_k]$ of degree t. Since $f \in H$, we have by (2), Section 2

$$\begin{split} f(s_1, s_2, & \cdots, s_k) \\ &= \sum_{l=m+1}^k \sum_{i=1}^m f(0, \cdots, 0, s_i, 0, \cdots, 0; 0, \cdots, 0, s_l, 0, \cdots, 0) \\ &= \sum_{l=m+1}^k \sum_{l=1}^m \sum_{\substack{j_i, j_i = 0 \\ j_i + j_j \le l}}^t a_{0_i, \dots, 0, j_i, 0, \dots, 0, j_l, 0, \dots, 0} s_i^{j_l} s_i^{j_l} \;, \end{split}$$

for all $s_i \in S_i$, $i=1, 2, \dots, k$. The latter expression can be written

$$\begin{split} \sum_{l=m+1}^{k} \sum_{i=1}^{m} \sum_{\substack{j_{l}, j_{l}=1 \\ j_{i}+j_{l} \leq l}}^{t-1} a_{0}, \dots, _{0, j_{l}, 0}, \dots, _{0, j_{l}, 0}, \dots, _{0} s_{i}^{j} i s_{i}^{j} l \\ + \sum_{l=1}^{m} \sum_{j_{l}=1}^{t} a_{0}, \dots, _{0, j_{l}, 0}, \dots, _{0} s_{i}^{j} l \end{split}$$

$$+\sum_{l=m+1}^{k}\sum_{j_{l}=1}^{t}a_{0,\ldots,0,j_{l},0,\ldots,0}s_{l}^{j_{l}}+a_{0,0,\ldots,0}$$
.

By (3), Section 2,

$$0 = f(0, 0, \dots, 0) = a_{0,0,\dots,0};$$

$$0 = f(0, \dots, 0, s_i, 0, \dots, 0; 0, \dots, 0) = a_{0,0,\dots,0} + \sum_{j_i=1}^{t} a_{0,\dots,0,j_i,0,\dots,0} s_i^{j_i}$$

$$= \sum_{j_j=1}^{t} a_{0,\dots,0,j_i,0,\dots,0} s_i^{j_i}$$

for all $s_i \in S_i$, $i=1, 2, \dots, m$;

$$0 = f(0, \dots, 0; 0, \dots, 0, s_l, 0, \dots, 0)$$

$$= a_{0,0,\dots,0} + \sum_{j_l=1}^t a_{0,\dots,0,j_l,0,\dots,0} s_l^{j_l}$$

$$= \sum_{j_l=1}^t a_{0,\dots,0,j_l,0,\dots,0} s_l^{j_l}$$

for all $s_l \in S_l$; $l = m+1, \dots, k$. Denoting $a_{0, \dots, 0, j_l, 0, \dots, 0, j_l, 0, \dots, 0}$ by $a_{j_l, j_l}^{(i,l)}$, we have

$$f(s_1, s_2, \cdots, s_k) = \sum_{l=m+1}^k \sum_{i=1}^m \sum_{\substack{j_l, j_l=1 \ j_i + j_l \le t}}^{t-1} a_{j_i, j_l}^{(i,l)} s_i^j i s_i^j l$$

for all $s_i \in S_i$, $i=1, 2, \dots, k$, which completes the proof.

The following examples show that for an arbitrary ring R, the converse of Theorem 1 does not hold, and that Theorem 1 is the best possible theorem in the sense that there exist rings for which every polynomial function defined by a polynomial of form (A) is m-distributive.

EXAMPLE 1. Let R=I, the ring of ordinary integers, let $R^*=R$, and let $S_1=S_2=R^+$. Let $f\colon S_1\times S_2\to R$ be defined by $f(x_1, x_2)=x_1^2x_2$. Then f is defined by a polynomial of form (A) with m=1. However $f\notin H$ for f(1+1;1)=f(2,1)=4, and f(1;1)+f(1;1)=1+1=2.

