
ADDITIVE FUNCTIONALS OF A MARKOV PROCESS

R. K. GETOOR

1. Introduction* We are concerned with functional of the form

L~\ V[x(τ)]dτ where x(t) is a temporally homogeneous Markov process
Jo

in a locally compact Hausdorff space, X, and V is a non-negative
measurable function on X In studying the distribution of this functional
various authors (e.g. [1], [3], and [7] have considered the following
function
(1.1) r(t, x, A)=E{e~aL\x(O)=x;x(t)eA}p(t, x, A)

where p(t, x, A) is the transition probability function of x(t). If one
can determine r then one can in essence determine the distribution of
L since (w>0)

r{t, x, A) = [° e-uλdλP[L^λ\x(O)=x;x(t)e A] p(t, x, A) .
Jo

Formally it is quite easy to see that if p satisfies an equation of diffusion
type

(1.2) Ωp
dt

that r should satisfy the equation

(1.3) to={Q-uVyr.
at

If x(t) is the Wiener process in EN and V satisfies a Lipschitz
condition of order α>0 Rosenblatt [12] has given a rigorous derivation
of (1.3). In this paper we use the theory of semi-groups to give a
meaning to (1.3) for a wide class of processes without assuming any
smoothness conditions on V. Rosenblatt's result does not follow from
ours since our results only imply that r is a "weak" solution of (1.3).
However, for many applications (e.g. [10]) this is all that is really
required.

Because of certain difficulties connected with the definition of the
conditional expectation in (1.1) we define r directly and prove that if

p(ί, x, A)>0 then r ' 'x' ' is the appropriate conditional expectation.
p{t, x, A)

Since we intend to apply analytic methods it is necessary to investigate
the dependence of r on its various variables. This is done in § 2.
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Beginning in § 3 we assume that p(t, x, A) has a density f(t, x, y)
with respect to a Radon measure m and we show (§§ 4 and 5) that if

Utφ(x) = \ψ{y)p{t, x, dy) has infinitesimal generator Ω on L2(m) then Ttφ{x)

~\φ(y)r(t,x,dy) has infinitesimal generator Ω—uV if V is bounded,

subject to certain regularity conditions on / . If V is unbounded our
results are less complete and are contained in Theorem 5.2. In the
sequel we will suppress the parameter n.

We use throughout this paper the function space approach to
stochastic processes. We also make use of certain elementary facts
about integration in locally compact spaces. The reader is referred to
[2], [4], and [5] for the basic facts required. In a future paper we
plan to study the spectral properties of the operators defined here. In
that paper X will be an open subset of an N dimensional Euclidean
space.

I would like to thank Dr. R. M. Blumenthal for several enlightening
discussions during the course of this research.

2Φ A class of integrals over a function space* Let X be a locally
compact Hausdorff space and 93(X) the Borel sets of X; that is, the
smallest σ-algebra of subsets of X containing the compact sets of X.
Let X be the set of all functions from I0^£<°°] to X which are right
continuous; that is, x{t)->x(tQ) if t \ U Let p(t,x,A) be a transition
probability function defined for £>0, xeX, and Ae23(X), such that
given an arbitrary probability measure μ on 33(X) there exists a Markov
process xjf) with paths which are right continuous and which has μ as
its initial distribution and p(t, x, A) as its transition probability. In
other words, if S3(ϊ) is the ^-algebra of subsets of X generated by sets
of the form

Λ= {x(-)\x(t3) 6 A,; i=0,1, , n; A5 e S(X); O = ίo<ίx< •••<«»}

then there exists a countably additive probability measure, P μ , on
such that

(2.1) μ(A) = I \ . . . I μidx^vfa, xQ, dxjpfa-^, x1, dx2)

If μ assigns mass one to a single point, x, we write Px for P μ .
We assume that

(Pi)p(-> 9A) is jointly measurable1 in (t, x) for each Ae23(X). We also
pick a fixed μ, and x(t) will always denote the processes having μ as

