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l Introduction. In his paper [19], S. Mazur stated two results
concerning real normed algebras. The first of these, which asserted
that the only normed division algebras over the real field were the real
field, the complex field, and the division ring of real quaternions, was
essentially proved by Gelfand in [10] and by Lorch in [17]. Elementary
proofs of that result have also been given by Kametani [13] and Torn-
heim [26], while generalizations in various directions have been given
by Kaplansky [16], Arens [4] and Ramaswami [23].

The second of the results given by Mazur was that a real normed
algebra such that ||a2/|| = ||a?|| \\y\\ for all x and y mnst again be isomor-
phic to the real field, the complex field, or the division ring of real
quaternions. This result was generalized in [8] by R.E. Edwards, who
showed that the same conclusion holds for a Banach algebra under the
weaker hypothesis that \\x\\ Har^lHl for all elements x which have in-
verses x'1. A. A. Albert has also obtained results in [1], [2] and [3]
similar to the second of Mazur's results.

In this paper, the second result of Mazur is generalized for certain
types of metric rings. It is shown in section 6 that such rings must
be division rings if the condition ||#2/|| = |M| I Ml for all x and y holds.
Similar results hold under the weaker assumption that ||a?|| Har^Hl for
every element x which has an inverse x"\ Under suitable additional
conditions on the metric rings under discussion, it is shown in § 7 that
the results just mentioned may be strengthened to assert that the ring
is not only a division ring but is isomorphic to the real field, the com-
plex field, or the division ring of real quaternions. Finally, the results
on metric rings are applied to real normed algebras to obtain the results
of Mazur and Edwards under weaker assumptions.

The author is deeply indebted to Professor E. R. Lorch of Columbia
University for his invaluable guidance in the preparation of this paper;
heartfelt thanks are also due to Professor Lorch and to Professor Leo
Zippin of Queens College for their kindness in reading and criticizing
the manuscript.

2. Topological rings, metric rings, regular and singular elements*
We shall first introduce some pertinent definitions and recall some ele-
mentary results concerning topological rings and metric rings. By a
topological ring is meant a structure R which is at once a Hausdorff
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space and a ring1 such that the applications (a, δ)->α-fδ and (a, b)~>ab
of RxR into R are continuous.

If R is any ring, then a real-valued function \\x\\ defined on R is
called a worm for R if it satisfies the following conditions:

( i ) ||0||—0 and | |α | |>0 for α^O,
(ii) ||α + 6 | |^ | |α | | + ||6|| for all a, δ e # ,
(iii) | | - α | | = |MI for all aeR,
(iv) ||α&||<*||α|| ||δ|| for all a,bsR. A norm for R is called an

absolute value for R if it satisfies the following condition, which is
clearly stronger than (iv):

(iv') ||αδ|HI|α|| ||δ|| for all a, beR.
By a metric ring (ring with absolute value) is meant a ring iϋ together
with a norm (absolute value) for R. In any metric ring R the function
eZ(#, 2/) = I |a?—2/H is a metric for i? and induces in the usual way a topo-
logy for R relative to which R becomes a topological ring. Every ring
admits as a norm the trivial function which takes the value 0 for the
zero element of the ring and the value 1 for all other elements in this
case the induced topology is of course the discrete topology. The trivial
norm is easily seen to be an absolute value for a ring if and only if
the ring contains no proper zero-divisors.

For a finite ring which contains at least two elements it may be
observed that the existence of an absolute value is possible only if the
ring is a field and the absolute value is the trivial norm. In general,
one might expect that the existence of an absolute value for a ring will
require rather special properties of that ring. In the case of real
normed algebras, for instance, S. Mazur stated in [19, second theorem]
that when the norm is an absolute value the algebra must be isomorphic
to the field of real numbers, the field of complex numbers, or the divi-
sion ring of real quaternions. We shall consider below metric rings
which satisfy various multiplicative restrictions on the norm such as
(iv'), and we shall show that the class of such rings is strongly limited.

By an isometry of a metric ring R into a metric ring Rλ is meant
a ring homorphism σ of R into Rλ such that ||<J#|| = |MI for all xeR;
clearly, σ is necessarily an isomorphism of R into Rx. A metric ring
Rλ is said to be an extension of the metric ring R provided that there
exist an isometry of R into RL. The notions of limit, convergent sequ-
ences, fundamental sequences, complete metric ring, and the completion
of a metric ring are introduced in the standard way and the usual pro-
perties of these notions are easily verified.

We now exhibit some metric rings, in each case taking the obvious
definitions for the operations of addition and multiplication when these
are not specified, and with the ordinary absolute value as the norm in

1 The rings in this paper are assumed to be associative and to possess a unit element, e,
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examples (l)-(5):
(1) The ring of rational integers.
(2) The field of rational numbers.
(3) The field 3ΐ of real numbers.
(4) The field & of complex numbers.
(5) The division ring d of real quaternions.
(6) The ring C{X) of all continuous complex-valued functions defin-

ed on the compact Hausdorff space X, with the norm given by
11/11 = sup \f{%)\, where the supremum is extended over allxe X.

(7) The ring & of all complex-valued functions which are defined
and continuous on the unit disc {ζ\ ICI^I} of the complex
plane and analytic over the interior, {CllCKl}> of that disc.
The norm is given by | |/ | | = sup |/(C)I> where the supremum
is taken for all ζ such that |Cl = l.

(8) The field Qp of rational numbers (where p is a fixed prime
number) with the norm defined by \\q\\=p~r, where r is the
uniquely determined integer such that q has a representation
q=pr{mln) with m and n integers prime to p.

(9) The field Pp of p-adic numbers, which is obtained as the com-
pletion of Qp of example (8).

(10) The ring C(?o of all real-valued functions which are defined on
the closed unit interval and for which the first n derivatives
exist and are continuous. In this case the norm is defined to be

where each supremum is extended over all x in the closed unit interval.
All of these rings except those of examples (2) and (8) are complete

metric rings; the norm is also an absolute value in all of these rings
except those of examples (6) when X contains at least two points, (7)
and (10).

The notions of {left, right) inverse of an element, {left, right)

regular elements, {left, right) singular elements, and the sets S\ Sr, S,

G\ Gr and G are introduced as in [24]. Clearly, G{G\ Gr) is the com-

plement of S{S\ Sr). It is easily verified that S=Sι \J Sr and G=Gτ Γ\ &'-

Also, Gι and Gr are multiplicative semigroups3 and G is a multiplicative

group with e as its identity element.
In many examples the distinction between left regular elements

and right regular elements disappears. For example, for a ring R
which has no proper idempotents it is true that Gι = Gr. For, if aeG1

2 A semi-group is understood to be a non-empty system which is closed relative to an
associative binary operation.
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and a'a=e, then aa' is an idempotent distinct from 0, so aa'=e and this

means that aeGr. Similarly, in a ring without proper nilpotents, Gι =
Gr. For, in such a ring all idempotents are central by Lemma 1 of [9],

so if aeG1 where a'a=e, then aa' is an idempotent and therefore
central. Thus,

aa'=a'a(aa')=a'(aa')a=(a'a){a'a)=e ,

so αeG r , whence GΊ=Gr.
If R is a topological ring, its group G of regular elements is the

union of a family of disjoint, maximal connected subsets,—the compo-
nents of G. The principal component, Gu is the component which con-
tains the unit element e. It may be shown that Gτ is an invariant
subgroup of G such that the cosets modulo Gι are the components of G.

