ADDITIVE FUNCTIONALS OF A MARKOV PROCESS
R. K. GETOOR

1. Introduction. We are concerned with functionals of the form
14

L:S Vla(r)]dr where x(t) is a temporally homogeneous Markov process
0

in a locally compact Hausdorff space, X, and V is a non-negative
measurable function on X. In studying the distribution of this functional

various authors (e.g. [1], [3], and [7] have considered the following
function

1.1) r(t, x, A)=E{e-" |2(0)=x;a(t) € A} p(t, z, A)

where p(t, z, A) is the transition probability function of x(¢). If one
can determine 7 then one can in essence determine the distribution of
L since (#>0)

r(t, 2, A)= S:e-udiP[Lg O =z;2t) e AT pt, @, 4) .

Formally it is quite easy to see that if p satisfies an equation of diffusion
type

op
1.2 £ =0
(1.2) ot P

that » should satisfy the equation

or
1.3) fé-{_(Q uV)r .

If a(t) is the Wiener process in E¥ and V satisfies a Lipschitz
condition of order «>0 Rosenblatt [12] has given a rigorous derivation
of (1.3). In this paper we use the theory of semi-groups to give a
meaning to (1.3) for a wide class of processes without assuming any
smoothness conditions on V. Rosenblatt’s result does not follow from
ours since our results only imply that = is a “weak” solution of (1.3).
However, for many applications (e.g. [10]) this is all that is really
required.

Because of certain difficulties connected with the definition of the
conditional expectation in (1.1) we define » directly and prove that if

r(t, x, A)
o(t, ¢, A)>0 then oz A) 7y
Since we intend to apply analytic methods it is necessary to investigate
the dependence of = on its various variables. This is done in § 2.
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is the appropriate conditional expectation.
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Beginning in § 3 we assume that p(¢, x, 4) has a density f(¢, z, y)
with respect to a Radon measure m and we show (8§84 and 5) that if

U.p(x)= Sgo(y)p(t, 2, dy) has infinitesimal generator 2 on L,(m) then T,¢(x)

=S§o(y)r(t, xz, dy) has infinitesimal generator 2—uV if V is bounded,

subject to certain regularity conditions on f. If V is unbounded our
results are less complete and are contained in Theorem 5.2. In the
sequel we will suppress the parameter u.

We use throughout this paper the function space approach to
stochastic processes. We also make use of certain elementary facts
about integration in locally compact spaces. The reader is referred to
[2], [4], and [5] for the basic facts required. In a future paper we
plan to study the spectral properties of the operators defined here. In
that paper X will be an open subset of an N dimensional Euclidean
space.

I would like to thank Dr. R. M. Blumenthal for several enlightening
discussions during the course of this research.

2. A class of integrals over a function space. Let X be a locally
compact Hausdorff space and B(X) the Borel sets of X; that is, the
smallest s-algebra of subsets of X containing the compact sets of X.
Let X be the set of all functions from [0<t< ] to X which are right
continuous; that is, a(t)—x(t,) if ¢ | t,. Let (¢, x, A) be a transition
probability function defined for ¢>0, xze X, and AeB(X), such that
given an arbitrary probability measure ¢ on B(X) there exists a Markov
process @,(t) with paths which are right continuous and which has z as
its initial distribution and (¢, #, A) as its transition probability. In
other words, if B(X) is the s-algebra of subsets of X generated by sets
of the form

A= {a(+)|x(t,) e A;;5=0,1, <+, m; A;€ B(X); 0=£,<t;< -+ <1}

then there exists a countably additive probability measure, P,, on B(%)
such that

@y p@=| | -] e, o, do)pe-t, o, dz)

0 n

‘p(tn—tn~1; Ln-19 dwn) .

If p assigns mass one to a single point, x, we write P, for P,.

We assume that
(P)p(-, +, A) is jointly measurable' in (¢, z) for each AeB(X). We also
pick a fixed g, and a(¢) will always denote the processes having x as

1 Measurability conditions in ¢ are understood to be with respect to the ordinary Borel
sets of [0<t<C ].
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its initial distribution. Clearly (once we have established Theorem 2.1)

(2.2) PlA|z(0)=x]=P,4) , (4 B(X)) .
If AeB(X) we define

(2.3) A={a()lw(-) e X; x(t)e A} e B(X) .