1 Measurability conditions in t are understood to be with respect to the ordinary Borel
sets of
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its initial distribution. Clearly (once we have established Theorem 2.1)

(2.2)

If Ae33(X) we define

(2.3) At={x(-)\x( )elί; x(t) e A} e

If ΛeS3(X) and Ae^B(X) we define for t>0

(2.4)

It is evident that P(- x t, A) is a finite measure on 33(£) for fixed
a?, ί, A and that P(J; a:; t, •) is a finite measure on S5(X) for fixed J, a?, ί.
It is easy to see that if t and A are such that p(t, x, A)>0 for all x, then
(again assuming Theorem 2.1)

(2.5) P[A\φ) = x; x(t) e A] =iMμ}A^ .
p(t, x, A)

THEOREM 2.1. P[A; , A] is a measurable function of (ί, x) for
fixed A, A.

Proof. Let A be fixed and suppose

A={x(-)\x(tj)eAj;j=l, -- ,w}

then P[A;x;t,A] = Px[Af)At'] which is measurable in (t,x) in view of
(2.1) and (Px). Hence P [ J ; a?; t, A] is measurable in (£, a?) for J ' s which
are finite disjoint unions of sets of the above form. But the measur-
ability of P[A;x;t,A] is preserved under monotone limits of J ' s and
hence P[A;x;t, A] is measurable for all Je3B(3£). See [8].

The following lemmas will be of use in the sequel.

LEMMA 2.1. Let (Y, &) and (Z, φ) be measurable spaces and let
m(A, B) be defined for Ae& and Be&. Suppose that m{-,B)isa measure
on (Y, ©) for each fixed Beξ) and that m(A, •) is a measure on (Z, ©)
for each fixed Ae®. Let / ^ 0 be a measurable function on (Y, @) then

(2.6) q(B)=\f(y)m(dy,B)

is a measure on (Z, φ).

Proof. The only thing that requires proof is that q is countably
additive. Let \fn} be a sequence of simple functions such that / w ^ 0
and fn f / . Clearly
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are measures and qn(B) tq(B) for each Be&. Let B= \J Bj where the

B/s are disjoint. Put B™ = \JBJ9 then lim lim qn(B™) = q(B). Since qn(B™)
j = l n k

is increasing in both n and k we can interchange the limits obtaining

Σ

LEMMA 2.2. Le£ (F, ©) δe α measurable space and let f(t, y) be an
X valued function defined for £2:0 and yeY. If /(•,?/) is right continuous
for each yeY and f(t, •) is ^-measurable for each t then f(t, y) is jointly
93 x© measurable. (93 is the <7-algebra of ordinary Borel sets.)

Proof. Define gn(t,y) = f((j+l)ln,y) if jln<t^(j+l)jn for j=0,l,2,---
and n = l , 2 , •••. Let £e33(X) and define GJn=f((j+ΐ)ln, )"1(^). then
since /(£, •) is ©-measurable Gjne®. Let A j w= {t\jjn<t^{j+l)ln} 693,
then

( ) J , J ,

which is in 93 x®. Hence ^w is jointly 93 x© measurable for each n,
but gn(t, x)~>f{t, x) as n-><^> and thus / is 93x© measurable.

If Φ [x( )] is a complex valued measurable2 functional on 3ί we
write r[Φ £, x, A] for the integral of Φ over X with respect to the
measure P[ ;a?;ί, A], provided the integral exists.

THEOREM 2.2. If Φ^O is a measurable functional on H then
r[Φ'y t, x, A\ is a measure on 93(X) for fixed (£, x) and is measurable in
(t9 x) for fixed A.

Proof. This is an immediate consequence of Lemma 2.1 and
Theorem 2.1.

Let <p be a complex valued measurable function on X, then for
each t>0 we define a measurable functional, φt9 on 9c as follows:
Ψtί^(')] — ψίχ(^y]' Also if Φ is a measurable functional on X we denote
its integral over 9c with respect to the measure Px by E{Φ[x(')~\\x(0)=x}.