EXAMPLE 2. Let R be the ring with additive group $R^+ = \{u\}$, the cyclic group of order 9, and with multiplication defined by $(iu) \cdot (ju) = 3iju$. Then R is a commutative ring [2] such that $R^3 = 0$, $R^2 \neq 0$.

Let f be any mapping of $S_1 \times S_2 \times \cdots \times S_k$ into an extension R^* of R, where S_1, S_2, \cdots, S_k are any subsemigroups of R^+ containing 0, such that f is defined by a polynomial of form (A). Then

$$egin{align} f(s_1,\,s_2,\,\cdots,\,s_k) &= \sum\limits_{l=m+1}^k \sum\limits_{i=1}^m \sum\limits_{\substack{j_l,j_l=1 \ j_i+j_j \leq t}}^{t-1} a_{j_l,j_l}^{(i,l)} s_l^{j_l} s_l^{j_l} s_l^{j_l} \ &= \sum\limits_{j=m+1}^k \sum\limits_{i=1}^m a_{1,1}^{(i,l)} s_i s_l \ , \end{array}$$

since $R^3=0$. It is evident that f is m-distributive, that is, $f \in H \cap S$.

In the sequel we will be concerned with m-distributive polynomial mappings of $S_1 \times S_2 \times \cdots \times S_k$ into R. Since a polynomial with coefficients in an extension R^* of R may have its values in R, we obtain a larger class of mappings by allowing the coefficients of $f(x_1, x_2, \dots, x_k)$ to be in $R^* \supseteq R$. For example, polynomials with (ordinary) integral coefficients have values in R, and if R does not have an identity, we may consider the coefficients to be in an extension R^* of R. Moreover it is a consequence of the theorem that if R is an ideal in R^* , then f has values in R.

The following lemma is well known (see for example [6, pp. 65-66]), but is given here in the form in which it is most useful for our purposes.

LEMMA. Let

$$f = \sum a_{j_1, j_2, \dots, j_k} x_1^{j_1} x_2^{j_2} \cdots x_k^{j_k} \in R^*[x_1, x_2, \dots, x_k]$$

where R^* is a commutative integral domain, and let f be of degree m_i in x_i , $i=1, 2, \dots, k$. Let $(s_i^{(1)}, s_i^{(2)}, \dots, s_i^{(n_i)})$ be a set of distinct elements of R^* where $n_i > m_i$, $i=1, 2, \dots, k$, such that $f(s_1^{(l_1)}, s_2^{(l_2)}, \dots, s_k^{(l_k)}) = 0$ for $l_i=1, 2, \dots, n_i$, $i=1, 2, \dots, k$. Then $f=0 \in R^*[x_1, x_2, \dots, x_k]$.

THEOREM 2. Let R^* be a commutative integral domain, let R be a subring of R^* , and let S_1, S_2, \dots, S_k be non-zero ideals in R. A mapping f from $S_1 \times S_2 \times \dots \times S_k$ into R^* is in $H \cap S$ if and only if f is defined by a polynomial of the form

(B)
$$f(x_1, x_2, \dots, x_k) = \sum_{l=m+1}^k \sum_{i=1}^m \sum_{s_1, s_2=0}^r a_{p^{s_i}, p^{s_l}}^{(i,l)} x_i^{p^{s_i}} x_l^{p^{s_l}}$$

when R has characteristic p > 0, and by

(C)
$$f(x_1, x_2, \dots, x_k) = \sum_{l=m+1}^{k} \sum_{i=1}^{m} a_{il} x_i x_l$$

when R has characteristic zero.