If 4eB(¥) and AeB(X) we define for t>0

(2.4) P4;z;t, A)=PJ4ANA,] .

It is evident that P(-;x;t, A) is a finite measure on B(X) for fixed
x, t, A and that P(4;z;¢t, -) is a finite measure on B(X) for fixed 4, =, t.
It is easy to see that if £ and A4 are such that p(¢, z, 4)>0 for all «, then
(again assuming Theorem 2.1)

(2.5) PlA|x(0)=z; x(t) € A] _Pl4;z; ¢, A] .

THEOREM 2.1. P[4;-; ., A] 45 a measurable function of (¢, x) for
JSized A, A.

Proof. Let A be fixed and suppose
A={a(-)|x(t,)e A,;j=1, -+, n}

then P[4;x;t, A]=P,[4NA,] which is measurable in (¢, ) in view of
(2.1) and (P,). Hence P[4; x;¢, A] is measurable in (¢, z) for A’s which
are finite disjoint unions of sets of the above form. But the measur-
ability of P[4;x;¢, A] is preserved under monotone limits of A’s and
hence P[4; z;t, A] is measurable for all 4e B(X). See [8].

The following lemmas will be of use in the sequel.

LEmMA 21. Let (Y,®) and (Z,D) be measurable spaces and let
m(A, B) be defined for Ae & and Be 9. Suppose that m(-, B) is a measure
on (Y, ®) for each fized Be D and that m(4, -) is a measure on (Z, D)
for each fized Ae®. Let f=0 be a measurable function on (Y, ®) then

(2.6) o(B)= | rwymidy, B)
is a measure on (Z, D).

Proof. The only thing that requires proof is that ¢ is countably
additive. Let {f,} be a sequence of simple functions such that f,=0
and f,1 f. Clearly

0.(B)= Wy)m(dy, B)
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are measures and ¢,(B) 1 ¢(B) for each Be . Let B= G B; where the
i=1

k
B/’s are disjoint. Put B®=\JB,, thenlimlim ¢,(B®)=q(B). Since q,(B®)
Jj=1 n k

is increasing in both # and % we can interchange the limits obtaining

q(B):lilxcn lim ¢,(B®)=lim ¢(B®)= i q9(B)) .
n k Jj=1

LEmMmA 2.2. Let (Y, ®) be a measurable space and let f(t,y) be an
X valued function defined for t=0 and ye Y. If f(-,y) is right continuous
Jor each ye Y and f(t, ) is G-measurable for each t then f(t,y) is jointly
Bx G measurable. (B is the s-algebra of ordinary Borel sets.)

Proof. Define g,(t,v)=f((5+1)/n,y) if j/n<t<(5+1)/n for j=0,1,2,---
and n=1,2,.--. Let Be®B(X) and define G,,=f((j+1)/n, -)"'(B), then
since f(¢, -) is @-measurable G,,€®. Let A,,= {t|jjn<t=(j+1)/n} B,
then

9z '(B)= JO AaxG,,

which is in Bx®. Hence g, is jointly Bx (& measurable for each n,
but ¢,.(¢, 2)— (¢, ) as n— o and thus f is Bx @ measurable.

If @ [«(-)] is a complex valued measurable* functional on X we
write 7[@;t, x, A] for the integral of @ over X with respect to the
measure P[-;x;t, A], provided the integral exists.

THEOREM 2.2. If @=0 s a measurable functional on X then

rl@; t, x, A] is a measure on B(X) for fized (t, x) and is measurable in
(, ) for fixed A.

Proof. This is an immediate consequence of Lemma 2.1 and
Theorem 2.1.

Let ¢ be a complex valued measurable function on X, then for
each t>0 we define a measurable functional, ¢,, on ¥ as follows:
o Ja()]=¢[xz(t)]. Also if @ is a measurable functional on ¥ we denote
its integral over ¥ with respect to the measure P, by E{@[x(-)]|x(0)=x}.