Following Kaplansky [14] we call a topological ring a Q-ring if the
set G of its regular elements is an open set3. For a complete metric

ring it is well known that Gι, Gr and G are open sets so that Sι, Sr

and S are closed sets. This is shown in [18], [20] or [24] for the case
of Banach algebras, and the present result, which utilizes essentially
the same proof, may be found in [14]. Thus, every complete metric
ring is a Q-ring.

3 Generalized divisors of zero. In [25], G. Silov introduced the
concept of a generalized divisor of zero in a Banach algebra. A more
detailed study of this concept was presented by Rickart in [24] the
present development of a theory of generalized divisors of zero in a
metric ring follows closely the development presented in the latter paper,
although the possibility of multiplication by complex scalars permits

stronger results in the case of a Banach algebra. Silov's results demon-
strated the existence of generalized divisors of zero in any non-trivial
Banach algebra as a corollary he obtained the result of Mazur mentioned
above on Banach algebras with a norm which is an absolute value. Our
study of generalized divisors of zero leads in a similar way to a gener-
alization of Mazur's result to the case of certain types of metric rings.

DEFINITION. If a is any element of a metric ring we define Ί(a)=
inf (||αa?||/||a?||) and r(α)=inf (||ακι||/||a7||), where in each case the infimum
is taken as x ranges over the non-zero elements of the ring.

The results which follow are easily proven and in many cases follow
as in Rickart's paper.

3 Kaplansky,s definition is in terms of quasiregular elements, but is easily seen to be
equivalent to the present one in rings with unit element.
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LEMMA 1. (i) 0<J(α)<: | |α | | for any α; (ii) Ί(a)ϊ(b)<LΊ(ab)<\\a\\-ϊ{b)

for any a and b; (iii) \ϊ(a)~Ί(b)\<L\\a — b\\ for any a and δ.

COROLLARY. Ϊ(X) is a continuous function of x.

DEFINITION. ZΓ={α|ϊ(α)=0}, Zτ= {a\r(a) = 0} Z=ZΊ\JZr;

Hτ={a\l(a)>0}, Hr= {α|r(α)>0}; H=HTΓ\Hr.

It is easily observed that Z\Z\ Z) is the complement of Hι{Hr, H).

Since the corollary implies that Zι (and also Zr) is closed it follows that

Z=Zι\JZr is closed. Consequently, Hι, Hr and H are open.

An element of Zι(Zr, Z) is called a generalized left-divisor (right-
divisor, divisor) of zero. Clearly, a (left, right) zero-divisor is always a
generalized (left, right) divisor of zero. The converse, however, is not
always true. For example, let R1 be the metric ring consisting of the
same elements as the ring of example (7), but where the norm of an
element distinct from zero is taken as the maximum of 1 and the norm
as given in example (7). The topology of R1 is then the discrete topo-
logy. There are no proper zero-divisors in Rlf but the function /(£) =
C - l is a generalized left-divisor of zero in Rlf for if /W(C)=C" + CW~1 +
•••+1, then | | / n | | = rc + l, while | | // n | | = 2 since

( C - l X C + C 1 " 1 * + l ) = C ϊ + 1 - l

thus, | |// n | | / | |/ n | | = 2/(rc + l) for n = l, 2, ••-, so that ΪΓ(/) = 0 and / is a
generalized left-divisor of zero.

In [24] Rickart defines a left generalized null divisor to be an ele-
ment s such that there exists a sequence {zn} such that ||£n|[ = l for all
n, and such that szn -> 0. However, he notes that s is a left generalized
null divisor if and only if Z(s) = O. In a metric ring, it is clear that a
left generalized null divisor in the sense of Rickart satisfies the condi-
tion ϊ(s)=0 and is thus a generalized left-divisor of zero in the sense of
this paper. However, a generalized left-divisor of zero in the sense of
this paper need not be a left generalized null divisor in the sense of
Rickart; for example, the element / in the preceding paragraph is a
generalized left-divisor of zero in Rl9 but if there were a sequence {gn}
of Rλ with ||sU| = l for all n and with fgn -> 0, then for n large fgn

would be zero since Ri is discrete, and, since Rγ has no proper zero-
divisors, either / or gn would be zero, and this is clearly impossible, so
/ can not be a left generalized null divisor in the sense of Rickart's
definition.

It is nevertheless true that for many metric rings the concepts of
4 For brevity, right-sided results are often omitted.
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left generalized null divisor as defined by Rickart and that of generalized
left-divisor of zero as employed in this paper coincide. One can easily
show, for instance, that this is the case in a metric ring R such that
for any element a distinct from zero there is an element b of s&(R)
(this set is introduced later in §5) such that ||α|| ||δ|| = l. It follows
also that the concepts coincide in a metric ring R such that for every
positive real number r there is an element b of &(R) such that ||δ|| = r.
In particular, this condition holds in any Banach algebra, so that the
two concepts coincide in any Banach algebra, as Rickart showed.

If Rz is the ring of elements of Rλ but with the norm taken such
that IMI = 1 for any g distinct from zero, then R2 is also discrete, so
that the topological rings which underlie Rι and Rλ are identical. How-
ever, the element / defined above is a generalized left-divisor of zero
in Ru but not in Rz, for the norm of Rz is an absolute value, whence

||αa?||/||#||==||(i|| for all non-zero x in Rλy so Γ(α)= ||α|| for any a in Rz, and
consequently Rz can not contain any generalized left-divisors of zero
different from zero. This shows that the notion of generalized left-
divisors of zero is not a purely topological notion. In particular, this
concept differs from that of a topological zero-divisor as defined, for
example, in [15]. For, while it is easily shown that a topological left
zero-divisor in a metric ring is necessarily a generalized left-divisor of
zero, the converse is not true since otherwise the element / of Rx would
be a topological left zero-divisor in Rι and hence in Rz and hence a
generalized left-divisor of zero in Rlt

LEMMA 2. (i) // beZτ, then abeZτ for any a. (ii) IfabeZT,

then aeZT or beZ\

LEMMA 3. ZTCSΓ, ZrC.Sr, ZC.S, GτC.H\ GrC.Hr and GC.H.

Lemma 3 shows that the sets Hι, Hr and H are not empty and
contain in fact all regular elements. It is also clear that the zero ele-
ment belongs to the sets Zι, Zr and Z\ but in many instances these sets
contain no element other than zero. For example, the metric rings of
examples (l)-(5) possess no generalized divisors of zero other than the
zero-element. However, for a complex Banach algebra distinct from K,

G. Silov showed in [25, lemma] that there always exist generalized
divisors of zero distinct from the zero-element.5 The results which fol-
low give conditions under which certain types of metric rings contain
nonzero generalized divisors of zero.

LEMMA 4. For any metric Q-ring, H is the union of the disjoint
open sets G and Sf}H.

5 See also the remark by Lorch in [17].
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LEMMA 5. Let R be a metric Q-ring. Let {an} be a sequence of
regular elements of R which converges to an element a in R. If the
sequence {an~

λ} is bounded,6 then a is a regular element.

THEOREM 1. If R is a metric Q-ring, then1 [G] Γ\SC.ZTΓ\ Zr. If in
addition, R(~ΰ) is connected* then either R is a division ring or Z contains
an element distinct from zero.

