
ON THE INEQUALITY Δu^f(u)

ROBERT OSSERMAN

We are interested in solutions of the non-linear differential inequality

( 1 ) Δu^f(u)

where u{xλ, , xn) is to be defined in some region of Euclidean w-space

and ΔU — YJ— is the Laplacian of u. Wittich [5] considered the corre-

sponding equation

(la) Δu = f(u)

in two dimensions and found conditions on f(u) which guarantee that
(la) has no solution valid in the whole plane. Haviland [1] found
a slightly weaker result in 3 dimensions, and Walter [4] generalized
Wittich's theorem to w-dimensions. The method is essentially the same
in all three papers, resulting on the one hand in the requirement that
the function f{u) be convex, and on the other hand in a rather involved
argument for the w-dimensional case. The proofs do extend immediately
to the inequality (1).

In the present paper we deal directly with (1), and obtain in
particular a simple proof of a stronger theorem (Theorem 1 below) where
the convexity of f(u) is no longer required. Our method also yields
much more precise information on the behavior of solutions.

Recently Redheffer [3] has obtained in the two-dimensional case
an improvement of our Theorem 1, where the monotonicity of f(u) is
not needed. Although Redheffers's theorem may very likely be ex-
tendable to n dimensions, it does not seem possible by his method to
obtain the more precise results mentioned in the remarks following
Theorem 1.

The present investigation resulted from an attempt to determine
the type of a class of Riemann surfaces. One result, Theorem 2, is
given here as an application of Theorem 1.

We should like to mention finally that the method presented here
has been developed independently by Keller, who, in a paper to be
published, derives further information on the behavior of solutions of
(la), and applies his results to an interesting physical problem described
in [2].

Notation. Throughout this paper we shall reserve r for the polar
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distance, r — Vx\-\-* +x2

n, in space of some fixed dimension n^l. We
note that if φ(r) is considered as a function in this space depending
only on r, then

(2) Jφ = ^
dr r dr rn~λ dr

LEMMA 1. Let f(t) be a (weakly) monotone increasing continuous
function defined for all t. Suppose that there exists a function φ(x)
satisfying

( 3 ) φ"(χ) Jtλ
X

for 0^x<Ry with >̂'(0) = 0 and <P(X)-+ + CΌ as x-+R. Then if u is any
solution of (1) for ri^R, we have u(xlf •••, xn)^φ{r) at each point.

Proof. By (2) the function ψ(r) satisfies Δψ = f(φ) for r<R. We
let v—u~φ and wish to show that v^O for r<R. But suppose v>0
at some point. Since v-> — oo as r->R it would follow that v would
take on its maximum at some point P with r<R. Then v>0 in some
neighborhood N of P, that is u>φ throughout N. This implies Δv — Δu
— Δφ^>f(u) — f(φ)^>Q, so that Δv would be subharmonic in N, contradicting
that v had a maximum at P.

LEMMA 2. / / /(ί)>0, f'(t) continuous, and f'(t)^O for all t, then
equation (1) has a solution u valid for all (xlf •••,#„) if and only if
there is a solution of (3) valid for all x>0, with ^(0) = 0.

Proof. If such a function φ exists, then φ(r) is the desired solution
of (1).

Conversely, suppose that no such function φ(x) exists. Given an
arbitrary real number α, there exists1 in any case a solution of (3) with
initial values ^(0)=α, y/(0) = 0, valid in some interval O^α ^^o. Then
there is a maximal interval 0^x<R in which this solution exists.

Further, we have by (2) that -^(xn-γ)=xn-1f{ψ)>0 for x>0, so that
dx

xn'1φf is increasing, hence positive for x>0 since ^'(0) = 0. Under these
conditions we must have <p(x)-> + ™ as x->R. Then by Lemma 1 any
solution u of (1) would satisfy u^φ for r<R. In particular we would

1 The existence does not follow immediately from classical theorems, but may be

J x I CS

o sn-i )otn~*fM dt ds and

applying standard iteration procedure.
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have u(0)^ψ(0)—a. But since a was arbitrary there could be no solution
u valid in r<R for arbitrarily large R.

LEMMA 3. // f(t)>0, f'{t) continuous, and f'(t)^O for all t, then
equation (3) has a solution ψ with <ρ'(0) = 0 valid for all x^O if and only if

S oo / f t -1/2

dt—oo

Proof. Suppose first that there does not exist a solution of (3)
valid for all x^O. Then we have seen that if <p(x) satisfies (3) in some
interval, with y>(0) = 0 and ^'(0) = 0, then for some # > 0 we will have
φ(x)-> + cv as x-*R. Further we noted that for x>0, φ'(x)>0, and
hence from equation (3), φ"<f(φ). Thus φ'φ" <f{ψ)ψr and integrating
from x—0 to x — t gives

S i CφCf)

f(φ)φ'dx = 2\ f(φ)dφ.
o Jo

Hence
/Cφ \-i/2

Π f(s)dsj dφ<V2 dt

and integration from t = 0 to t=R gives

Suppose conversely that

- l/2

o

G
t \-l/2 /ft \-l/2

f(s)ds\ -^Oas ί->co since (\ f(s)dsj is monotone de-

f(s)ds-^<n and /(£)/£-*oo since /(ί) is monotone

o

increasing. Thus for an arbitrary fixed α, f(t)>t—a, for ί>ί 0 . Further,
if y> is the solution of (3) with φ(0)=a, ^'(0) = 0, then φ(x)^a for ^^0,
and f(φ)^f(a). Hence (xn-1φ/y^f(a)'Xn-'1} and integrating twice wefind xn-y^±-}wχn9 φ^J_WtfΛ Thus φ(x)>t0 for #># 0 . As above we

n 2n

note that

for

Hence ~—φ'^LSxJ for χ>χly and consequently ^>r/>—f(φ) for
x 2 2
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Thus

or

whence
V-l/2

ί
y(αθ 2

dt>x-xl

Since the constant C does not affect the convergence of the integral
we have that x must be bounded, which completes the proof of
the lemma.

