
ON SEMI-NORMAL OPERATORS
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1. A bounded linear operator A in a Hubert space will be called
semi-normal if

( 1 ) H=AA*-A*A^0 (or ^

If A is a finite matrix, for instance, then relation (1) implies H=0, so
that A is even normal cf., e.g., [4]. That (1) may hold with HΦO is
seen if one chooses, for instance, A to to the isometric matrix defined
by A=D=(dij) where di+ιΛ — l and dt) — Q otherwise. The purpose of
this note is to investigate the spectrum of the semi-normal operator A
and of the associated self-adjoint operators Jθ defined by

( 2 ) JΘ=A±AL , Aθ=Ae-iθ (θ real) .

It is seen that, in particular, Jθ becomes the real or the imaginary part
of A according as 0=0 or θ=π/2.

A number λ belonging to the spectrum of A (sp (A)) will be called
accessible if there exists a sequence of numbers λn not belonging to
sp(A) for which λn-^λ as w-*oo. If M is any self-ad joint operator,
max M and min M will denote the greatest and the least points respec-
tively of the set sp(ilί).

The following theorems will be proved:

THEOREM 1. Let A be semi-normal with H^O and let λ—reiQ (r real,
2^0) be an accessible point of the spectrum of A. Then

( 3 ) (max Λ) 2 ^ min A A*

and

( 4 ) \r- max Jβ I ̂  ((max JQf - min AA*)1/2 ,

where Jθ is defined by (2).

THEOREM 2. Let A be semi-normal and let J=JΘ have the spectral

resolution J— I λdE. Then, if S=SΘ is any measurable set for which

(5) f dE=I,
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there holds the inequality

(6) ||#||^4||,4.|| meas S .

The proof of Theorem 1 will be given in § 2 below. The assertion
of Theorem 2 can be considered as a supplement to Corollary 3 of [5].
The proof follows readily from the Lemma, loc. cit., p. 1027 if one notes
that HI2=JΘA£-A£JΘ and that | |Λ | |=m| | .

Various corollaries can be obtained from the two theorems. For
instance, as a consequence of Theorem 1, one has the

COROLLARY 1. If V is isometric and not unitary, then its spectrum
is the disk Ml^l of the complex plane.

Actually it is possible to deduce this result from a normal form for
such operators cf., e.g., [8, p. 351 if]. It should be noted that the
spectrum of the isometric matrix D defined earlier in this paper, and
which occurs in the normal form, is the disk \λ\^l cf. [9, p. 279],

The proof of the corollary as a consequence of Theorem 1 however
is as follows. Put A*=V so that AA^—I; clearly V is semi-normal
and H^>0. Let λ—reiθ (r^O) be an accessible point in the spectrum of
A (that is, of 4* or V). Then, by (3), |max«/a |^l. On the other
hand, ||A| = 1, and hence |maxβ/β |^l. Thus |maxJθ | = l and (4) implies
r = l consequently, the only possible accessible points of the spectrum
of an isometric operator lie on the circle | Λ 1 = 1. However, if the operator
is not unitary, then λ = 0 lies in its spectrum. Hence, the entire disk
U l ^ l is in the spectrum and the proof is complete.

Another consequence of Theorem 1 is

COROLLARY 2. // A is semi-normal, if 0 lies in the spectrum of A,
and if min AA*>0, then for any β the circular disk

\λ\<Lmax Jθ—((max Jθf—min AA*)1'2

lies in the spectrum of A {where, of course, maxJθ>0).
The proof follows from the observation that λ — 0 is in sp (A) but

no accessible points of the spectrum can lie in the disk in question.
It can be remarked that if A is an arbitrary bounded linear operator

(not necessarily semi-normal), and if the conditions that 0 be in sp (A)
and mmAA*>0 are fulfilled, then there surely exists some circular
disk |^|^const. in the spectrum of A; sec, e.g., [7, pp. 76-78]. If
however A is semi-normal, the radius of the corollary can even be
specified.

An immediate consequence of Theorem 2 is the

COROLLARY 3. If A is semi-normal but not normal, then the spectrum
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of JQ (in particular, of the real or imaginary part of A) has a positive
measure not less than ||i?||/4||A||.

It should be noted that (5) surely holds if S is the spectrum of
J although it may hold for a set of measure less than that of the
spectrum (but whose closure would, of course, contain the spectrum).

It seems natural to conjecture that the spectrum of (say) the real
part, J=(A+A*)/2 of any semi-normal, but not normal, operator A
must be an interval. Evidence to support the conjecture is furnished
by the isometric, but not unitary, operators V, in which case the
spectrum of (F+F*)/2is the interval — l^Λgl. This fact also follows
from the normal form for isometric operators referred to above and
from the fact that the spectrum of (D+D*)/2 is the interval — l^Λ^l
(cf., e.g., [3, p. 155]). Further evidence is furnished by the (bounded)
matrices A=(Cj-t)9 where cn = 0 if n<0, for which the spectra of the
associated Toeplitz materices J~ (A+A*)/2 are intervals, provided J is
not a multiple of the unit matrix (in which case A is also) see [1, p.
361] and [2, p. 868]. It was shown in [6] that the matrices A are
semi-normal.

The conjecture will remain unsettled. In fact, it will remain unde-
cided whether or not the spectrum of the real part J of a semi-normal,
but not normal, operator must even contain some interval. The asser-
tion of Corollary 3 does not seem to preclude the possibility of, for
instance, a nowhere dense spectrum (of positive measure).

2. Proof of Theorem l Let λn—rne
ίθn be chosen so that λn is not in

sp (A) and λn-+λ as %->oo. Put An = A—λJ. Then AnA% = AnA%AnAn-
1, so

that the spectra of AnAt and A*An, hence the spectra of AA* — 2rnJθ ,
and A*A—2rnJθn, are (respectively) identical. Since λ—reiθ is in the
spectrum of A, then either (A—λ)xm-^0 or (A—λ)*xm-+0 for some
sequence of unit vectors xm. In either case, it follows from (1) that
limsup(#TO, A*Axm)^r2 as ra->oo and that (xmf Jθ xm)->r as ra, n-+oo.
Consequently, min (AA* —2rJθ)^— r2 and hence min AA*—2r max Jθ+r*
^0. The desired relations (3) and (4) follow and the proof of Theorem
1 is complete.
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