THEOREM 2.3. Let @=0 be a measurable functional on X and ¢ a
complex valued measurable function on X; then

@1 [ewrio; o, an=E(@-ola=a} .

provided either integral exists.

2 Measurability of real or complex valued functions always means Borel measurability.
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Proof. Suppose ¢=1, where I, denotes the characteristic function
A, then the left hand side of (2.7) is 7[®;¢, x, A]. Now if @=1I, then

r[l,;t, @, A]=P[4; x; ¢, A] .
But
(Li[a( =L [a@)] =L, [o(-)]
where 4,= {z(-)|x(t)e A]. Thus
E{l,-(L):|x(0)==} =P[ANA]=P[4; x; ¢, A] .

Let @, be a sequence of simple functionals such that ¢, 1 @, then @,-(L,),
is a sequence of simple functionals increasing to @-(I,),. Therefore

EA{®,- (L), |2(0)=2} 1 E{@-(I).|2(0)=2} .

On the other hand »(®,;t, x, A)} r(@;t, ¢, A) by the monotone con-
vergence theorem and since

E{®, (L), |2(0)=a} =7[Pn; ¢, @, A]

it follows that if either of the integrals in (2.7) is finite the other is
also and they are equal in the case ¢=1,.

If ¢=0 let ¢, be a sequence of simple functions increasing to ¢
then if either of the integrals in (2.7) exists we have equality for each
¢, and by monotone convergence for ¢. The result for a general ¢ now
follows in the usual manner.

For each t=0 let z,(cr)=w(t+7) for all -=0, then we define a map,
S,, from % into X by S,z(:)=x«,(-). Clearly S, is a measurable transfor-
mation of ¥ into ¥. If @ is a measurable functional we define S,P[x(-)]
=0[Sx(+)].

THEOREM 2.4. Let @ be a functional measurable with respect to® B,
and ¥ be measurable with respect to B, such that 0XO<M and 0V <M,
then

2.8) S’l‘[@; t, z, dylr[¥; s, y, Al=r[@-S,¥; t+s,a, A] .

Proof. Since @ and ¥ are non-negative and bounded it is clear that
the integral in question exists. If @=I, and ¥=1I, with Fe3B, and
G e B, then

S Iola(- )=l Ssa(-)]=1

=1y 1
. @

thus to prove (2.8) for I, and I; we must show that

3 ®B[t1, t2] denotes the s-algebra of subsets of £ generated by sets of the form
{w(-) ‘ x(z-;)eAj; tlgrjgtg}, and B; =§B[O, t].
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2.9) gP[F; z; t, dYylP[G; y; s, A]=P[FNS;'G; x; t+s, 4] .

We first consider the case in which

F={x(-)|a(t,) e A;; =1, - -+, n; £,<t}
G: {x(.)lw(t;c)eBk; k:]-y e, My tl:.<s} .

In this case

S7'G={a(-)|z(t+t) e By; k=1,2, -+, m} ,
thus

SP[F; x;t, dylP[G; y; s, Al

ZSS e SA p(tly @, dwl)p(tz_tly &y, dwz) cee p(t_tny Ln s dy)
4,

n

.S .o-S p(t;,y,dyl)---p(S—-t;n,ym,A)
B B

:S "'S S "'S p(t19x,dxl)"'p(t_l—t;_tnvxn,dyl)
4, 4,5, B,

‘p(t+t;—(t+t;)’ Y, dyz) b p(t+s_(t+t;n), Ym s A)
=P[FNS;'G;x; t+s, A] .

If ¢=t,, or s=t,, or both, it is necessary to make only minor changes
in the above argument.

This equality clearly extends to finite disjoint unions of such F’s
and G’s and since S;' is a o-homomorphism it extends to monotone limits
of such G’s. Thus (2.9) holds for each F'in the algebra of sets generated
by sets of the given form and for each Ge®B,. TFor fixed G e B, the
left hand side of (2.9) is a measure in F' by Lemma 2.1, hence (2.9)
holds under monotone limits of such F’s and thus finally (2.9) holds for
all ' and G in the appropriate os-algebras.