We may note that the proof of Lemma 3 is essentially that of
Haviland [1]. The assumption made by Haviland that f(t)^c>0 is seen
to be unnecessary, but it is interesting to note that the theorem is no
longer true in n^S dimensions if we weaken the requirement to /(£)Ξ>0.
(If we allow f{t)~0 we must speak of non-constant solutions of (3) for
all x.) The reason for this is that a non-constant subharmonic function
in one or two dimensions cannot be bounded above, while in three or
more dimensions it can. Thus if we set f(t) = O for t^O and f(t) = t2

for £>0, we see that any negative subharmonic function φ (such as
φ(r)=— l/(l+r2) in 4 dimensions) satisfies Δφ^f(φ) throughout space,
although the integral in (4) converges.

Combining these three lemmas we obtain the desired result:

THEOREM 1. Let f(t) be positive, continuous, and monotone increasing
for t^t0, and suppose

-1/2

Then a twice continuously differ entiable function u cannot satisfy Δu>0
throughout space and Δu^f(u) outside of some sphere S.

Proof. Suppose such a function u exists. Then it has a maximum
£x on S, and Δu has a minimum m>0 on S. Define g(t) to be continuously
differentiate for all t, and such that

a) g'(t)^O for all t

b) g(t) ^m for t£t,

c) g(t) £f(t) for all t

d) g(t)^f(t)-l for t^tj.

Then Δu^g(u) throughout space, so that by Lemma 2 there exists
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a solution of (3) with / replaced by g, and by Lemma 3 we would have

-l/2

dS o o / f f

which, in view of d), contradicts the hypothesis.

Remarks 1. That the integral condition on f{t) is the best possible
can be seen most easily, as was pointed out by Walter [4], by noting
that for an arbitrary continuous positive function f(t) we can define
u(xλ) for x^O as the inverse of

and for xλ<0 by u(x1)=u(—x1). Then Δn——~ — f(n) in any number
dx\

of dimensions, and if the integral diverges this will hold for all xu

and hence throughout space.
2. We may note that in the proof of Lemma 3 we have obtained

somewhat more than the non-existence of a solution for all x. Namely,
we have an upper bound on the values of x for which (3) can hold.
However, the expression obtained is not a very convenient one, and in
any case does not give the best possible bound. The advantage of
Lemma 1 is that it allows us to give the best bound whenever we can
find the function ψ explicitly. For example, if we have the inequality
Λu^εe2u, ε>0, in two dimensions, then we can easily verify that

o

satisfies the hypotheses of Lemma 1, so that u(0)^ψ(0)=\og—-^
Rv ε

We may therefore state the following result:
// u satisfies Ju^εe2u for r^R and u(0) = a,

then R<—%= .
~ eaV ε

3. We note that in the proof of Lemma 1 we need only assume

that ψ satisfies the inequality ψ^+'^-ψ^fiψ) . In many cases it may
x

be possible to find an explicit solution of this inequality, but not of
equation (3). For example, if f(φ) = ε\φ\*, α > l , then the function
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satisfies in n dimensions

c-2lmφ1+2lm if 2m + 2^n, r<R .

Hence Jφ^εuι+2lm if β;>2(m + l)ε-1/2c-1/w . We can therefore state the
following:

// u satisfies Δu^ε\u\Λ for r^R in n-dimensions, where ε > 0 and
a>l, and if u(Q) = a>0, then i e ^ 2 ( m + l ) ε " 1 / 2 α - 1 / m , where

! a-1

4. The above remarks may also be viewed from the other direction.
That is, if a function u is known to satisfy (1) for rgfl, then we get
a pointwise upper bound on u in terms of the solution of (3). Further-
more, if we know that u<M for r—Rf then we can improve these
bounds. Namely, we have u^φ, where φ is the solution of (3) with
^'(0) = 0 and ψ{R)—M. Finally, these bounds are again the best possible
since <p(r) itself satisfies (1).

We turn next to an application of Theorem 1.

THEOREM 2. // a simply-connected surface S has a Riemannian
metric whose Gauss curvature K satisfies K^ — ε<0 everywhere, then S is
conformally equivalent to the interior of the unit circle.

Proof. Considering S as a Riemann surface, we know that it can
be mapped conformally onto either the interior of the unit circle or
else the whole plane. We proceed by contradiction. Suppose we could
map S conformally onto the x, ?/-plane. The Riemannian metric on S
could then be expressed as ds2=λ2(dx2+dy2), and we have for the Gauss
curvature:

Γ^—ε means that the function u=\og λ would have to satisfy Δu^εe2u

throughout the plane, contradicting Theorem 1.
We remark finally that the condition K^ ~ε can be weakened slightly

to K<0, and

c r

Kdω

dω
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for every region R on the surface including some fixed compact set D,
where dω is the area element on the surface. The proof of this again
involves assuming that the surface may be mapped conformally onto
the whole x, /̂-plane and defining z(r) as the mean value of K over
the disk x2+y2<^r2. Simple inequalities yield

Z

ff-\.^L-^εe2z for r sufficiently large,
r

and

z" + — -̂ > 0 everywhere.
r

Since z"+-— is just the Laplacian of z in four dimensions, we again
r

have a contradiction to Theorem 1.
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