THEOREM 2.3. Let Φ^O be a measurable functional on 9c and ψ a
complex valued measurable function on X; then

(2.7) j?(2/M0; t, x, dy] =

provided either integral exists.
2 Measurability of real or complex valued functions always means Borel measurability.
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Proof. Suppose ψ — IA where IA denotes the characteristic function
A, then the left hand side of (2.7) is r[Φ;t,x,A]. Now if Φ = IX then

r[Ix;t,x,A\ = P[A;x;t, A] .

But

where At={x(-)\x(t)e A]. Thus

Let Φn be a sequence of simple functionals such that Φn f Φ, then Φn (IA)t

is a sequence of simple functional increasing to Φ {IA)t. Therefore

E{Φn (lA)t\x(0) = x} 1E{φ.(IA)t\x(0) = x} .

On the other hand r(Φn; t, x, A) f r(Φ; t, x, A) by the monotone con-
vergence theorem and since

E{Φn-(IA)t\x{0) = x} =r[Φn; t, x, A]

it follows that if either of the integrals in (2.7) is finite the other is
also and they are equal in the case <p=IA.

If ^5^0 let ψn be a sequence of simple functions increasing to ψ
then if either of the integrals in (2.7) exists we have equality for each
<pn and by monotone convergence for ψ. The result for a general ψ now
follows in the usual manner.

For each t^>0 let xt(τ)—x(t+τ) for all r^O, then we define a map,
St, from X into X by Sta?( •)=#*(•)• Clear ly^ is a measurable transfor-
mation of ϊ into X. If Φ is a measurable functional we define StΦ[x( )]

THEOREM 2.4. Let Φ be a functional measurable with respect to3

and Ψ be measurable with respect to S3S such that 0<^Φ<,M and
then

(2.8) jr[tf>; ί, x, dy]r[Ψ;s, y, A]=r[Φ StΨ; t+s,x, A] .

Proof. Since Φ and Ψ are non-negative and bounded it is clear that
the integral in question exists. If Φ~IF and Ψ=IG with Fe^8t and
Ge93 s then

thus to prove (2.8) for IF and IQ we must show that
3 S3[ίi, h] denotes the σ-algebra of subsets of 35 generated by sets of the form

{x(.)\x(τ})eAy, h^τj^tj, and $Bt=SB[O, fl.
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(2.9) ^P[F; x; t, dy]P[G; y; β, A] = PtFnSf Ό ; x; t+s, A]

We first consider the case in which

G={x(-)\x(tk)eBk;k = l,

In this case

thus

= \ 1 \ V(ti f %> dx1)p(t2—t1, xλ, dxj p(£ — £ n , xn, dy)

•1 " \ V<Φ\,y,dyύ ••• p(s-t'm,ym,A)

= I I I \ V{tι, a?, da?i) p(t + t[-tn, α?n, dyλ)

t'2—(t+t[)9yl9dy2) ••• p(t+s — (t + t'm),ym, A)

If t — tn, or s=C> or both, it is necessary to make only minor changes
in the above argument.

This equality clearly extends to finite disjoint unions of such F's
and (τ's and since Sϊ1 is a σ-homomorphism it extends to monotone limits
of such G's. Thus (2.9) holds for each Fin the algebra of sets generated
by sets of the given form and for each Ge?βs. For fixed GeSSs the
left hand side of (2.9) is a measure in F by Lemma 2.1, hence (2.9)
holds under monotone limits of such F's and thus finally (2.9) holds for
all F and G in the appropriate ^-algebras.

Let Φn and Ψn be sequences of simple functionals increasing to Φ
and Ψ, then by monotone convergence

[Φn; ί, x, dy]r\Ψ;8, y, AΊ = r\Φn-StΨ; t+s, x, A] .

Applying an argument similar to that used in the proof of Lemma 2.1
the equality (2.8) results. (This also follows from Theorem 2.3.)

We conclude this section with the following theorem which is easily
proved using standard approximation techniques.