Proof. Let f be defined by a polynomial of form (B) when R has characteristic p > 0. Then

$$egin{aligned} f(s_1+s_1',\, \cdots,\, s_m+s_m';\, s_{m+1},\, \cdots,\, s_k) \ &=\sum\limits_{l=m+1}^k\sum\limits_{i=1}^m\sum\limits_{s_i,\, s_l=0}^r a_{p^{S_i},p^{S_l}}^{(s_i,l)}(s_i+s_i')^{p^{S_l}}s_l^{p^{S_l}} \ &=\sum\limits_{l=m+1}^k\sum\limits_{i=1}^m\sum\limits_{s_i,\, s_l=0}^r a_{p^{S_i},p^{S_l}}^{(s_i,l)}(s_i^{p^{S_l}}+s_i'^{p^{S_l}})s_l^{p^{S_l}} \ &=f(s_1,\, \cdots,\, s_m;\, s_{m+1},\, \cdots,\, s_k)+f(s_1',\, \cdots,\, s_m';\, s_{m+1},\, \cdots,\, s_k) \;, \end{aligned}$$

so that f satisfies (i) of the definition for m-distributiveness. Similarly (ii) is satisfied, so that $f \in H \cap S$.

It is immediate that a mapping f defined by a polynomial of form (C) is m-distributive.

Conversely, we divide the proof into three parts.

1. R is infinite and has characteristic p > 0.

If $f \in H \cap S$, then f is defined by a polynomial of form (A) by Theorem 1. Then we have for each i $(1 \le i \le m)$ and for each l $(m < l \le k)$,

$$egin{aligned} f(0+0,\, &\cdots,\, s_i + s_i',\, &\cdots,\, 0 + 0;\, 0,\, &\cdots,\, s_i,\, &\cdots,\, 0) \ &= \sum\limits_{\substack{j_i,j_i=1\ j_i + j_i \leq t}}^{t-1} a_{j_i,j_i}^{(l,l)}(s_i + s_i')^{j_i} s_i^{j_l} \ &= f(0,\, &\cdots,\, s_i,\, &\cdots,\, 0;\, 0,\, &\cdots,\, s_i,\, &\cdots,\, 0) \ &+ f(0,\, &\cdots,\, s_i',\, &\cdots,\, 0;\, 0,\, &\cdots,\, s_i,\, &\cdots,\, 0) \ &= \sum\limits_{j_i,j_i} a_{j_i}^{(l,l)} s_i^{j_i} s_j^{j_i} + \sum\limits_{j_i,j_i} a_{j_i,j_i}^{(l,l)} s_i'^{j_i} s_i^{j_i} \,, \end{aligned}$$

for all s_i , $s_i' \in S_i$, $s_i \in S_i$. Therefore we have the identity

$$(3.1) \qquad \sum_{j_{i}=2,j_{i}=1}^{t-1} a_{j_{i},j_{i}}^{(i,l)} \left[j_{i} s_{i}^{j_{i}-1} s_{i}' + \frac{j_{i}(j_{i}-1)}{2!} s_{i}^{j_{i}-2} s_{i}^{2} + \cdots + \frac{j_{i}(j_{i}-1)}{2!} s_{i}^{2} s_{i}'^{j_{i}-2} + j_{i} s_{i} s_{i}'^{j_{i}-1} \right] s_{i}^{j_{i}} = 0 .$$

Since R is an infinite integral domain, each ideal $S_i \neq 0$ is infinite. Therefore the polynomial in $R^*[x, y, z]$ which has the same coefficients as the above expression, vanishes for infinitely many values of each argument x, y, z in R^* . By the lemma, each coefficient is zero. Now the coefficient of $x^{j_i-r}y^rz^{j_l}$ $(0 < r < j_i; 1 < j_i < t; 0 < j_i < t)$ is $\binom{j_i}{r}a^{(i,l)}_{j_i\cdot j_l} = 0$.

If j_i is not a power of p, then at least one of the binomial coefficients $\binom{j_i}{r}$, $r=1, 2, \cdots, j_i-1$, is prime to p. Since R, and consequently R^* , has characteristic p, this implies that $a_{j_p,j_l}^{(i,l)}=0$, for j_i and j_i in the stipu-

lated ranges, whenever j_i is not a power of p.

Using (ii) of the definition of an m-distributive mapping, a similar argument shows that $a_{j_l,j_l}^{(i,l)}=0$ for $j_i=1, 2, \dots, t-1$; $j_i=2, 3, \dots, t-1$ whenever j_i is not a power of p.

