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Introduction* Let R be a continuous semi-ordered linear space, name-
ly, a semi-ordered linear space where, for any sequence xy^0 (y=l,2, •)>

f\xv exists.1 R is said to be a normed semi-ordered linear space, if a

norm ||α?||(a?e J?) is defined and satisfies the condition:

\x\^\y\ implies IMI^IMI

in addition to the usual conditions.
A norm |a?||(a;e22) on a normed semi-ordered linear space is said to

be monotone complete, if, when 0^# v ΐ and sup||# v | | < + co , there exists
I l V§1I v = l

0 Xv
V = l

A norm on R is said to be continuous, if xΛ 0 implies l i m | # v | = 0

and semi-continuous, if 0^α?v a? implies sup |a?v|=fa?||. It is clear that
I V = l V S 1

continuity implies semi-continuity.
Kantorovitch [4] has proved that, if a norm on 22 is monotone

complete and continuous, then it is complete, namely, 22 is a Banach
lattice. Nakano [5; Theorem 31.7] has proved that, if a norm on 22 is
monotone complete and semi-continuous, then the norm is complete,
and, recently, Amemiya [1] has proved that, if a norm on 22 is monotone
complete, it is complete.2 In this connection, see also [2].

In this paper, we will consider several problems concerning monotone
completeness and completeness of normed semi-ordered linear spaces
and Nakano spaces.

l Monotone completeness of normed semi-ordered linear spaces*
In this section, we will consider two problems.

As usual, let (c0) be the set of all null-sequences of real numbers.
This is a normed semi-ordered linear space by the usual ordering and

Received December 12, 1956. In revised form April 22, 1957.
1 Namely, a conditionally cr-complete vector lattice. In this paper we use the termi-

nology and notation of [5].
2 In this paper, Amemiya also proved the following lemma: Let R be a monotone

complete normed semi-ordered linear space. Then there exists a number f>0 such that

x implies
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the norm: lα?[ = sup |fv| for x=(ξy)£(Co). The fact that this norm is
V = l

complete is well known. But, it is not monotone complete, because,
for the sequence of elements:

^ = (1,0, 0, . . . ) , e , = ( l , l , 0 , . . . ) , $,=(1,1,1,0, . .-) , . . . ,

I oo oo

and sup 1 ev 1^1 , but \J ev does not exist in the space
V - l V§1 V = l

(βb).

Among function spaces, we can also find an example of this type.
Let L{Jt be the set of all measurable functions x(t) (Ofgί^l) such that

\ \ξx{t)\λlt dt<+ oo for all
Jo

Then L{!t is a Banach lattice by the norm:

\\x\\= inf A where m(x)=V \x(t)\111 dt ,
C&osi|f| Jo

but this norm is not monotone complete.
In § 1.1, we will state a necessary and sufficient condition in order

that a complete norm be monotone complete.
It is well known that every (norm) closed subset of a Banach

lattice is also complete. But, we have a monotone complete semi-ordered
linear space which contains a closed, but not monotone complete sub-
space. Namely, let Lljt be the set of all measurable functions x{t)
( O ^ ί ^ l ) such that

[\ξx{t)\lltdt< + oo for some ?>0 .
Jo

This is a monotone complete normed semi-ordered linear space and L{ιt

is a (norm) closed subspace of LVt .
In § 1.2, we will state a necessary and sufficient condition in order

that every closed subspace of a monotone complete semi-ordered linear
space be monotone complete.

1.1Φ Let R be a continuous semi-ordered linear space. A sequence
#v (v = l, 2, •••) is said to be bounded, if there exists an element xeR

such that x^x (^=1,2, •••). If 0 ^ # J and this sequence is not
1 v=i

+ oo .
V = l

DEFINITION. R is said to be K-bounded (bounded in the sense of

I oo

+ cn implies we can find a sequence of real
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100

0 and the sequence ζyxv (» =

1, 2, •••) is not bounded.

DEFINITION. R is said to be K'z~bounded, if 0 ^ # μ v ΐ + co for every

v implies we can find a sequence of indices μv ( y = l , 2 , •••) such that
the sequence xμ^ (y = l, 2, •••) is not bounded.

These concepts were introduced by Kantorovitch [4]. It is easily
seen that iP-boundedness implies i£-boundedness. If R is reflexive in
the sense of [5] § 24, then it is easily seen that R is iΓ-bounded. There-
fore, for any R, its conjugate space is always if-bounded.