Proof. The first statement follows as in Rickart's paper.
If R is not a division ring, then the closed set S meets R(o). Also,

the closed set [G] meets β ( ϋ ), and R(^CZ[G]US. If # ( ϋ ) is connected,
then R(o) Γ\[G]f^S is not empty, so [G] Γ\ S contains an element distinct

from zero. It follows that Zι (\ Zr contains a nonzero element, so Z also
contains a nonzero element.

4. Proper rings. Lemma 3 asserts that the inclusion ZCZS always
holds. Thus, every generalized divisor of zero is a singular element,
although, as we see below, a singular element need not be a generalized
divisor of zero. Indeed, the generalized divisors of zero possess the
special property of permanent singularity; that is, a generalized divisor
of zero does not acquire an inverse in any extension of the given ring
since it is still a generalized divisor of zero and hence singular in that
extension. In the ring 2$ of example (7), the function /(£)==£ is a
singular element, but the ring C(X), where X is the unit circle of the
complex plane, is readily seen to be an extension of & in which / is
a regular element.8 Thus, / is not a permanently singular element of
& and so / is not a generalized divisor of zero in ^ even though /
is a singular element of &. Thus, the inclusion ZCZS may be a proper
inclusion.

DEFINITION. A metric ring R is said to be proper provided that
Z=S, or, equivalently, that H=G.

The preceding discussion shows that even a complete metric ring
which is connected and locally connected need not be proper; for ex-
ample, £2? is not proper. However, many metric rings are proper, in-
cluding any ring C(X) of example (6). We see that a proper ring is a
division ring if and only if there are no generalized divisors of zero
other than zero. In particular, a proper ring with absolute value can
have no generalized divisors of zero except zero and is therefore a divi-

6 A set A is said to be bounded if there is a number Msuch that ||α|j<^ikf for all a in A.
7 If A is any set, the symbols [A\ and A^o) denote the topological closure of A and

the set of non zero elements of A, respectively.
8 Compare [24].
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sion ring. We shall give below some sufficient conditions for a metric
ring to be proper; these conditions, in combination with the existence
of an absolute value or with some other multiplicative restriction on the
norm, will imply that the ring must be a division ring.

THEOREM 2. If R is a metric Q-ring such that H is connected, then
R is proper.

THEOREM 3. If R is a metric Q-ring (complete metric ring) such
that S is nowhere dense (of first category), then R is proper.

Proof. Either hypothesis of Theorem 3 insures that S is a closed
set. Also, either hypothesis implies that S is nowhere dense, for if S
is assumed to be of first category in a complete metric ring, then S is
nowhere dense since a closed set of a complete metric space is of first
category if and only if it is nowhere dense. The proofs of these two
theorems then follow as in [24].

It must be noted that the hypothesis of completeness is needed
where it occurs in Theorem 3. For, let R be the set of all functions /
which belong to the ring & of example (7) and for which /(0) is a
rational number. It is easily seen that R is a metric Q-ring but is not
complete. Also, R is of first category, so the set S for R is also of
first category. However, R is not proper, for it contains the singular
element /(£)=£, which is not a generalized divisor of zero, as was
noted at the beginning of this section.

DEFINITION. If R is any ring, then by an involution of R is meant
a mapping a —• α* of R into itself such that:

( i) (α + δ)ie = α* + 6* for all a,beR,
(ii) (α&)*=6*α* for all α, beR,
(iii) (α*)*=α for all aeR.

That is, an involution of R is an anti-automorphism of period two. For
a given involution of R, an element a is said to be self-adjoint provided
that α* = α.

For (£, for instance, the mapping which associates with each com-
plex number its complex conjugate is an involution. Similarly, the
mapping which associates with each quaternion its conjugate is an in-
volution of Π. In both cases the self-adjoint elements are simply the
real numbers. In the case of the ring of all bounded linear operators
on a Hubert space, the mapping which associates with each operator its
adjoint is an involution, and the self-adjoint elements are of course the
self-adjoint operators. Thus, many rings admit at least one involution.
For metric rings, one is naturally interested in the involutions which
are closely related to the metric or topological structure of the ring.
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DEFINITION. An involution α-^α* of a metric ring R is said to be
bounded provided that there is a positive constant β such that ||α*||<I
β\\a\\ for all a. An involution a->a* of a metric ring R is said to be
real if no self-adjoint element is an interior point of the set of singular
elements.

The involutions described above are all bounded and real, if in the
case of the ring of all bounded linear operators on a Hubert space we
take as the norm of an element its bound as an operator.

These definitions differ from the corresponding definitions of Rickart
in [24] by the omission of the mention of scalars in the present defini-
tions. Thus, the identity mapping of the field K onto itself is a real
and bounded involution in the present sense but is not even an involu-
tion in the sense of Rickart, since the image of i l, where i is a scalar,
should be ( — i)l but is i l.

For a complex Banach algebra, an involution which is real in the
sense of Rickart is also real in the present sense. For, let an involu-
tion be real in the sense of Rickart. Then, for any self-adjoint element
a the spectrum of a is real. If {λn} is a sequence of non-real complex
numbers which converges to zero, then {a — λn-e} is a sequence which
converges to α. Since the λn are not in the spectrum of a, it follows
that a — λn e is regular for all n. This shows that a is the limit of a
sequence of regular elements and hence is not in the interior of S.
Thus, the involution is real in the present sense.

The identity mapping of the ring & of example (7) is clearly a
bounded involution relative to which all elements are self-adjoint. But
the function f(ζ)=Ξζ is a singular element of &, and Rouche's Theorem
implies that any element of £?r whose distance from / is less than 1
is also a singular element; thus, the set of singular elements of 22 has
a nonempty interior and contains the self-adjoint element /. The in-
volution in question is consequently not real even though it is bounded.

There are also real involutions which are not bounded. For example,
let R be the field obtained by adjoining x and y to a given field F, so
that R consists of rational expressions in x and y with coefficients in F.
If P{x, y) is any irreducible polynomial belonging to F[x, y], then each
element of R may be represented in the form φ=Pμ -M!N, where M
and N are elements of F\x, y\ which are not divisible by P, and where
μ is a uniquely determined integer which depends only upon φ and P.
If ||^|| = 2~μ where μ is the integer which corresponds to φ, then R be-
comes a metric ring relative to this norm. The involution of R which
maps an expression f(x, y) onto f(y, x) is clearly real since R is not
discrete and the only singular element of R is 0. In case P(x, y) does
not divide P(y, x), let Q{x, y)=P(y, x), so for any natural number n
we have ||PΛ|[ = 2-n, while ||Qre|| = l. But Qn is the image of Pn relative
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to the involution, and ||Qn | |/||i3n |)=2w, so that the involution is not
bounded, although it is real.

For an involution to be both real and bounded, the metric ring in
question must be proper, as the theorem which follows shows.

LEMMA 6. If a -+ a* is a bounded involution of the metric ring R,

then (Zψ=Zr and (Zr)* = ZΓ.»

Proof. If | |α*||^j9||α|| for all α e # , then ||α|| = | |α** | | ^^ | |α* | | for
all α, so that

for all nonzero x. Thus, l(a)<LfPr(a*), so α* e Zr implies ae Zι. That is,

(ZψCZτ, while, similarly, (ZψC.Zr. Taking images relative to the

involution, we obtain ZrCZ(Zψ and Zι(Z(Zr)*. By combining the four
inclusions, we obtain the desired results.