Let @, and ¥, be sequences of simple functionals increasing to @
and 7, then by monotone convergence

Sr[@,; t, @, ¥ ; s, y, Al=r[0,-SF; t-+s, @, A] .

Applying an argument similar to that used in the proof of Lemma 2.1
the equality (2.8) results. (This also follows from Theorem 2.3.)

We conclude this section with the following theorem which is easily
proved using standard approximation techniques.

THEOREM 2.5. Let @ (¢, x(+))=0 be jointly measurable in t and x(-)
then r[@(t, x(-)); t, x, A] s jointly measurable in (¢, x).
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3. Additive functionals. For each pair (¢,,¢,) with 0=Z¢,<¢, let
L[t t,; (-)] be a functional (L may be+ ) on ¥ which is measurable
with respect to B[t £,] and which is jointly measurable in ¢, ¢, and
z(+). We further assume that for ¢ <¢<¢, and each x(-)e X we have

3.1) L{t,, &5 o(-)]=Llt,, t; a(- )]+ LLE, &5 ()] ;
and that
(3.2) StL[tl’ bo; $(')]=L[t1+t, t,+t; w(’)] .

Such a functional will be called an additive functional on ¥ (See [1]).
THEOREM 3.1. Let V=0 be a measurable function on X, then
Lity, b3 a()1= " V(o)

18 an additive functional on X.

Proof. Define F(t, x(-))=x(t) then F' is measurable in z(-) for fixed
t and right continuous in ¢ for fixed x(-). Thus by Lemma 2.2 F' is
jointly measurable in ¢ and z(-). Since V[ax()]=V[F'(¢t, 2(-))] is the
composition of measurable transformations V[a(z)] is jointly measurable
in r and «(-), and therefore (a simple argument using Lemma 2.2 shows

that) Stz V[a(z)]dr is jointly measurable in ¢,,%¢,, and a(-). The other

i
properties that L must satisfy are obvious.
We suppose that L[t ¢,; #(-)]=—M where M>0 is independent of
t, 8, and z(-). We define

3.3) r(t, @, A)y=rle *OH=O ¢ A].

Theorems 2.2 and 2.5 imply that (¢, #, A) is a measure on B(X) for
fixed (¢, ) and is jointly measurable in (¢, ) for fixed A e B(X). More-
over the fact that

(3.4) 0=r(t, x, A)=e"p(t, , A)

is a simple consequence of our definitions.
THEOREM 8.2. r(t+s, @, A)=Sr(t, z, dy)r(s, 4, A) .

Proof. This is a corollary of Theorem 2.4 once we observe that

Ste-L[O,s; 2()] — e—L[O,s; Stz(-)] — G_StLI:O’S; ()] — e—L[t,H-s: z(*)] ,

and therefore
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PR IUE O .Sce—L[O,s; #()] — g=LI0t+52()]
At this point we assume that there exists a Radon measure, m, on

B(X) such that p(¢, z, A) has a density f(¢ «, y)=0 with respect to m
for t>0; that is

(3.5) plt, 7, )= F(t, 2 ymidy) £>0.
We assume that f is jointly measurable in ¢, 2, and y, but we do not
assume that m is finite. We introduce the following conditions on

St x,y):

(P,) S S, x, yym(dr)<ke® where k and « are positive constants in-

dependent of y and ¢.

(P;) Given ¢>0 and a compact set AC X there exists a compact set B
such that

Se F(t, 2, yym(dz)<e for ye A and t<1 .
x€B
We define operators on appropriate function spaces as follows:

(3.6) (T9)e) = oy, =, dv)
(3.7) (U.)@)= Sm/)p(t, z, dy):jcp(y)f(t, 2, y)ym(dy) .

THEOREM 3.3. If f(¢,w,y) satisfies (P,) then {T,; t>0} and {U,; t>0}
are semi-groups of bounded operators on L,(m).

Note. All Borel sets are m-measurable [4; 5] .

Proof. From (3.4) we obtain
I Z0@)1< [ le@Irtt, o, dy)

§e”g le(y)|p(t, @, dy)=e"U,|¢|(x)

and thus it will suffice to prove that U, is a bounded operator on L,(m)
for each ¢>0. But

U p(@)P=] S £t 2, W)e(y)mldy)

< Sf(t, @, )| 9() Prldy) ,
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and therefore

[ ws@pm@n= Sm(dx)S £t 2, 9)le)Pmidy)
<o |l .