THEOREM 2.5. Let Φ (t, #( ))^0 be jointly measurable in t and x{ )
then r[Φ(t, #(•)); >̂ %> A] is jointly measurable in (t, x).
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3* Additive funct ional For each pair (tl9t2) with Og£i<£2 let
L[tlft2; x( )] be a functional (L may be+00) on X which is measurable
with respect to SB[ίx, ί J and which is jointly measurable in tτ, t2, and
%(•). We further assume that for tx<t<t% and each x(*)eH we have

(3.1) L[ί l f tz; x(')]^L[tlft; x( )~]+L[t, t%; *(.)] ί

and that

(3.2) $ £ & , t2; α ; ( . ) ] = Φ i + ί , * 2 +£; a?( )l

Such a functional will be called an additive functional on 3£ (See [1]).

THEOREM 3.1. Let V^rO be a measurable function on X, then

is an additive functional on X.

Proof. Define F(t, x(-))=x(t) then F is measurable in x(-) for fixed
t and right continuous in t for fixed x(-). Thus by Lemma 2.2 JP is
jointly measurable in t and #(•). Since V[x(t)]=V[F(t, x(-))] is the
composition of measurable transformations F[#(r)] is jointly measurable
i n τ a n d ^ ( ), and therefore (a simple argument using Lemτχia 2.2 shows

V[x(τ)]dτ is jointly measurable in tl9t29 and x(>). The other
h

properties that L must satisfy are obvious.
We suppose that L[tlf t2; ί»( ) ] ^ — M where M>0 is independent of

tlft2, and x( ) . We define

(3.3) r(ί, a?, A)=r[β- i [ 0 tϊaCOi ί, α?, A] .

Theorems 2.2 and 2.5 imply that r(£, x, A) is a measure on 93(X) for
fixed (ί, x) and is jointly measurable in (t,x) for fixed Ae^8(X). More-
over the fact that

(3.4) 0^r( ί , a?, A ) ^ ^ p ( ί , a?,

is a simple consequence of our definitions.

THEOREM 3.2. r(t+sf x, A)= \r(t, x, dy)r(s, y, A) .

Proof. This is a corollary of Theorem 2.4 once we observe that

and therefore
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At this point we assume that there exists a Radon measure, m, on
such that p(t, x, A) has a density f(t, xy y)^0 with respect to m

for t>0; that is

(3.5) p{t, x, A)=[f(t, x, y)m{dy) , t>0 .

We assume that / is jointly measurable in t, x, and y, but we do not

assume that m is finite. We introduce the following conditions on

f(t, x, V):

(P2) \f(t,x,y)m(dx)^keat where k and a are positive constants in-

dependent of y and t.

(P3) Given e>0 and a compact set AaX there exists a compact set B
such that

\ f(t,x,y)m(dx)<ε for ye A and t^l .

We define operators on appropriate function spaces as follows:

(3.6)

(3.7) {Utφ){x)=\φ{y)p{t, x, dy) = ̂ φ(y)f(t, x, y)m{dy) .

THEOREM 3.3. // f(t, x, y) satisfies (P2) then {Tt t>0} αrcd {t7t ί>0}
semi-groups of bounded operators on L2(m).

Note. All Borel sets are m-measurable [4; 5] .

Proof. From (3.4) we obtain

and thus it will suffice to prove that Ut is a bounded operator on L2(m)
for each £>0. But

, x, y)ψ(y)m(dy) |2
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and therefore

\ j ί, », v)\φ(y)\2m(dy)

Thus |Z7t|p^fcβΛί and \\Ttf^ke2M+at. The fact that {27

ί;ί>0} and
{Ut;t>0\ are semi-groups now follows from Theorem 3.2 and the fact
that p(t,x, A) satisfies the Chapman-Kolmogorov equation.

THEOREM 3.4. Iff(t, x, y) satisfies (P2) and (P3) and lim L[0, ί α?( )] = 0

/or αM a?( )eX ίΛβw £Aβ semi-groups {Ut;t>0} and {Tt; t>0} are strongly

continuous* on L%{m).