THEOREM 4. If R is a metric Q-ring which admits a real, bounded
involution, then R is proper.

Proof. Let a -> α* be a real, bounded involution of R. If ae Sι,

then a* aeSι and α* α is self-ad joint. Since the involution is real,

α* oe[G], Thus, α* ae [G] f\S. Theorem 1 implies that α* αeZΓΓ\Zr.

Since α* αeί/ ί, we may conclude from Lemma 2 that a* e ZΊ or aeZ1.

That is, ae(ZΓ)*=Zr or aeZ\ so aeZ=Zr{JZr. This shows that S 7 C

Z. Similarly, SrC.Z, whence S=SΊ\JSrc:Z. But ZC.S by Lemma 3,

so Z=S, and iϋ is thus proper.

5, The sets -S^(R), ^ ( R ) , ^ and 2^\ We shall now introduce
some sets which measure to some extent how closely the norm of a
given metric ring resembles an absolute value.

DEFINITION. The norm of a metric ring is said to be multiplicative
on a set A if ||α&|| = ||α|| ||6|| for all α, be A. (Thus, an absolute value
is simply a norm which is multiplicative on the entire ring.) By a μ-
group is meant a multiplicative group contained in a metric ring and on
which the norm of the ring is multiplicative.

DEFINITION. If R is a metric ring, J5f(R)={a\aeR, \\ax\\=\\a\\\\x\\
9 If A is a set in a ring with involution a -> α*, then the set of all α*, where α is in

A, is denoted by ^4*. Note that the statement of the corresponding lemma in [24J assumes,
but does not use, a real involution.
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for all xeR} and &(R)={a\a e R, \\xa\\ = \\x\\\\a\\ for all xeR}.

LEMMA 7. If R is a metric ring, then:

( i ) α e J2^(R) if and only if Γ(α) = | |α| | ;
( i i ) Oe^(R);
(iii) if ^7(R)Φ {0} then ||e|| = l ;
(iv) es ^ζf(R) if and only if ||e|| = l ;
(v) J2^(R) is a closed set and a multiplicative semigroup;
(vi) if a, abe^f(R) where α^O, then be^f(R).

Proof. If aeS^(R), then ||αa?||/||a?|| = ||α|| for all x^O, so ϊ(a) = \\a\\.

Conversely, if ί(α)=||α|| then ||α||-=Z(α)<;|iαx||/||^|| for any x^O, so

IMI IMIί>J|β#ll f° r a n y χ> whence aeS^{R).

Clearly, 0eJ2^(R). Also, ί(e) = l, and since eeJy (R) if and only if

Γ(e)=||e||, it follows that ee 2^(R) if and only if ||e|| = l. If S2\R) con-

tains an element α^O, then ||α|| = ||αe|| = ||α|| ||β||, whence ||e|| = l.
ί/P(R) is the set where the continuous function \\x\\ — l(x) vanishes,

so ^(R) is a closed set. If a, be J2f{R) then

This showsby Lemma 1 (i) and (ii), so \\ab\\=l{ab)} whence abe J
that /{R) is a multiplicative semigroup.

Finally, if a and ab belong to ^(R) and α^O, then

so ||δ|| |MHIIMI for any x, whence b
The sets J^f(R) and &(R) measure the extent to which the norm

resembles an absolute value. Indeed, it is easily seen that the norm of
R is an absolute value if and only if ^P(R)=R. For the ring C(X) of
example (6) the sets J2^(R) and &(R) coincide and consist of all func-
tions whose absolute value is a constant function. The elements of
J2(R) in this case are then regular or equal to zero. In general, it
will be useful to consider the set of regular elements of

DEFINITION. In a metric ring for which ||e|| = l, let

and

DEFINITION. If A is any subset of a metric ring R, let
{\\a\\ I aeA}, u(a)=\\a\\ for any aeR.
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THEOREM 5. Let R be a metric ring such that | | e | | = l . Then
<& = &(R)f\G. Also, c& is closed in G and is a subgroup
of G. Furthermore, Z/ is a maximal μ-group.

Proof. lίae^f{R)Γ\G, then IMHIα^l lHlαα^lHl, s o α e K Con-
versely, if ae 2f, then

for any x, so aeSf(R), whence ae ^f(R) Γ\G. Since J5f(R) is closed,
Z? = £?(R)Γ\Gi& closed in G. The proof that &(R)Γ\G= c& is similar

to the above.
Since £f(R) and G are semigroups, 27 is also a semigroup. Also,

e is in 2^ and 2^ contains the inverses of all of its elements, so 2^ is
a group. The norm is multiplicative on Sf{R) and hence on 2^C ^{R),
so 2? is a μ-group. The definition of 27 clearly implies that 2^ is the
largest //-group which is contained in G. But any //-group which con-
tains 27 must be contained in G since G is a maximal multiplicative
group, so 2^ coincides with such a //-group and is hence a maximal μ-
group.

THEOREM 6. Le£ R be a metric ring with | |e| | = l . Then the restric-
tion of v to & is a homomorphism of 27 onto the multiplicative group
^V{ SO and has 5?' as its kernel. Z7f is the largest multiplicative
group on the unit sphere U={x\ ||a?|| = l } . If R is also a Q-ring, then
S^' and Zs\J {0} are closed sets and Z7 is closed if and only if S7= %?'.

Proof. The restriction of v to & is clearly a homomorphism of S^
onto <yK(27), and the kernel of this homomorphism is ^f\Z7=Sf / .
It is also clear that 2 ^ is the largest multiplicative group on U.

Since ^ = ^f{R)f\G by the preceding theorem, we have [ 2 ^ ] C
^{R) Γ\ [G] because J*f(R) is closed according to Lemma 7(v). If R is
a Q-ring, then

[ 2Π Π S C -2^(Λ) Π [G] Π S C Z(R) Γ\ Zτ Γ\ Zr

by Theorem 1. But, if aeJ^(R) then ΐ(α)=| |α| | by Lemma 7(i), while

if aeZΊ,ϊ(a)=Q. Thus, if ae £?{R)[\ZΊ(\Zr we have ~l(a) = \\a\\ and

Z"(α)=0, so α=0. It follows that ^(22) Π ^ Π ^ r = { 0 } , so[^]Π*SC{0}.
But [2?]r\GCJ*f(R)ί\G= S? by Theorem 5, so [2^]C S?\J{0}. Then

so 5s \J {0} is closed. &' is the intersection of the closed sets U and
{0} and is consequently closed.
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Finally, if if = 97)f then 97 is closed since 97' is closed in a Q-ring
by the preceding paragraph. Conversely, suppose 9* is closed and con-
tains an element a not in 97'. Then theelement s an for n= ±1, ±2,
belong to 97, and since IMIT^I and ||αw | | = IMIn> it follows that there
are elements an in every neighborhood of 0. Since 57 is closed, Oe 97.
This is a contradiction. Thus, Sf = 27' if ^ is closed.

6. Multiplicative conditions on the norm. We shall now consider
several related conditions on the norm of a metric ring. In the sequel
it will be assumed that ||e|| = l in the metric rings under discussion.