Thus U, <ke* and |T,f<ke™** . The fact that {T.;¢>0} and
{U,; t>0} are semi-groups now follows from Theorem 3.2 and the fact
that p(¢, x, A) satisfies the Chapman-Kolmogorov equation.
THEOREM 3.4. If f(¢, z, y) satisfies (P,) and (P;) and lim L[0, ¢; 2(-)]=0
t—0
for all z(-)e X then the semi-groups {U,; t >0} and {T,; t>0} are strongly

continuoust on L(m).

Proof. We prove the theorem for {7',; >0} the results for {U,; >0}
being a special case (take L=0). We must show that |T,¢—¢|—0 as
t—0 for all ¢ e Ly(m). Since |T%| is uniformly bounded for =<1 it will
be sufficient to show that |7,¢—¢||—0 as t—0 for ¢ continuous with
compact support, such functions being dense in L,(m) since m is a
Radon measure, [2]. We first show that T,¢(x) — ¢(x) pointwise as t—0
if ¢ is continuous with compact support. According to Theorem 2.3

Tip(a)= Ssﬂ(y)'r(t, z, dy)=E{e ") o(a(t))|x(0) ==} .
Using the right continuity of x(-) and our assumption on L we see that
e 012 ()] > ¢[a(0)]
boundedly as ¢ | 0 and hence by the bounded convergence theorem
T.p(@) = E{g[z(0)]|2(0)=2} =¢(x) as ¢]0.
Let A be the support of ¢, then if B is compact and BDA we have

17—k ={, | (@)~ (@) @)+ | 1 Tug@)—g(@) Pm(dar)

= 1+Iz .
But

IT0(@)| = [ le@re, o, dy) < sup lg(a)] e ,

hence I,—0 since B is compact. Now since BDA we have

Ls| (Te@imdn) ze*| 1P| 1 2 omidpmida)

4 By the strong continuity of a semi-group {7%;t>0} we will always mean strong
continuity for £==0 where 7} is the identity.
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and so, if B is chosen properly, using (P;), we see that I, is small.
This completes the proof of the fact that {T,;¢>0} is strongly con-
tinuous on L,(m) .

4. The Darling-Siegert equations. In [3] Darling and Siegert showed
that r(¢, x, A) has to satisfy two integral equations. We give a derivation
of these equations based on the material of §2. We assume that
p(t, ¢, A) satisfies (P,) and that

13
Lt t; a(- )= Vie()lds
1
where V is a bounded, non-negative, measurable function on X. The
formal outline of the derivation given below is exactly that of Darling
and Siegert.

We begin with the following identities which are easily verified (f
measurable, non-negative, and bounded)

(4.1) exp[—S: F()de zl—S:f(s) expll:—-gz F(o)de |ds

4.2) exp [— S f(z')d‘r:|= 1— S £(s) exp [— S f(r)dr:]ds .

Also using Theorem 2.4 we have

(4.3) r[V[a;(s)] exp (— S” V[x(r)]dr); t, z, A]
:r[V[x(s)]-Ss exp (—SD V[ac(z-)]dr); (t—s)+s, @, A]
— Sr[V[m(s)]; s, , dy]rlexp (—S:_SV[w(r)]dr>; t—s,v, Al
— SV(y)p(s, @, dyyr(t—s, y, A)

provided we show that

(4.4) |tV e); s, 2 dl={ @ Ve a)
for measurable, bounded f=0. Suppose f=1I, and V=I, then
[r@rVie@; 5, 2, dyl= PILEN; 23 5, 41
=PIB.N A= P, 5, ANB)=| Q) Vu)p(s, @, dy) -

The standard approximation technique now yields the desired result (4.4).
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Putting f(r)=V][a(r)] in (4.1) and applying (4.3) we obtain (the
interchange in the order of integration is valid since

Vla(s)]-exp (— S” V()] dz')

is bounded and jointly measurable in s and z(-))

(4.5) ri, x, A)=p(, z, A)——S:dsg Viyyr(t—s, y, A)p(s, =, dy) .
In a similar manner using (4.2) we find

(4.6) r(t, x, A)=p(t, x, A)— S:dsg V(y)p(t—s, y, A)r(s, z, dy);

and these are the Darling-Siegert equations. In deriving (4.6) one needs
the relation

(4.7) r[VI2(0)]; t, y, Al=V(y)p(¢, y, A)

which is obtained in much the same manner as (4.4).