Proof. We prove the theorem for {Tt t>0} the results for {Ut; t>0}
being a special case (take L Ξ O ) . We must show that IIΓ^—^||->0 as
£->0 for all <peL2(m). Since HTJ is uniformly bounded for t^l it will
be sufficient to show that \\Ttφ — φ\\-+0 as t-+0 for ^ continuous with
compact support, such functions being dense in L2(m) since m i s a
Radon measure, [2]. We first show that Ttφ(x)-+φ(x) pointwise as t->0
if φ is continuous with compact support. According to Theorem 2.3

Using the right continuity of x( ) and our assumption on L we see that

boundedly as t j 0 and hence by the bounded convergence theorem

TMx)^E{φ[x(θy]\x(O)=x}=φ(x) as t[ 0 .

Let A be the support of φ, then if B is compact and S D A we have

> - P Γ = t ITtΨ{x)~ψ{x)γm{dx)+ \ ITtφ(x)-φ)Ym{dx)

B u t

I Ttψ(x) I ̂  j \φ(y) I r(t, a?, d^/) ̂  s u p | φ(x) \-eM ,

hence /j-^0 since 1? is compact. Now since Bz)A we have

J2^f \TtΨ{x)\*m{dx)^eM\ \φ{y)A f(t, x, y)m(dy)m(dx) ,
JXφB JA JX&B

4 By the strong continuity of a semi-group {Tt; ί>0} we will always mean strong
continuity for ί^O where To is the identity.
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and so, if B is chosen properly, using (P3), we see that /2 is small.
This completes the proof of the fact that {Tt;f>0} is strongly con-
tinuous on L2(m) .

4 The Darling-Siegert equations. In [3] Darling and Siegert showed
that r(t, x, A) has to satisfy two integral equations. We give a derivation
of these equations based on the material of § 2. We assume that
p(t, x, A) satisfies (P2) and that

where V is a bounded, non-negative, measurable function on X. The
formal outline of the derivation given below is exactly that of Darling
and Siegert.

We begin with the following identities which are easily verified (/
measurable, non-negative, and bounded)

(4.1) ex

(4.2) exp[-jV(r)dr]=l-jV(8)exp[-Jy(r)dr]ίfe.

Also using Theorem 2.4 we have

(4.3) r[V[φ)] exp ( - £ V[x(τ)]dή ί, x, A]

= rϊv[x(s)]-Ss exp ( - Γ " F[α>(r)]dr) (ί-β)+β, x, AJ

= lr[F[φ)] s, x, dy]r[exp (- \ V[a?(r)]dτJ; ί-s, 2/, A]

= 1 V{y)v{s, x, dy)r(t-s, y, A)

provided we show that

(4.4) \f(y)r[V[x(s)y, s, x, dy\ = \f{y)V{y)V{s,x, dy)

for measurable, bounded / ^ 0 . Suppose f=IA and V=IB then

\f(y)rlV[x(s)]; s, x, dy] = P[IB[x(s)]; x; s, A]

=PX[BS n As] =P(s,x,Af]B)=J/d/) V(y)p(s, x, dy) .

The standard approximation technique now yields the desired result (4.4).
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Putting /(r)=F[a?(r)] in (4.1) and applying (4.3) we obtain (the
interchange in the order of integration is valid since

is bounded and jointly measurable in s and #(•))

(4.5) r(t, x, A) = p(t, x, A)- [ds\ V(y)r(t-s, y, A)p(s, x, dy) .