Ml. The norm of R is an absolute value. (Equivalently, £f(R)=R.)
M2. 9? = G; that is, the norm is multiplicative on G.
M3. 27 is open.
M4. 97 fails to be nowhere dense in R.
M5. .97 (R) fails to be nowhere dense in R.
In the case of M5, Lemma 7(iii) indicates that, for a non-discrete

ring, this condition can hold only if ||e|| = l. However, 97 has been
defined only for metric rings for which ||e|| = l, so that M2, M3 and M4
are meaningless unless ||e|| = l ; for that reason we have assumed that
IMI=i.

It is easily seen that for any metric ring Ml implies M2, M3 implies
M4, and M4 implies M5. For a metric Q-ring it is also true that M2
implies M3. Thus, for any metric Q-ring if one of the conditions Ml-
M5 holds then all of the later ones also hold. Under certain circum-
stances, two or more of the conditions M1-M5 may be equivalent.

LEMMA 8. If R is a metric Q-ring, then conditions M3, M4 and M5
are equivalent in R.

Proof. By the previous remarks it will suffice to show that when
M5 holds then M3 holds. We may assume that R is not discrete, for
if R is discrete then M3, M4 and M5 all hold. Now, if M5 holds in R,
the closed set ,Sf(R) contains an open sphere Σ which has center aφO
and radius r > 0 , so

Σ={x\\\x-a\\<r} .

If

Σ'={x\\\x-e\\<rl\\a\\}

is the open sphere with center e and radius r/||α||, then yeΣ' implies
| |2/-e||<r/| |α|i, so | |α2/-α| |=| |α| |- | |2/-e| |<r, whence ayeΣcZ^(R).
Lemma 7(vi) implies that ye 9f{R); this shows that Σ'(Zj£f(R), so e is
an interior point of $7(R). Since R is a Q-ring, e is an interior point
of G, so e is an interior point of 77 (R) f\ G= 97, Since ^ is a topolog-
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ical group and is therefore homogeneous, V must be open,10 so M3
holds for R. This proves the lemma.

LEMMA 9. // R is a metric Q-ring such that %? meets every com-
ponent of G, then M2 and M3 are equivalent in R.

Proof. If M3 holds, 2^ is open. By Theorem 5, S^ is closed in
G, so Ŝ  is open and closed in G. Thus, 2^ contains every component
of G which it meets, so if %? meets every component it follows that
&=G; that is, M2 holds. Conversely, it has already been pointed out

that if M2 holds for a metric Q-ring then M3 also holds.

COROLLARY. If R is a metric Q-ring such that G is connected, then
M2 and M3 are equivalent in R.

LEMMA 10. // R is a metric ring such that G is dense in R, then
Ml is equivalent to M2 in R. In particular, if R is a metric Q-ring
(complete metric ring) such that S is nowhere dense (of first category),
then Ml is equivalent to M2 for R.

Proof If R is a metric ring in which G is dense, then if M2 holds

we have Λ=[G] = [g?]OSf(i2), s o M 1 h o l d s T h u s > M 1 ί s equivalent
to M2.

If R is a metric Q-ring and the closed set S is nowhere dense, then
G is dense, so that Ml is equivalent to M2 for R. For R a complete
metric ring and £ of first category, it follows that R is a metric Q-ring
and S is nowhere dense since it is a closed first category set of a com-
plete metric space. By the preceding result, Ml is equivalent to M2.

Note. In the presence of condition Ml, a metric ring R can have
no zero-divisors other than 0, for if ab=0, then ||α|| ||6|| = ||αδ|| = 0,
whence α=0 or 6=0. Thus, the ring contains no proper nilpotents or

idempotents, and the remarks of § 2 imply that Gι=Gr=G, so inverses
are always two-sided and unique for such a ring.

The conditions M1-M5 are strong restrictions on the algebraic struc-
ture of a metric ring, as this remark on Gι and Gr indicates. Indeed,
under suitable conditions they will insure that the given ring is a divi-
sion ring. Some results in this direction follow.

LEMMA 11. Let R be a metric ring for which Ml holds. Then R is
proper if and only if it is a division ring.

i° See [6].
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Proof. If Ml holds for Ry then Z(α)==||α||=r(α) for all a in R, by
Lemma 7 (i). Thus, Z= {0} for this ring. Then Z=S is equivalent to
S= {0} that is, R is proper if and only if it is a division ring.

THEOREM 7. Let R be a metric Q-ring such that S is nowhere dense.
If Ml or M2 holds for R, then R is a division ring and its norm, is an
absolute value.

Proof. S is nowhere dense, so G is dense, whence Ml is equivalent
to M2 by Lemma 10. Also, Theorem 3 implies that R is proper, and it
follows from the preceding lemma that R is a division ring. Since Ml
must hold in R if Ml or M2 is assumed to hold, it follows that the
norm of R is an absolute value.

COROLLARY. Let R be a comφlete metric ring such that S is of first
category. If Ml or M2 holds for R, then R is a division ring and its
norm is an absolute value.

THEOREM 8. Let R be a metric Q-ring such that H is connected. If
Ml holds for R, then R is a division ring.

Proof. By Theorem 2, R is proper, so Lemma 11 implies that R is
a division ring.

If H is connected and also dense, then R is proper and G, which
therefore coincides with II, is connected and dense. Lemmas 8 and 10
and the corollary to Lemma 9 imply that M1-M5 are equivalent, so that
if one of the conditions M1-M5 is assumed, then Ml holds, and the
theorem just established shows that R is a division ring. This estab-
lishes the following corollary.

COROLLARY. Let R be a metric Q-ring such that H is connected and
dense. If one of the conditions M1-M5 holds for R, then R is a division
ring and its norm is an absolute value.

THEOREM 9. Let Rbe a metric Q-ring which admits a real, bounded
involution and for which Ml holds. Then R is a division ring.

Proof. By Theorem 4, R is proper, so Lemma 11 implies that R is
a division ring.

LEMMA 12. Let R be a metric Q-ring which satisfies one of the con-
ditions M1-M5. // A is a connected subset of R which does not contain
0, then either ACZZ? or A is disjoint from, S?Ί
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Proof. Because of the relations among* M1-M5, M5 holds, so Lem-
ma 8 implies that M3 holds, whence '// is open. But V is closed in
iϋ ( 0 ) since 2^U{0} is closed by Theorem 6. Then c// is open and closed
in iϋ ( 0 ), so any connected subset A of JR

(0) must be contained in 27 or
disjoint from K

COROLLARY. If R is a metric Q-ring which satisfies one of the con-
ditions M1-M5, then each connected component of 27 coincides with a
component of G, and, in particular,

THEOREM 10. Let Rbe a metric Q-ring such that iϋco) is a connected
set. If one of the conditions M1-M5 holds for Rf then R is a division
ring with absolute value.

Proof. Lemma 12 implies that 27 contains the connected set i2(ΰ).
Thus, R= S^\J{0}, so R is a division ring with absolute value.

If it is assumed that S is nowhere dense and G is connected in a
metric Q-ring in which one of the conditions M1-M5 holds, then Lemma
12 implies that S^ = G, while G is dense since S is nowhere dense.
Thus, R=[G], and i2C0) is connected since G is connected. The theorem
implies that R is a division ring with absolute value in this case. The
assumption of completeness again permits the requirement that S be
nowhere dense to be replaced by the requirement that S be of first
category.