Taking Laplace transforms in (4.5) and (4.6) yields (the necessary
interchange of order of integration is again justified since the integrand
is bounded and jointly measurable in its variables)

(4.8) 74, x, A)=p(2, x, A)— S V)2, y, A)pQ, x, dy)

(4.9) 72, x, A)=pQ, x, A)— SV(y)f)(& y, AYH2, @, dy)
where # and 9 are the Laplace transforms of » and p.

5. The infinitesimal generators. Let 2 and 2’ be the infinitesimal
generators of {U,;t>0) and {T,;¢{>0} respectively. We assume in this
section that (P,), (P,), and (P;) are satisfied. It then follows, since the
semi-groups involved are strongly continuous on L,(m), that Q2 and &’
are closed densely defined operators on L m). See [6] and [9].

We assume that

(5.1) Lt t; o())=| " VIn(e))dr

where V is a non-negative measurable function on X. Note that in
this case M=0.

THEOREM 5.1. If V s bounded then ' =02-—1V.

Proof. Let J, be the resolvent of {T,;t>0} then for i>a we
have
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Jm(x)=re‘” (@)dt
0
and thus

@< e MTg@rdt .

Applying the Fubini theorem we see that J,¢(x) exists for almost all
z(A>a) and is in Ly(m), moreover for A>a we have

k
(A—a)

(5.2) 1A=

In view of the above facts we can write

(5.3) ()= Sso(y)%(z, z, dy) .

From the general theory of semi-groups, [6] and [9], we know that
for 2>« the range of .J, is independent of 1 and is, in fact, the domain
of ', which we denote by D,. In addition it is known that

(65.4) (A—2) =9 for all ¢e Ly(m);
(5.5) J(A—2p=¢ for all ¢eD,, .

Let I, be the resolvent of {U,;t>0} and then in a similar manner
we have

5.7) Lo(@)=|¢)itt, 2, d)=[¢0)F 0, 2, yym(@y) .

From (4.8) we see that

Jm(x)zm(x)—Sw(z)SV(y)%(a, y, do)d(3, @, dy)
=L (@)~ LIV J9]@)
— L[~ V-Jig)@) .

The above steps are justified since V-J,¢ € Ly(m) under our assumption
that V is bounded. Thus D, cD, and conversely using (4.9) D,C D, ,
that is, D,=Dgy . Now

(A=) p=(—Q)\[¢— VJ,¢]
:¢_ VJ)\SD ’

or equivalently,

A—Q—-V)l\o=¢ for all ¢elL,.
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Thus 2--V is an extension of £, but since V is bounded the domain
of 2—V is Do,=D, . Hence '=02-V.

COROLLARY. If V is bounded and f(t, x, y)=rf(t, ¥, x) then 2 and 2’
are self-adjoint operators.

Proof. Since f(¢, «, y)=r(¢, v, ) each U, is a bounded self-adjoint
operator and hence 2 is also self-adjoint, although not necessarily bounded.
The boundedness of V implies that V considered as an operator on L,(m)
is bounded and self-adjoint, therefore 2—V is self-adjoint, [11]. Thus
2'=02—V is a self-adjoint operator which in turn implies that each T,
is a bounded self-adjoint operator.

If V is not bounded our results are much less complete (V is no
longer a bounded operator on L.(m) and one runs into the usual “ domain
problems ”). It is natural to try to approximate ¥V by bounded functions
and then use a limiting procedure. Accordingly we define

V) if V)N,
(5.8) Vn(x)={ ,
N if V(e)=N
and it is evident that each V, is measurable and bounded. Let
D,= {Splgp € Lz(m); V-pe Lz(m)} )

that is, D, is the domain of V considered as an operator on L,(m). We
are, of course, assuming that f(¢, «, y) satisfies (Py), (P,), and (P;).