Since the above argument holds for each i and each l, the polynomial of form (A) which defines f has all coefficients zero except for coefficients $a_{p^s_i,p^s_i}^{(i,l)}$, $s_i=0, 1, 2, \cdots$, $s_i=0, 1, 2, \cdots$. Thus f is defined by a polynomial of form (B).

2. R is finite and has characteristic p > 0.

Since R is a commutative integral domain, R is a finite field $GF(p^n)$ and each ideal $S_i \neq 0$ in R is R itself. Since $s^{\nu^n} = s$ for all $s \in R$, each polynomial function of $S_1 \times S_2 \times \cdots \times S_k$ into R^* is defined by a polynomial of form (A) of degree at most p^{n-1} in each argument. Since the degree in each argument is less than the number of elements in each $S_i = R$, the lemma can be applied to the identity 3.1, and the proof of 1. is valid in this case also.

3. R has characteristic zero.

Since R and each ideal $S_i \neq 0$ in R have infinitely many elements, the proof of 1. can be followed to obtain

$$\binom{j_i}{r}a_{j_i,j_l}^{(i,l)}=0$$
 and $\binom{j_i}{r}a_{j_i,j_l}^{(i,l)}=0$,

for j_i , j_i , and r in the ranges previously stipulated. Since R, and consequently R^* , has characteristic zero, this implies that $a_{j_i,j_i}^{(i,i)}=0$ except for $j_i=j_i=1$. Consequently f is defined by a polynomial of form (C).

The following result was obtained in the proof of the theorem.

COROLLARY. Let $R = GF(p^n)$ and R^* be a commutative integral domain containing R. A mapping f of

$$\overbrace{R \times R \times \cdots \times R}^{k \text{ terms}}$$

into R^* is in $H \cap S$ if and only if f is defined by a polynomial of form (B) with r=n-1.

4. Application to the construction of R-modules. Let $S \neq 0$ be an ideal in a ring R. The set of (k-1)-tuples $V = \{(s_2, s_3, \dots, s_k), s_i \in S\}$ with equality, addition and left scalar multiplication defined componentwise is a left R-module. The group of the module is the direct sum

$$\underbrace{S^+ \oplus S^+ \oplus \cdots \oplus S^+}_{k-1}.$$

For $r \in R$, $s_i \in S$, the *i*-th component rs_i of the scalar product $r(s_2, s_3, \dots, s_k)$ is a 1-distributive polynomial function f of the arguments $r; s_2 s_3, \dots, s_k$. In this section we characterize the most general polynomial function f for which $V=S^+ \oplus S^+ \oplus \cdots \oplus S^+$ is an R-module, where R is a commutative integral domain with characteristic zero.

Now V is a left R-module if and only if there exists a mapping f from $R \times V$ into V which satisfies the module identities

$$(\mathbf{M}_1) \qquad f(r_1, v_1 + v_2) = f(r_1, v_1) + f(r_1, v_2) ,$$

$$(\mathbf{M}_{2}) f(r_{1}+r_{2}, v_{1})=f(r_{1}, v_{1})+f(r_{2}, v_{1}),$$

$$(M_3)$$
 $f(r_1r_2, v_1) = f(r_1, f(r_2, v_1))$

for every $r_1, r_2 \in R$ and every $v_1, v_2 \in V$. Denoting the components of $f(r, v) = f(r; s_2, \dots, s_k)$ by $f_i(r; s_2, \dots, s_k)$, $i = 2, 3, \dots, k$, we observe that f is given by a set of k-1 mappings f_i from

$$\underbrace{\frac{k \text{ terms}}{R \times S \times S \times \cdots \times S}}$$

into $S \subseteq R$. Setting $R = S_1$, $S = S_2$, ..., $S = S_k$ to agree with the notation of the preceding sections, the identities (M_1) and (M_2) are just the conditions (i) and (ii) that each mapping f_i be 1-distributive. Interpreting M_3 for the components f_i we have

$$(4.1) f_i(r_1r_2; s_2, \dots, s_k) = f_i(r_1; f_2(r_2; s_2, \dots, s_k), \dots, f_k(r_2; s_2, \dots, s_k))$$

for every $r_1, r_2 \in R$ and every $s_i \in S$; $i=2, 3, \dots, k$.