In a similar manner using (4.2) we find

(4.6) r(t, xy A) = p(t, x, A)-^ds\V{y)p{t-s, y, A)r(s, x, dy);

and these are the Darling-Siegert equations. In deriving (4.6) one needs
the relation

(4.7) r[F[>(0)] ί, y, A} = V(y)p(t, y, A)

which is obtained in much the same manner as (4.4).
Taking Laplace transforms in (4.5) and (4.6) yields (the necessary

interchange of order of integration is again justified since the integrand
is bounded and jointly measurable in its variables)

(4.8) r(λ, x, A) = p(λ, x, A)-\v{y)r{λ, y, A)p{λ, x} dy)

(4.9) τ{λ, x, A)=p(*> x, A)-\v(y)p{λ, y} A)r{λ, x, dy)

where r and p are the Laplace transforms of r and p.

5. The infinitesimal generators. Let Ω and Ω' be the infinitesimal
generators of {Ut;t>0) and {Tt;t>0} respectively. We assume in this
section that (Pj), (P2), and (P3) are satisfied. It then follows, since the
semi-groups involved are strongly continuous on L2(m), that Ω and Ω'
are closed densely defined operators on L^m). See [6] and [9].

We assume that

(5.1)

where V is a non-negative measurable function on X. Note that in
this case M=0.

THEOREM 5.1. If V is bounded then Ω' = Ω~V.

Proof. Let J λ be the resolvent of {Tt;t>0} then for λ>a we
have
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and thus

Applying the Fubini theorem we see that Jλφ(x) exists for almost all
x(λyά) and is in LJyn), moreover for λ>a we have

(5.2) ||J *
" " - λ(λ-ct)

In view of the above facts we can write

(5.3) JMΦ

From the general theory of semi-groups, [6] and [9], we know that
for λ>a the range of Jλ is independent of λ and is, in fact, the domain
of Ω\ which we denote by DΩ,. In addition it is known that

(5.4) (λ~Ωf)Jλφ = φ for all φelφn);

(5.5) Jκ{λ-Ωr)ψ=ψ for all φeDa,.

Let I λ be the resolvent of {£7£;£>0} and then in a similar manner
we have

(5.7) hφ(x) = yp(v)v(l, x, dy) = yp(y)f(λ, x, y)m(dy) .

From (4.8) we see that

Jχψ{x)=hφ{x)-γ{z)γ{y)r{λ, y, dz)p{λ, x, dy)

The above steps are justified since F Jλφ e L2(m) under our assumption
that V is bounded. Thus Z>Ω,cDΩ and conversely using (4.9) DnaDΩ, ,
that is, DΩ = Z)Ω/ . Now

or equivalently,

[λ-(Ω- V)]Jλφ=φ for all φeL2.
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Thus Ω—V is an extension of Ω\ but since V is bounded the domain
of Ω-V is Dn=DΩ, . Hence Ωf = Ω-V.

COROLLARY. If Vis bounded and f{t, x, y)~f{t, y, x) then Ω and Ω'
are self-adjoint operators.

Proof. Since f(t,x,y) = f(t,y,x) each Ut is a bounded self-ad joint
operator and hence Ω is also self-ad joint, although not necessarily bounded.
The boundedness of V implies that V considered as an operator on L2(m)
is bounded and self-adjoint, therefore Ω—V is self-adjoint, [11]. Thus
Ω'—Ω—V is a self-ad joint operator which in turn implies that each Tt

is a bounded self-adjoint operator.
If V is not bounded our results are much less complete (V is no

longer a bounded operator on L2(m) and one runs into the usual " domain
problems")- It is natural to try to approximate F b y bounded functions
and then use a limiting procedure. Accordingly we define

(5.8) VN(x)-

and it is evident that each VN is measurable and bounded. Let

Dv= {φ\φ e L 2 (ra) V-φe L2(m)}

that is, Dv is the domain of V considered as an operator on L2(m). We
are, of course, assuming that f(t, x, y) satisfies (Px), (P2), and (P3).

THEOREM 5.2. If V is non-negative and measurable then Da Π DvaDΩ,
and if <peDΩf]Dv then Ω'φ=(Ω-V)φ.