COROLLARY 1. Let R be a metric Q-ring (complete metric ring) for
which S is nowhere dense (of first category) and G is connected. If one
of the conditions M1-M5 holds for R, then R is a division ring with
absolute value.

COROLLARY 2. If R is a metric Q-ring such that i2(ϋ) is connected,
then precisely one of the following statements is valid :

(oί) Jzf(R) is nowhere dense in Rί.
(β) R is a division ring with absolute value.

COROLLARY 3. If R is a metric Q-ring (complete metric ring) for
which G is a connected set and S is nowhere dense (of first category),
then precisely one of the following statements is valid:

(a) Jί^(R) is nowhere dense in R.
(β) R is a division ring with absolute value.
Corollaries 2 and 3 follow immediately from the theorem and Corol-

lary 1, respectively, since if (a) does not hold then M5 holds and there-
fore (β), which is the conclusion of the theorem and of Corollary 1,
must hold,
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Corollaries 2 and 3 clearly continue to hold if (a) is replaced by:
(ar) yy is nowhere dense in R. In Corollaries 1 and 3 the hypothesis
that G be connected may be replaced by the hypothesis that &" meet
every component of G. Another alternative for these two corollaries is
to replace all conditions on G and S by the hypothesis that 2Γ meet
every component of /2(0).

1, Division rings with absolute value* In [21] A. Ostrowski clas-
sified the fields which admit an absolute value. However, the property
of commutativity played only a minor role in Ostrowski's discussion. We
outline below the classification of division rings with absolute value. By
combining these results with the results of the preceding section we
obtain stronger statements of those results.

DEFINITION. If R is a metric ring such that ||α + δ| |<Iinax(| |α| |, ||δ||)
for all a and b in R, then R is called a non-archimedean ring, and the
norm for R is said to be non-archimedean. In the contrary case, R is
called an archίπiedean ring and the norm of R is said to be archimedean.

For any division ring K there is a unique field P, the prime field
of K, which is the smallest field contained in K. Then P is either iso-
morphic to the field of rational numbers, and K is said to have charac-
teristic zero, or P is isomorphic to the field of integers modulo p, where
p is a prime number, in which case K is said to have characteristic p.
If K is a division ring with absolute value, then the restriction to P of
the absolute value of K is an absolute value for P. The classification
of the absolute value of K as non-archimedean or archimedean depends
only upon its behavior on the prime field of K and, indeed, only upon its
behavior on the set of elements of the form ne, where n is a natural num-
ber. (If n is a natural number, na denotes the %-fold sum α+ + α
(n summands). If n is a negative integer, na is defined as —\_( — ri)ά\,
while Oa denotes 0.) This result, given by Ostrowski in [21], appears in
Lemma 13, while a stronger result occurs in Lemma 14.

LEMMA 13. A division ring K with absolute value is non-archimedean
if and only if \\ne\\<Ll for every natural number n.

LEMMA 14. A division ring K with absolute value is non-archimedean
if and only if | |2e | |<Il.

Note. Lemmas 13 and 14 remain valid if we replace the hypothesis
that K is a division ring with absolute value by the hypothesis that K
is a commutative metric ring such that | |α2 | | = ||α]|3 for all a in K. Al-
though many metric rings have the property that | |α2 | | = |iα||J for all α,
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the rings of example (10), with n positive, do not have this property.
Lemma 14 also holds if 2 is replaced by any other integer greater than 1.

THEOREM 11. If K is an archimedean division ring with absolute
value, and K is complete, then K is algebraically and topologically iso-
morphic to 5R, to E, or to Q. Furthermore, the norm in K corresponds
to the pth power of the ordinary absolute value, for some p such that

This theorem and Lemmas 13 and 14 are easily proved. The theo-
rem appears in essence in [21].

COROLLARY. If K is a complete division ring with absolute value such
that | | 2 e | | > l , then K is algebraically and topologically isomorphic to 9ΐ,
to K, or to £}. The norm of K corresponds to the pth power of the
ordinary absolute value, for some p such that 0<Cp<Ll.

If we note that the completion of an archimedean division ring
with absolute value is again an archimedean division ring with absolute
value, the theorem implies that any archimedean division ring with
absolute value is algebraically and topologically isomorphic to a dense
subring of 31, of (£, or of &.

The non-archimedean division rings with absolute value constitute a
far more varied and extensive class, however. For example, even the
locally compact examples are fairly numerous, as may be seen by the
list given by Otobe in [22] all of those examples are of course complete
since they are locally compact. We therefore combine the results of § 6
with the preceding results on archimedean division rings for the sake
of simplicity.

LEMMA 15. If K is a non-archimedean division ring with absolute
value, then K is totally disconnected.

COROLLARY 1. If K is a complete division ring with absolute value,
then K is non-archimedean if and only if it is totally disconnected.

COROLLARY 2. // K is a complete division ring with absolute value,
then K contains a connected set having more than one point if and only
if K is algebraically and topologically isomorphic to 3t, to (£, or to O.

The field of rational numbers with the ordinary absolute value is
archimedean and totally disconnected; this shows the necessity of as-
suming completeness in Corollary 1. In [7], Dieudonne constructed a
connected and locally connected subfield of K which is a pure trans-
cendental extension of the field of rational numbers. The field of
Dieudonne, with the ordinary absolute value, is then an example of a
field which is not complete and which is connected although it is not



MULTIPLICATIVE NORMS FOR METRIC RINGS 1297

isomorphic to 3i, to (£, or to £}. This shows that Corollary 2 requires
the assumption of completeness.

By combining the results just outlined with those of the preceding
section, we obtain the results which follow.

THEOREM 12. Let R be a complete archimedean metric ring such
that S is a first category set. If Ml or M2 holds for R, then R is
algebraically and topologically isomorphic to 3ΐ, to K, or to O.

COROLLARY. Let R be an archimedean metric Q-ring such that S is
notvhere dense. If Ml or M2 holds for R, then R is algebraically and
topologically isomorphic to a dense division subring of 9ΐ, of ©, or of Q.

THEOREM 13. Let R be a complete metric ring such that H is con-
nected. If Ml holds for R, then R is algebraically and topologically iso-
morphic to &, to O, or to the field % of order 2 with the trivial absolute
value.

TEOREM 14. Let R be a complete metric ring in which H is con-
nected and dense. If one of the conditions M1-M5 holds for R, then R
is algebraically and topologically isomorphic to (S or to O.

THEOREM 15. Let R be a complete archimedean metric ring which
admits a real, bounded involution. If Ml holds for R, then R is alge-
braically and topologically isomorphic to 9ί, to (S, or to Q.

THEOREM 16. Let R be a complete metric ring such that i2(0) is con-
nected. If one of the conditions M1-M5 holds for R, then R is algebrai-
cally and topologically isomorphic to (£, to G, or to $.

THEOREM 17. Let R be a complete metric ring for which S is of
first category and G is connected. If one of the conditions M1-M5 holds
for R, then R is algebraically and topologically isomorphic to G or to D.

COROLLARY. Let R be a metric Q-ring for which G is connected
and S is nowhere dense. If one of the conditions M1-M5 holds for R,
then R is algebraically and topologically isomorphic to a dense division
subring of & or of G.