We now assume that R^* is an ideal-preserving extension of R, that is, R^* is a ring containing R with the property that if S is an ideal in R, then S is an ideal in R^* . For example, there exists a ring with identity containing R which is an ideal-preserving extension of R. Let f_i , $i=2, 3, \cdots, k$, be a mapping from $R \times V$ into R^* defined by a polynomial

$$(4.2) f_i(x_1; x_2, \cdots, x_k) = \sum_{j_1, j_2, \dots, j_k} x_1^{j_1} x_2^{j_2} \cdots x_k^{j_k}$$

with coefficients in R^* . Denote the system consisting of the group V and the mappings f_i defined by (4.2) by (V, f_i) . We obtain the following application of Theorem 2.

THEOREM 3. Let R^* be a commutative integral domain with characteristic zero which is an ideal-preserving extension of R. Then (V, f_i) is a left R-module with scalar multiplication defined by $r \cdot (s_2, s_3, \dots, s_k) = (f_2, f_3, \dots, f_k)$ if and only if each f_i is defined by a polynomial of the form

$$(4.3) f_i(x_1; x_2, \cdots, x_k) = \sum_{l=2}^k a_i^{(i)} x_1 x_l , a_i^{(i)} \in R^* ,$$

such that the matrix $A=(a_i^{(i)})$ is idempotent; that is $r \cdot (s_2, s_3, \dots, s_k) = r(s_2, s_3, \dots, s_k)A'$, where the right member is an ordinary matrix product in which A' is the transpose of the matrix A.

Proof. If (V, f_i) is a left R-module, then by the foregoing discussion, the mappings f_i are 1-distributive polynomial mappings with values in $S \subseteq R^*$. By Theorem 2, with $S_1 = R$, $S_2 = S_3 = \cdots = S_k = S$, and m=1, each f_i is defined by a polynomial of form (C)

$$f_i(x_1; x_2, \dots, x_k) = \sum_{l=2}^k a_{1l}^{(i)} x_1 x_l = \sum_{l=2}^k a_{l}^{(i)} x_1 x_l$$

Since each f_i must satisfy the identity (4.1) we have

$$egin{aligned} \sum_{l=2}^k a_l^{(i)} (r_1 r_2) s_l &= \sum_{l=2}^k a_l^{(i)} r_1 igg[\sum_{j=2}^k a_j^{(i)} r_2 s_j igg] \ &= \sum_{l=2}^k \sum_{j=2}^k a_j^{(i)} a_l^{(j)} r_1 r_2 s_l \; , \end{aligned}$$

for every r_1 , $r_2 \in R$ and every $s_i \in S$. This implies $a_i^{(i)} = \sum_{j=2}^k a_j^{(i)} a_i^{(j)}$ or that the matrix $A = (a_i^{(i)})$ is idempotent. Since

$$f_i(r; s_2, \dots, s_k) = \sum_{l=2}^k a_l^{(i)} r s = r \sum_{l=2}^k a_l^{(i)} s_l$$

we have $r \cdot (s_2, \dots, s_k) = r(s_2, \dots, s_k)A'$ where the right member is an ordinary matrix product.

Conversely, it is readily observed that if f_i is defined by (4.3) with $A = (a_i^{(i)})$ idempotent, then f_i has values in S since S is an ideal in R^* , f_i is 1-distributive, and f_i satisfies (4.1). Therefore (V, f_i) is a left R-module.

If we specialize to the case where R=F is a field, we have $S_2=S_3=\cdots=S_k=F$ and $R^*=F$, so that (V,f_i) is the group of (k-1)-tuples with elements in F for which scalar multiplication is defined by (4.2). Theorem 3 characterizes the (V,f_i) which are F-modules, and we let (V,A) denote the F-module (V,f_i) with scalar multiplication defined by (4.3) where $A=(a_i^{(i)})$ is idempotent. Let $E_m=\begin{pmatrix} I_m & 0 \\ 0 & 0 \end{pmatrix}$, where $0\leq m\leq k-1$.