The ϋC-boundedness can be expressed in other ways, namely, the
following three conditions are mutually equivalent:

(1) R is K-bounded;
and Σ ξvxv is order-convergent for all sequences

V = l V = l

00

( f v ) w i t h Σ l f v l < + αD » t h e n t h e s e q u e n c e x v (v = l , 2 , •••) i s bounded]
V = l

(3) if x^O and Σ ςvίcv is order-convergent for all sequences (fv)
V = l

with fv 0, then Σ^v is order-convergent.
V V = 1 V = l

For example, we will prove that (1) implies (2). Let O^g#J +co .
I v = l

I OO

Then there exists a sequence of real numbers fv 0 such that fv#v (V=

1,2, •••) are not bounded. Since

and

V

fv#v^ Σ (

the sequence:

is not bounded and

This is inconsistent with the hypothesis of (2).
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THEOREM 1.1. Let R be a normed semi-ordered linear space. Then
the following three conditions are mutually equivalent

(1) The norm on R is monotone complete;
(2) the norm is complete and R is K-bounded;
(3) the norm is complete and R is K2-bounded.

Proof. We have only to prove that (2) implies (1).
and sup | |# v | | < + °° . Then, for any sequence of numbers

V = l V ^ l

oo oo

f v >0 (v = l, 2, •••) such that Σ fv< + °° , we have Σ fv|kvll< + c o Since
V = l

the norm is complete by assumption, Σ f A is convergent in norm, and

so, in order convergence. Therefore, #v (v=l , 2, •) is bounded, because

R is iί-bounded.

1.2. Let R be a continuous semi-ordered linear space. For any
element p^O and for all x^O, the projector [p] is defined as

oo

means [p]#^>[#]# for any x^>0 .
Let R be a normed semi-ordered linear space. A norm \x\ on R is

continuous if and only if #^>0 and [pM 0 implies lim||[jvM| = 0
Φv=l V-»eo

([Nakano] Theorem 30.8) We will call a subset A of R monotone com-

plete, if 0^# v ΐ and sup| |^ v | |< + oo for xveA implies O ^ v ^ ^
l ^ iIf a norm on R is monotone complete and continuous, then every

(norm) closed subset is monotone complete in the sense described above.
Here, we will prove the converse. A subset A is said to be semi-normal,
if XQ.A, \y\^\xI implies ye A.

THEOREM 1.2. Let R be a normed semi-ordered linear space and
suppose every {norm) closed, semi-normal subset of R is monotone complete.
Then the norm is continuous.

Proof. Let us assume that there exist [pv] 0 = 1, 2, •••) and xoeR

such that [pv] 0 and lim ||[pv]^o|| ̂  ε for some ε>0. Then the least

closed set A containing all xeR such that liml[p v]#||=0 is semi-normal
V->oo

and (1 — [pv])xoeA. On the other hand,

ô and |Kl
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Therefore, since A is monotone complete, xoe A. This is inconsistent
with the definition of A.

2 Monotone completeness of Nakano spaces* It will be necessary
to state here the definition and several properties of Nakano spaces.

A semi-ordered linear space is said to be universally continuous, if
for any system of positive elements xλ (λ e A) there exists f\ xλ. A

λGΛ

Nakano space is a universally continuous semi-ordered linear space where
a functional m(x) (x e R) is defined and satisfies the following conditions:

(1) 0^m(x)^ + oo(χeR);
(2) for any x e R we can find a number ξ>0 such that m{ξx)< + oo
(3) if m(ξx) = 0 for every f>0, then x = Q
(4) I a; I <̂  \y\ implies m{x)^m{y)

(5) m ί ^ t ϊ a W—{m(ξx)+m(ςy)\ for numbers ξ, ^>0 and for every

element x e R
(6) 1^^12/1 = 0 implies m(x+y) = m(x)+m(y);
(7) 0gxλtλ6Λ^ implies m(^)

This functional m(x) is called a modular on the Nakano space
In the Nakano space R, we can define two kinds of norms:

the first norm: ||a?||= inf ! ± ^ ( f ? ) ;

the second norm: III a; 111= inf

It is easily seen that |a?|||^||a?||^2|||a?[||. The modular is said to be
complete or monotone complete, if these norms are complete or monotone
complete. Namely, a modular m on R is said to be monotone complete,

and sup m(xv) < + oo , then there exists \J # v .
V = l VSI V = l

A modular m is said to be simple, if m(x) — 0 implies # = 0 . If m
is simple, we can define in R a convergence by this modular. Namely,
a sequence xv (v = l ,2 , •••) is said to be modular-convergent to xeR, if

v—x) — 0. If a sequence xv (̂  = 1, 2, •••) is convergent to xeR

by the norms defined above, then it is modular-convergent to the same
limit. But the converse is not always true. In order that the modular-
convergence be equivalent to the norm convergence, it is necessary and