If the requirement of completeness for R in Theorems 13-16 is re-
placed by the weaker requirement that R be a metric Q-ring, then the
conclusion becomes that R is algebraically and topologically isomorphic
to a dense division subring of one of the division rings mentioned in
the conclusion of that particular theorem. In Theorem 12 and its corol-
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lary, and in Theorem 15, the assumption that R is archimedean may be
replaced by the assumption that | | 2 β | | > l or the assumption that R con-
tains a connected set with more than one point.

It is easily seen that completeness is required in these theorems.
For, let K be the subfield of (£ constructed in [7] by Dieudonne. Then
K is connected and locally connected, K is a dense, proper subfield of
E, and K is a pure transcendental extension of the field of rational
numbers. Clearly, K is not isomorphic to 5R, to (£, to O, or to g. But
the set S= {0} is nowhere dense in K, while G, H and K(o) coincide
and are easily seen to be connected. The identity mapping of K into
itself is a real, bounded involution, and Ml holds for K, so that K
satisfies all of the hypotheses of these theorems except for completeness
Since K does not satisfy the conclusions, completeness is needed.

8 Homogeneous metric rings and rings of quotients. In this
section we consider certain types of metric rings which may be embed-
ded in various algebras.

DEFINITION. A metric ring R is said to be homogeneous if
N (|α|| whenever n is an integer and a is in R. A metric ring R is
said to be weakly homogeneous if INα|| = ||we|| | |α| | whenever n is an
integer and a is in R.

For a homogeneous ring we have ||we|| = |rc|, so every homogeneous
ring is also weakly homogeneous. However, a weakly homogeneous ring
need not be homogeneous; for example, the rings of examples (8) and
(9) are weakly homogeneous but are not homogeneous. The rings given
in the other examples are all homogeneous. It is clear that a metric
ring in which Ml holds must be weakly homogeneous. We can also
obtain a sufficient condition for a metric ring to be homogeneous.

LEMMA 16. // R is a metric ring such that ||2α|| = 2||α|| for every a
in R, then R is homogeneous.

Proof. For any natural number r and for aeR we have ||2 rα|| =
2 r | |α||. Thus, for n a natural number, we have

rc||α|| + (2n-w)| |α| | = 2 ^

so that w||α|| = ||wα|| for any natural number n and any a in R. It fol-
lows easily that ||raα|| = M |MI for any integer n and any a in R.

If R is any metric ring, and D is a nonempty multiplicative semi-
group in R which does not contain 0, which lies in the center of R,
and such that DC .Sf(R), then the relation (α, d)^(a\ df) (if and only
if adf=a'd) is an equivalence relation in the set RxD of ordered pairs
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(a, d)> where a is in R and d is in D. Let RD be the set of equiva-
lence classes [ajd] modulo this equivalence relation, with

= [αδ/d/], and ||[α/d]l! = INI/||d|| as the definitions for addition,
multiplication and the norm. It is clear that these definitions depend
only on the equivalence classes involved and not on the representatives
chosen from the classes. It is also easily verified that RD is a metric
ring, and the mapping x -> [xdjd] is an isometry of R into RD if d is in
D. An element d in D may be identified with the element [did] of RD

which has the inverse \dldλ] in RD. We thus obtain the following lemma.

LEMMA 17. Let R be a metric ring, and D a nonempty multiplica-
tive semigroup in R which does not contain 0. Suppose DCZ^(R) and
D is contained in the center of R. Then RD is a metric ring which is
an extension of R such that every element of D has an inverse in RD.n

COROLLARY. Let R1 be a commutative metric ring. Then there is
an extension, R, of Rx such that 1/{R)= 2^U{0}. In particular, all of
the nonzero elements of JSf (i^) have inverses in R.

Proof If D is the set of nonzero elements of S/f{Rλ), then R=(R1)D

is the required extension of R.

COROLLARY 2. Let R be a commutative metric ring in which Ml
holds. Then there is a field, K, with absolute value, such that K is
complete and K is an extension of R.11

Proof. If D is the set of nonzero elements of R, then RD is a
field with absolute value. The completion, K, of RD is the required field.

If if is a field with absolute value, and R is a metric ring which
is also an associative linear algebra over K such that ||&α|| = |l&ll IMI for
all k in K and a in R, then R is called a normed algebra over K. For
example, the metric rings of examples (3)-(7) and (10) are normed
algebras over ?ίi, while the rings in examples (4), (6) and (7) are normed
algebras over (£. It will now be shown that any weakly homogeneous
metric ring has an extension which is a normed algebra. Also, for
homogeneous metric rings, there is an extension which is a normed
algebra over 9ΐ.

THEOREM 18. Let R be a weakly homogeneous metric ring. Then
11 Compare the results on algebras of quotients in [24].
1 2 Compare the proof of Theorem 2, Corollary 2 in [4], where the technique of embed-

ding in a quotient field is also employed.



1300 SILVIO AURORA

there exists an extension of R which is a complete normed algebra over
some field K, where either K has the trivial norm, or K is the real field
with some power of the ordinary absolute value as its norm, or K is a
p-adic field, with some power of the norm given in example (9) as the
norm of K.

Proof. Let D be the set of nonzero elements of R which have the
form ne, with n an integer. Then RD is an extension of R and contains
a subset which is isomorphic to the quotient field, F, for D\J [0}. Then
RD is a normed algebra over F, so that the completion of RD is a
normed algebra over the field K, where K is the completion of F; see,
for instance, [6]. Thus, R has an extension which is a complete normed
algebra over K. If the norm of F is the trivial one, then K coincides
with F. In the contrary case, there is a natural number n such that
\\ne\\ is distinct from 0 and 1. Also, F is a prime field and is therefore
isomorphic to the field of rational numbers since the other prime fields
are finite and would only admit the trivial absolute value. If | |we | |<l ,
we have | | p β | | < l for some rational prime p. As in Ostrowski's proof,
p is unique in that case and the norm is a power of the norm described
in example (8), so K is isomorphic to the field of p-adic numbers with
the norm taken as some power of the p-adic norm. In case | | n e | | > l
for every natural number n greater than 1, we have the archimedean
case, so F is the field of rational numbers with the norm taken as the
pth power of the absolute value, with 0<^p<Ll. Thus, K consists of
the real numbers with the norm given as the ^th power of the absolute
value.

COROLLARY. Let R be a homogeneous metric ring. Then there is an
extension of R which is a complete normed algebra over 9i.

Proof. In this case, ||rce|| = [ra| |!eii = |ra| for any integer n, so in the
proof of Theorem 18 the norm of an element of F is the usual absolute
value. Thus, K is the real field with its usual absolute value.

If K is a complete division ring with absolute value such that | |2e| |=2,
then the corollary of Theorem 11 implies that K is algebraically and topolo-
gically isomorphic to 9ΐ, to (£, or to £}, with the norm corresponding to
the ^th power of the ordinary absolute value. K is homogeneous since
the condition ||2e|| = 2 implies that | |2α| |=2| |α| | for all a in K. The prime
field of K is then the field of rational numbers with the ordinary abso-
lute value as the norm, as the preceding proofs imply. But | |α| | = |α|p

for all a in K, while for a rational, | |α| | = |α|. Thus, p = l , and the fol-
lowing theorem results.

THEOREM 19. // K is a complete division ring with absolute value
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such that \\2e\\ = 2, then K is algebraically isomorphic and isometric to 9ΐ,
to &, or to O.