The following theorem completely classifies the F-modules (V, f_i) .

THEOREM 4. The left F-module (V, A) is F-isomorphic to the F-module (V, E_m) for some $m, 0 \le m \le k-1$. Moreover (V, E_m) is not F-isomorphic to (V, E_n) if $m \ne n$.

Proof. If A is similar to B, then (V, A) is F-isomorphic to (V, B). For in (V, A),

$$r \cdot (s_2, s_3, \cdots, s_k) = r(s_2, s_3, \cdots, s_k)A'$$

and in (V, B),

$$r \cdot (s_1, s_3, \dots, s_k) = r(s_1, s_3, \dots, s_k)B' = r(s_2, s_3, \dots, s_k)PA'P^{-1}$$

for some non-singular matrix P. The mapping φ defined by

$$\varphi[(s_1, s_2, \dots, s_k)] = (s_1, s_2, \dots, s_k)P^{-1}$$

is an F-isomorphism.

Since A is idempotent, A is similar to E_m for some m, $0 \le m \le k-1$ [1, p. 88], which completes the proof of the first part of the theorem. In (V, E_m) ,

$$r \cdot (s_1, s_3, \dots, s_k) = (rs_1, rs_3, \dots, rs_{m+1}, 0, \dots, 0)$$

so that the submodule $1 \cdot (V, E_m) = (s_2, s_3, \dots, s_{m+1}, 0, \dots, 0)$ is the vector space over F of dimension m. Any F-isomorphism of (V, E_m) onto (V, E_n) induces an F-isomorphism of $1 \cdot (V, E_m)$ onto $1 \cdot (V, E_n)$, but if $m \neq n$ these submodules cannot be F-isomorphic since they are vector spaces of different dimensions over F.

COROLLARY. The F-modules (V, A) and (V, B) are F-isomorphic if and only if A and B have the same rank.

In the above discussion, the (V, f_i) were all (k-1)-tuples for a fixed k. We now consider (V_k, f_i) and (V_i, f_i) , $k \neq l$. By Theorem 4, it is sufficient to consider (V_k, E_m) , $0 \leq m \leq k-1$ and (V_l, E_n) , $0 \leq n \leq l-1$.

THEOREM 5. The F-modules (V_k, E_m) and (V_l, E_n) are F-isomorphic if and only if m=n and either k=l or F^+ has infinite rank.

Proof. Suppose first that φ is an F-isomorphism of (V_k, E_m) onto (V_l, E_n) . Then as in Theorem 4, $1 \cdot (V_k, E_m)$ and $1 \cdot (V_l, E_n)$ are F-isomorphic vector spaces of dimension m and n respectively over F. Hence m=n. Assume that $k \neq l$, and let M and N be the submodules of (V_k, E_m) and (V_l, E_m) respectively which are annihilated by $1 \in F$. Then φ induces an isomorphism of M onto N as additive groups.

$$M = \{(0, \dots, 0, s_{m+1}, \dots, s_{k-1}), s_i \in F\} = F + \underbrace{k-1-m}_{+ \bigoplus F}$$

¹ The additive group F^+ of a field F of characteristic 0 is a divisible torsion-free group and therefore is the direct sum of α copies of the additive group of rational numbers. The cardinal number α , which is an invariant, is called the rank of F^+ [4, pp. 10-11].

and

$$N = \{(0, \dots, 0, s_{m+1}, \dots, s_{l-1}), s_i \in F\} = \overbrace{F^+ \oplus \dots \oplus F^+}^{l-1-m}.$$

If F^+ has finite rank, then M and N have different rank, and are not isomorphic. Hence F^+ has infinite rank.