( x λ
ξ... ,„ > 0 for

INK
any ξ >0 ([5] Theorem 48.1)

The norms defined above are not always continuous. If the modular
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is finite, namely, m(x)< + <χ> for every xeR, then the norms are
continuous ([5] Theorem 44.4)

A modular m is said to be uniformly finite, if sup m(ξ—— )< + oo

for every ξ>0. It is clear that uniform ίiniteness is stronger than
finiteness.3

2.1 In this section, we will consider the relations between monotone
completeness and completeness of Nakano spaces. In the sequel, let R
be a Nakano space and m(x) (xeR) be its modular.

The following lemma is a generalization of the essential part of
Kalugyna's results [3].

LEMMA 2.1. If m is monotone complete, simple, and its norms are
continuous, then m is uniformly simple.

Proof. If m is not uniformly simple, we can find a sequence x^O
(y = l,2, •••) such that limm(#v) = 0 and | |# v | |^ε>0 for all v. Hence, we

V-»oo

can select a subsequence xv (/* = 1, 2, •••) such t h a t
μ-

Then, for the e lements :

we have

Namely, we have y.λ and supm(2/μ j λ)< + oo . Since m is monotone
I λ = l λg l

complete, there exist yμ (μ = 1,2, ) such t h a t 2/μ= 0 2/μ,λ and m(yμ)<.l/2μ+1.

I t is clear t h a t j/J . O n the other hand, for any ^ ^ 0 such t h a t

^2/μ ( ^ = 1 , 2, •••), we have

m>(Vμ.—®) ^ ^(2/μ) » thus, lim

3 More details of the theory of Nakano spaces are given in [5]. As examples of Nakano
spaces, we cite two representative types. The first is an Orlicz space. The second is
the space LP(t)(p(fiy^ϊ)t namely, the set of measurable functions x(f)(figLts^X) such that

ί |£;e(ί)|^cλ2£ is finite for some £>0. Here p(t) is a measurable function on Oj^t^l.
o
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Therefore,

that is to say, mi—xj — Q . Since m is simple, x—Q. This means that

0 . As the norm is continuous, we have lim||2/J| = 0, which con-
1 μ-*oo

tradicts the assumption, because

Therefore, m is uniformly simple.
The next two lemmas constitute the converse of the above.

LEMMA 2.2. If m is uniformly simple, then its norms are continuous.

Proof. Let xλ 0. Then there exists a number ξ>0 such that
Ψv-i

m(ξxv)< + oo for all v. For the elements y^ — ξXι~ξx^f since y^O and
£# v ^0, we have

so,

m{ξxv) ̂  m(yv+fa?v) - m{yv) = m ( ^ )

On the other hand, we have m(f^1) = sup m{y^), because 0^?/v ^ .

Therefore, limm(f^v) = 0, and hence it follows that lim||a?v||=0 , because

m is uniformly simple.

LEMMA 2.3. // m is uniformly simple and its norms are complete,
then m is monotone complete.

. ThenProof. Let O^xJ and supmfe

m(xy—Xμ)^m(x

and hence, we have

lim m(xv—Xμ
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Since m is uniformly simple, we have

lim ||α?v—#μ[=0 ,
V,μ-»oo

so t h a t t h e r e e x i s t s a n e l e m e n t xeR s u c h t h a t l im | |a? v—a?|| = 0 . F o r
V-»oo

this x, it is easily seen that x=\J xv, which shows that m is monotone
V = l

complete.
From these lemmas, we obtain the following theorem:

THEOREM 2.1. A modular on a Nakano space is monotone complete,
simple, and its norms are continuous, if and only if it is uniformly
simple and complete.

Next, we will consider the case when m is finite.

DEFINITION. A modular m(x) (xeR) is said to be totally finite, if

1 °°
and supm(#v)< + oo implies sup m(ξxv)< + oo for every ξ>0 .

LEMMA 2.4. // m is monotone complete and finite, then it is totally
finite.

Proof. O^tfJ and sup ra('#v) < + oo . Then, since m is monotone
I V = l V g l

oo oo

complete, there exists xeR such that x— \J xv. Therefore ξx— \J ξxv
V - l V = l

for every ξ>0 . Hence it follows that m(ξx)~sup m(ξxy)< + ^ , because

m is finite.

LEMMA 2.5. If m is totally finite and complete, then it is monotone
complete.