This result implies that if the hypothesis that ||2e|| = 2 is added to
Theorems 11-17 and their corollaries the algebraic isomorphism of the
conclusions must be an isometry. In a similar vein, Theorem 18 asserts
that a weakly homogeneous metric ring R may always be embedded in
a complete normed algebra, so a metric ring with absolute value may
be embedded in a complete normed algebra; the addition of the strong
hypothesis ||2β|| = 2 yields a stronger result.

THEOREM 20. Let R be a metric ring with absolute value such that
| |2e | |=2. Then R is algebraically isomorphic and isometric to a subring
of £}.

Proof. Lemma 16 shows that R is homogeneous, so the corollary
of Theorem 18 implies that there is an extension of R which is a com-
plete normed algebra over 31. The construction of this extension Rx is
such that R1 also has an absolute value. If the real dimension of Rλ as
a vector space is greater than one, then R^ is connected, so, by Theo-
rem 16, in the strengthened form just mentioned, R1 is algebraically
isomorphic and isometric to 9ΐ, to K, or to G. If the real dimension
of Rι is one, then Rλ is algebraically isomorphic and isometric to 5R. In
any event, R is algebraically isomorphic and isometric to a subring of
Rl9 R1 is algebraically isomorphic and isometric to 3Ϊ, to (£, or to £},
each of which is algebraically isomorphic and isometric to a subset of
D, and the theorem follows.

Note. If r is a fixed integer greater than 1, then the condition
| |re| | = r is equivalent to the condition |]2β|| = 2 and may be used as a
hypothesis instead of the latter in any of the preceding results.

9 Real and complex normed algebras* The results of the last
two sections may now be specialized to the case of normed algebras
over 3i or (£. Any normed algebra over (£ may of course be regarded
as a normed algebra over 91. A complete normed algebra over 9t((5) is
called a Banach algebra {complex Banach algebra).

THEOREM 21. Let 21 be a Banach algebra for which one of the con-
ditions M1-M5 holds. Then 21 is algebraically isomorphic and isometric
to 9t, to ©, or to Q.

Proof If 31 has dimension one as a vector space over 91, then 21
is certainly algebraically isomorphic and isometric to 3ΐ. If the dimen-
sion of 2ί is greater than one, then 2I(0) is clearly connected, and the
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result follows from the strengthened from of Theorem 16 mentioned in
the previous section.

COROLLARY 1. Let 21 be a normed algebra over ^\ (Q-rίng which is
also a normed algebra over ))i) such that one of the conditions Ml, M3,
M4 or M5 (M1-M5) holds. Then 21 is algebraically iso?norphic and iso-
metric to 31, to (Σ, or to G.

Proof. The completion, 21^ of 21 is a Banach algebra. Because of
the relations among M1-M5, we may assume that M5 holds, and it fol-
lows that M5 holds for 2^. The theorem shows that 2^ is algebraically
isomorphic and isometric to 3ί, to β, or to £l. But 31 is a dense, con-
nected linear subspace of the finitedimensional real vector space 2^ and
therefore coincides with %.

The theorem, with M2 assumed, is essentially the result of Edwards
[8 Theorem 1] combined with the first of Mazur's theorems. The
corollary, with Ml assumed is the same as Mazur's second theorem in
[19].

It may be noted that the corollary does not hold when M2 is as-
sumed and 91 is not a Q-ring. For example, the algebra of all real
polynomials f(x) with the norm | | / | | = sup|/(a?)|, where the supremum is
taken for all x such that 0<i=x<L=l, is a normed algebra over 3ΐ for
which G consists only of the constant polynomials distinct from zero;
clearly, & = G for this algebra, so M2 holds, even though this algebra
is not even a division ring.

COROLLARY 2. If 91 is a normed algebra over 3ϊ which is not iso-
morphic to 31, to Of, or to £}, then Λ/"'(s2ί), ^ ( 2 ί ) , £ ' and all μ-groups
of 21 are nowhere dense.

Proof. The hypothesis implies that M4 and M5 can not hold, so
.1/(21), ,:^?(2l) and ?s are nowhere dense in 21.

It remains to show that all //-groups of 21 are nowhere dense. Sup-
pose that A is a / -group which fails to be nowhere dense. The unit
element, j , of the group A is an idempotent, and wτe have the inclusion
A Q Ά C i S I , so that fii also fails to be nowhere dense. If {jxn} is a
sequence of elements of fll which converges to an element a in 2(, then
{j2'Xn} converges to ja. But since j is an idempotent the sequences
\jxn} and {j2 xn} coincide, so their limits coincide, whence a=ja is in
i?t. This shows that j21 contains the limit of any convergent sequence
of elements of j2I, so j21 is closed. Because j % fails to be nowhere
dense it must contain a nonempty open set. But fll is a right ideal
and therefore, in particular, a topological group relative to addition; the
homogeneity of a topological group then implies that j2ί is open. Since
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βί is open and closed and nonempty in the connected space SI, we see
that jSI=Sl. This shows that j has a right inverse, so j=e. Now, A
is a μ-group which has e as its unit element, so if ae A then a has an
inverse a~ι relative to e in A, and ||α||-Hα"1|| = ||αα""1|| = ||β|| = l, so ae SZ
This shows that AC £.' But it has already been observed that V is
nowhere dense, so the assumption that A fails to be nowhere dense
leads to a contradiction. This proves the corollary.

The same proof can be used to show that all //-groups are nowhere
dense in a connected metric ring for which V is nowhere dense.

In the case of normed algebras over (£, one can also show that the
set '&' is generally not too extensive.

THEOREM 22. // SI is a normed algebra over (£, then 5?' consists
exclusively of extreme points of the unit sphere of SI.

Proof. Suppose that a is an element of V which is not an ex-
treme point of the unit sphere. The mapping x -> xa"1 is a linear
automorphism of the linear space over (£ which underlies SI, and this
mapping also preserves distances since α~Ί belongs to V and has norm
one. Thus, the property of failing to be an extreme point of the unit
sphere is preserved, so e, the image of a relative to this mapping, is
not an extreme point of the unit sphere.

If 21 were completed, e would also fail to be an extreme point of
the unit sphere of the completion, and we therefore assume, without
loss of generality, that 51 is complete. Now, e is the midpoint of a
segment which lies wholly in the unit sphere of SI, so e=(δ-fc)/2, where
|[δ|| = ||c|| = l and bφc. Clearly, b and c commute since c=2e — b is in
the algebra generated by b and e, so the closed complex normed algebra
which is generated by e, b and c is a commutative complex Banach
algebra. If y=(b — c)J2, then e — y=c and e-\-y=-b, whence \\e — y\\ =
11̂  + 2/11 = 1 in this algebra. But the remark which follows Theorem 1 of
[11] asserts that if y is an element of a commutative complex Banach
algebra such that ||e —2/||==||e + 2/||==l, then y = 0. It follows that y=0,
so b=c. This contradiction shows that a was an extreme point of the
unit sphere of ^L

In conclusion, while the results of this paper show that the sets
K, ?y'"', J2?{R) and &(R) are usually topologically trivial, they are not
algebraically trivial. For, in the case of the algebra C(X) of example
(6) where X has at least two points, it is evident that any two points
of X may be separated by an element of S>?/. The Stone-Weierstrass
approximation theorem may be used to show that the closed complex
subalgebra generated by W coincides with C(X).
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