Conversely, if m=n and k=l, there is nothing to prove. Suppose, then, that m=n and that F^+ has infinite rank. Now $(V_k, E_m)=1 \cdot (V_k, E_m) \oplus M$ and $(V_l, E_m)=1 \cdot (V_l, E_m) \oplus N$, where M and N each have the decomposition into a direct sum of copies of F^+ given above. Since F^+ has infinite rank, M and N have the same rank and are isomorphic as additive groups. But since F annihilates M and N, this isomorphism is an F-isomorphism. Finally, $1 \cdot (V_k, E_m)$ is F-isomorphic to $1 \cdot (V_l, E_m)$ since they are vector spaces of the same dimension.

5. Application to the construction of rings. As in the previous section, we let $S \neq 0$ be an ideal in a ring R and consider the set of n-tuples $V = \{(s_1, s_2, \dots, s_n), s_i \in S\}$ with equality and addition defined componentwise. Now V is a ring if and only if there exists a mapping f from $V \times V$ into V which satisfies

(R₁)
$$f(v_1+v_2, v_3)=f(v_1, v_3)+f(v_2, v_3)$$

(R₂)
$$f(v_1, v_2+v_3)=f(v_1, v_2)+f(v_1, v_3)$$

(R₃)
$$f(f(v_1, v_2), v_3) = f(v_1, f(v_2, v_3))$$

for every v_1 , v_2 , $v_3 \in V$.

Denoting the components of $f(v_1, v_2) = f(s_1, \dots, s_n; t_1, \dots, t_n)$ by $f_i(s_1, \dots, s_n; t_1, \dots, t_n)$, $i=1, 2, \dots, n$, f is given by a set of n mappings f_i from

$$\underbrace{S \times S \times \cdots \times S}_{S \times S \times \cdots \times S}$$

into $S \subseteq R$. The identities R_1 and R_2 are just the conditions (i) and (ii) that each mapping f_i be *n*-distributive. In this application, k=2n, and $S_i=S$, $i=1, 2, \dots, k$ in the notation of § 2. Interpreting R_3 , the associative law, for the components f_i , we obtain

(5.1)
$$f_i(f_1(s_1, \dots, s_n; t_1, \dots, t_n), \dots, f_n(s_1, \dots, s_n; t_1, \dots, t_n); u_1, \dots, u_n)$$

= $f_i(s_1, \dots, s_n; f_1(t_1, \dots, t_n; u_1, \dots, u_n), \dots, f_n(t_1, \dots, t_n; u_1, \dots, u_n))$

for every s_i , t_j , $u_k \in S$.

We assume that R^* is an ideal-preserving extension of R and that each f_i , $i=1, 2, \dots, n$ is defined by a polynomial

(5.2)
$$f_i(x_1, \dots, x_n; y_1, \dots, y_n) = \sum_{j_1, \dots, j_n k_1, \dots, k_n} x_1^{j_1} \dots x_n^{j_n} y_1^{k_1} \dots y_n^{k_n}$$

with coefficients in R^* . Denote the system consisting of the group V and the mappings f_i defined by (5.2) by (V, f_i, n) . We obtain the following application of Theorem 2.

THEOREM 6. Let R^* be a commutative integral domain which is an ideal preserving extension of R. Then (V, f_i, n) is a ring with multiplication defined by $(s_1, \dots, s_n) \cdot (t_1, \dots, t_n) = (f_1, \dots, f_n)$ if and only if each $f_i, i=1, 2, \dots, n$ satisfies (5.1) and is defined by a polynomial of the form

(5.3)
$$f_i(x_1, \dots, x_n; y_1, \dots, y_n) = \sum_{l=1}^n \sum_{j=1}^n \sum_{s_j, s_j=0}^r {}^{(i)} a_{s_j, s_l}^{(j, l)} a_j^{s_j} y_l^{s_l},$$

or

(5.4)
$$f_i(x_1, \dots, x_n; y_1, \dots, y_n) = \sum_{l=1}^n \sum_{j=1}^n a_{jl}^{(i)} x_j y_l,$$

according as R has characteristic p > 0 or 0.