THEOREM 5.2. If V is non-negative and measurable then D, N Dy, C Dg,
and 1f ¢ € DoN Dy, then 2 e=(2—V)e.

Proof. We define

¢ T
ry(t, x, A)=1r[e Yoy tacrre it x, A]
and

T0p(a) = [yt 2, dy) .

For each N we know that {T{";¢>0} is a strongly continuous semi-
group of bounded operators on L,(m) whose infinitesimal generator is
2—Vy,. Since Vy*1 V we have by monotone convergence that

(5.9) ry(, 2, 4) | r(t, @, 4) .
We first show that for each >0 and all ¢ € L,(m)
(5.10) | T — T, || —0 as N> oo,
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Since |75 || <ke** it will suffice to prove (5.10) for ¢ continuous with
compact support. Let py(A)=ry(t, x, A)—r(t, ©, A)=0, then py(A4)]0
for each fixed 4 and is a measure on B(X) for each fixed N. It is
clear that

| TSP (a) — T, (2| gg o ()l (d) -

Let ¢, be a sequence of simple functions decreasing to |¢|, then since
Sgoj(y),uN(dy) is decreasing in both N and j we can interchange the limits

obtaining |T™¢(x)—T,¢(x)] >0 pointwise as N— o at least if ¢ is con-
tinuous with compact support. If the support of ¢ is A then (5.10)
follows exactly as in the proof of Theorem 3.4 since

|, Te@Pm@a = | 1@l £ o vymdomdn

for compact B. Thus (5.10) is established.

We prove next that D,ND,c D, . LetJ® and J, be the resolvents
of {T{™;t>0} and {T,;t>0} respectively. Since |T5"|<ke** and
T™Me—T,p it follows that J&¢—J,¢ for each ¢e L(m) and i>«.
Choose a 1>« and let it be fixed for the remainder of the present
proof. If ¢eD,ND, then ¢e Dq_v for each N, hence there exist
¢y € L(m) such that ¢=J¢,. Moreover [A—(2—Vy)]¢=¢y or ¢y=12¢
— Q¢4 Vye. Clearly Vy¢— Vo pointwise and since |Vy¢|<| Ve it follows
that |Vye—Ve|—0. Thus ¢y—oip—Q2¢+Ve=¢ as N—>o in Ly(m).
But

1570y =GN S PPy —IPP| + [ TPP— TS|

and therefore J™¢y—J,¢ as N—co since |J{"| is uniformly bounded
in N. However, ¢=JM¢, for all N and hence ¢=.J,¢ which implies
that ¢ € D, .

Since ¢=J,¢ where ¢=20—Q¢+Ve we see that 1—L)p=¢=1¢
—QR¢+Ve¢ or equivalently that Q¢=(Q—V)¢ for ¢eD,ND,. This
completes the proof of Theorem 5.2.

COROLLARY. If Q is self-adjoint (that is, f(t, x, y)=f(t, ¥y, x)) then
2 is self-adjoint. Let E,(1) denote the spectral resolution of 2—Vy and
E(2) the spectral resolution of 2, then Ey()¢—>E)¢ for all ¢ € Ly(m)
provided that 2 is a continuity point of E().

Proof. We use the same notation as in the proof of Theorem 5.2.
From the corollary to Theorem 5.1 it follows that each T is self-adjoint
and T, being the strong limit of self-adjoint operators is self-adjoint
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for each ¢>0. Hence the infinitesimal generator, ', of {T,;t>0} is
self-adjoint. The strong continuity of {T';¢>0} implies that T,p=0 if
and only if ¢=0. A similar statement holds for T . Under these
circumstances EY’=Fy(¢") and E(2)=F(¢") where F, and F are the
spectral resolutions of 7™ and T respectively. See [11]. Thus if we
show that Fy()¢—F(i)¢ at all continuity points of F we will have
proved the corollary. Since T ¢ — T,¢ this follows from a theorem of
Rellich (See [11], p. 366).
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