Proof. We define

rN(t, x, A) = r[e~'°Vlf [xW]dτ t, x, A]

and

For each N we know that {Tγ°;t>0} is a strongly continuous semi-
group of bounded operators on L2(m) whose infinitesimal generator is
Ω—VN. Since VN] V we have by monotone convergence that

/K Q\ r (t x A} 1 r(t x A)

We first show that for each £>0 and all φeL2(m)

(5.10) \\Tc

t

N>φ-Ttφ\\->0 as Λ7->co .
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Since \\Tc

t

N:>\\^keat it will suffice to prove (5.10) for φ continuous with
compact support. Let μN{A)—rN{t, x, A)—r(t, x, A)^0, then μN(A) j 0
for each fixed A and is a measure on 33(X) for each fixed N. It is
clear that

*)-T tφ{χ)\sJ \ψ{y)\μN{dy).

Let ψj be a sequence of simple functions decreasing to \φ\, then since

\ψj(y)μAdy) is decreasing in both N and j we can interchange the limits

obtaining \ΊY°φ(x) — Ttφ(x)\-+0 pointwise as N-^co at least if φ is con-
tinuous with compact support. If the support of φ is A then (5.10)
follows exactly as in the proof of Theorem 3.4 since

<:\ \Ψ{y)Λ f(t,x,y)m(dx)m{dy)\ \ ^ φ ( ) \ ( ) \ \Ψ{y)

for compact B. Thus (5.10) is established.
We prove next that ΰ f lnflFcfl f l/ . Let J^ and Jλ be the resolvents

of {Tc

t

N);t>0} and {Tt;t>0} respectively. Since \\Tc

t

N^\\^keat and
2Yty->2> it follows that JίN)φ~>Jλψ for each <peLz(m) and λ>a.
Choose a λ>a and let it be fixed for the remainder of the present
proof. If ψeDaπDv then <peDn_vN for each N, hence there exist
ψNeL2(m) such that ψ—J^φN. Moreover [λ — (Ω— VN)\ψ — ψN or ΦN — ^Ψ
— Ωψ+ VNψ, Clearly VNψ-> Vψ pointwise and since IF^^I^IF^I it follows
that | | F ^ - F ^ | | - > 0 . Thus ψN-+λφ — Ωφ+Vφ = ψ as iV->oo in L2(m).
But

and therefore J{N)ΦN~>Jλφ as N-+oo since ||«7£̂ °|| is uniformly bounded
in N. However, ψ=J^ψN for all N and hence ψ = Jλφ which implies
that ψ 6 DD/ .

Since ψ — Jxφ where ψ = λ<p — Ωφ+Vφ we see that {λ — Ωf)ψ — φ — λψ
— Ωφ+Vφ or equivalents that Ωfφ = {Ω-V)φ for φeD^ΓiDy. This
completes the proof of Theorem 5.2.

COROLLARY. If Ω is self-adjoint (that is, f(t,x,y) = f(t,y,x)) then
Ωr is self-adjoint. Let EN(λ) denote the spectral resolution of Ω—VN and
E(λ) the spectral resolution of Ω\ then EN(λ)φ-+E(λ)φ for all φeL2(m)
provided that λ is a continuity point of E(λ).

Proof. We use the same notation as in the proof of Theorem 5.2.
From the corollary to Theorem 5.1 it follows that each Tc

t

m is self-ad joint
and Tt being the strong limit of self-adjoint operators is self-adjoint



ADDITIVE FUNCTIONALS OF A MARKOV PROCESS 1591

for each £>0. Hence the infinitesimal generator, Ω'', of {Tt;t>0} is
self-ad joint. The strong continuity of {Tt;t>0} implies that Γ ^ = 0 if
and only if ^ = 0. A similar statement holds for Tc

t

m . Under these
circumstances Ec^ = FN(eλ) and E(λ)=F(eλ) where FN and F are the
spectral resolutions of TP° and 7\ respectively. See [11]. Thus if we
show that FN{λ)φ->F(λ)ψ at all continuity points of F we will have
proved the corollary. Since TiIΓ>φ-+T1φ this follows from a theorem of
Rellich (See [11], p. 366).
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