Proof. If (V, f_i, n) is a ring, then we have observed above that the mappings f_i are n-distributive mappings with values in $S \subseteq R^*$. Since the f_i are polynomial mappings into R^* , it follows from Theorem 2, that they are defined by polynomials of form (B) or (C) according as the characteristic of R is p > 0 or 0. We have seen that the associative law implies (5.1).

Conversely, if multiplication in (V, f_i, n) is defined by $(s_1, \dots, s_n) \cdot (t_1, \dots, t_n) = (f_1, \dots, f_n)$, where each f_i is defined by (5.3) or (5.4) according as the characteristic of R is p > 0 or 0, then by Theorem 2, each f_i is n-distributive. Thus, multiplication in (V, f_i, n) is distributive with respect to addition. Since each f_i satisfies (5.1), multiplication is associative, and (V, f_i, n) is a ring.

EXAMPLE 3. Let R be a field F with characteristic zero. Then $R^*=F$, S=F, and (V,f,1) is the group F^+ and the mapping f defined by $f(x;y)=\sum a_{jk}x^jy^k$, $a_{jk}\in F$. By Theorem 6, (V,f,1) is a ring with multiplication defined by $s\cdot t=\sum a_{jk}s^jt^k$ only if f is defined by f(x;y)=axy, $a\in F$. If $a\neq 0$, (V,f,1) is isomorphic to F under the correspondence $sa^{-1}\leftrightarrow s$, so that we can conclude that the only non-trivial rings with additive group F^+ and with multiplication defined by a polynomial function of $F\times F$ into F are fields isomorphic to F [3, p. 177].

EXAMPLE 4. Let R be the finite field $GF(3^2)$. Then $R^* = GF(3^2)$,

 $S=GF(3^2)$, and (V, f, 1) is a ring only if multiplication is defined by (see the Corollary to Theorem 2).

$$s \cdot t = f(s; t) = a_{00}st + a_{01}st^3 + a_{10}s^3t + a_{11}s^3t^3$$
, $a_{ij} \in GF(3^2)$.

Selecting $a_{00}=a_{10}=1$, $a_{01}=a_{11}=0$, $f(s;t)=st+s^2t$, and f(s;t) satisfies (5.1). Hence (V,f,1) is a ring. Let ξ be the primitive eighth root of unity which generates the multiplicative group of $GF(3^2)$. Then $\xi^2 \cdot 1 = f(\xi^2;1) = \xi^2 + \xi^6 = \xi^2(1+\xi^4)=0$. Hence (V,f,1) has zero divisors, and in this case we have an example of a non-trivial ring with additive group $GF(3^2)^+$ and with polynomial multiplication which is not isomorphic to $GF(3^2)$.

It should be remarked in conclusion, that when R has characteristic zero and (V, f_i, n) is a ring, the multiplication rule (5.4) is the same as that for an algebra over R^* (see Introduction); and if R^* has an identity, (V, f_i, n) can be regarded as a subalgebra of an ordinary algebra of dimension n over R^* . Hence the coefficients $a_{jl}^{(i)}$ of the polynomials f_i play the same role as the multiplication constants of an algebra, and the associative law (5.1) can be interpreted as a matrix identity [5, p. 294].

REFERENCES

- 1. A. A. Albert, Modern Higher Algebra, Chicago, 1937.
- 2. Ross A. Beaumont, Rings with additive group which is the direct sum of cyclic groups, Duke Math. J., 15 (1948), 367-369.
- 3. ——— and H. S. Zuckerman, A characterization of the subgroups of the additive rationals, Pacific J. Math. 1 (1951), 169-177.
- 4. Irving Kaplansky, Infinite Abelian Groups, University of Michigan Press, 1954.
- 5. C. C. MacDuffee, *Modules and ideals in a Frobenius algebra*, Monatsh. Math. Phys., **48** (1939), 293-313.
- 6. B. L. van der Waerden, Modern Algebra, New York, 1949.

University of Washington and Portland State College