1 OO

and supm(#v)< + oo . Then, by the as-
V = l V ^ l

sumption, we have supm(f#v)< + oo for every ξ>0 . Since

m(ξxv—ξXμ)^m{ξxJι—m(ξXμ) (v^μ) ,

we have lim m{ξx^—ξXμ) — Q for every ξ>0, therefore we have
V(μ-»oo

lim [a?v—a?J = 0 .
V,μ-^oo

Hence, there exists an element xeR such that lim ||a?v—a?||=0 . There-
V-»oo

fore, we have x= \J xv, which shows that m is monotone complete.
V = l

Thus we obtain the following theorem:
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THEOREM 2.2. A modular on a Nakano space is monotone complete
and finite if and only if it is totally finite and complete.

REMARK. It is easily seen that uniform finiteness implies total
finiteness and the latter implies finiteness. The converses are not always
true. In fact, L{ιt is a finite Nakano space by the following modular:

mix) = ΓI x(t) \111 dt for x(t) e L{lt .
Jo

But, this is not totally finite, because, if it were totally finite, then,
by Theorem 2.2, it would be monotone complete, which is impossible.
Next, let /v(£) (v = l, 2, •) be a sequence of convex functions such that

if

if

Then, the space3' l(flff21 •••) with the modular

for x-

is t o t a l l y finite, b u t n o t u n i f o r m l y finite. To s e e t h i s , w e n e e d only
t a k e t h e e l e m e n t s :

^ = ( 1 , 0 , 0 , • • • ) , βi = ( 0 , l , 0 , • • • ) , ^ = ( 0 , 0 , 1 , 0 , • • • ) , •••

It is easily proved that | |ev | | = l and m(2βv) = v+l-^ + oo . But, this
sequence space is uniformly simple by Theorem 2.1. The relations
between uniform simplicity and uniform finiteness were considered by
my colleagues. If a modular on a Nakano space is uniformly finite and
simple, then, by considering the monotone completion and applying
Theorem 2.1, we can prove that it is uniformly simple. On the other
hand, T. Shimogaki has proved in an unpublished paper that, if a
modular is uniformly simple and the space has no atomic elements, then
it is uniformly finite.

2.2. In this section, we will consider relations between monotone
completeness and finiteness.

An element x is said to be finite, if m(ξx)< + oo for every ξ>0 .
The set of all finite elements is called a finite manifold of R and
denoted by F. F is a (norm) closed subspace of R and the norms are
continuous in F ([5] Theorem 44.5.). If the norms are continuous in
R and m is monotone complete, then F is universally monotone complete,
that is, if 0^#λtλ6Λ and supm(#λ)< + oo then there exists \J xλ .

λ€Λ λSΛ

m is said to be almost finite, if F is complete in R (that is, if
|α|nl2/| = 0 for all yeF, then x=0).

* For the definition of this sequence space, see [6].



1724 SADAYUKI YAMAMURO

THEOREM 2.3. // m is almost finite and monotone complete, then m
is finite if and only if F is, as a space, universally monotone complete.

Proof. We need only prove the sufficiency. For any xeR, since
m is almost finite, there exists a system of projectors [pλ]tλe.\M such
that [P\}%GF, and there exists a number f>0 such that m(fα?)<+oo .
Therefore we have

λ6Λ

since m is monotone complete. Hence it follows that m is finite.

THEOREM 2.4. If m is almost finite, monotone complete and separable
in its norm topology, then m is finite.

Proof. It is well known that if m is almost finite and norms are
continuous, then m is finite. Therefore, we need only prove that if m
is monotone complete and separable, then its norms are continuous.

For this purpose, let us suppose that there exists an element x^O

and a sequence of projectors [pM 0 such that

inf ||[pv]a?|| >e for some ε>0 .

Then, by Amemiya's lemma, we can find a number ξ>0 such that

lim |[pjα-[p v ]α| ^ξ\\[PM\ >& > 0 >
V-»ββ

a n d h e r e , w e c a n s e l e c t μv (y = l , 2, •••) s u c h t h a t

Put t ing p v=[P/χ v]#—[Pμ v + 13^ ( y = l » 2 , •••)> we see easily t h a t

Pv^O , pvnpλ = 0(vφλ) and | b v | l > £ e >

and, for any subsequence p V χ (λ=l, 2, •••), we have

λ-l λ

Moreover, the set of all such sequences is not denumerable and

λ-i λ
 P=I

for different sequences {pvj and {pv} . This contradicts the separability.
Therefore, norms are continuous and the proof is established.
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REMARK. In order that m be finite, it is necessary and sufficient
that its norms be continuous and all atomic elements belong to F.
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