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1. Introduction. In Part I of this paper our main interest is to
generalize to elliptic equations the following theorem of Phragmen-
Lindelof :

THEOREM 0. / / f(z) -> a as z —> oo along two straight lines, and
f(z) is regular and bounded in the angle between them, then f(z) -> a
uniformly in the whole angle as z -> oo.

A generalization of the classic Phragmen-Lindelof theorem to elliptic
equations was given by Gilbarg [1] and Hopf [4]. A refined form of
that classic theorem, due to the Nevanlinnas [5], [6; 42-44] and Heins
[3], was generalized to elliptic equations by Serrin [8],

In generalizing Theorem 0 we shall make an extensive use of
the Gilbarg-Hopf results.

In Part II we generalize to parabolic equations both the classic
Phragmen-Lindelof Theorem and Theorem 0.

In § 2, Theorem 0 is proved for elliptic equations defined in any 2-
dimensional domains (Theorems 1, 2). The case n>2 is treated in §3,
for domains contained in a half space. In § 4 we consider the behavior
of solutions in an angular neighborhood of the origin, and we obtain
results similar to those of §§2, 3. In §§5, 6, generalizations to parabolic
equations are given: Theorems 7, 9 extend the classic Phragmen-
Lindelof Theorem and Theorems 8, 10 extend Theorem 0.

The results in Part I are somewhat analogous with Theorems 2, 3,
3' of Gilbarg-Serrin's paper [2]. The similarity appears both in the type
of conditions imposed on the coefficients of the elliptic operator and in
the assertions. It is however important to note that our results cannot
be obtained by the Gilbarg-Serrin methods, since Harnack Inequalities
which play an essential role in their paper, do not hold uniformly in
open domains.
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PART I

2, Consider the differential operator

fΣδi(«)

defined in a domain Zλ In this and the following chapter D is supposed

to be unbounded. We denote by dD the boundary of D, and by D the
closure of D. We shall assume throughout Part I that L satisfies the
following conditions ([1], [4]):
(1) Σ l°^(#)| is bounded in D, and, for all xeD, ξt real,

(ii) for all xeD, \x\ = r,

(2) ΣI6i(»)I^PW,
i

where p(r), defined for 0<r<cχ>, is monotone decreasing and

\ p(r)dr< oo .
Jo

define αυ(oo)=limα0(a;) as |a?| -> oo (^eD), whenever the limit exists.
The matrix (atJ(x)) is said to be Dini continuous at infinity, if there

exists a monotone decreasing function φ(r) with \ r~Ύ(r) cZr< oo, such

that for # e ί ) , |α;| = r,

Let %(a?) be defined in D and belong to C\D). In Theorems 1-6 the

function u{x) is also assumed to be continuous in D. Denote

m(r)= inf u(x) , Kr)— S UP I*ΦOI
xβD, \x\=r xβD, \x\=r

Let Kβ denote the ^-dimensional cone with angular opening β,0<β^2π,
whose axis is the positive #w-axis and whose vertex is at the origin.

LEMMA 1. Suppose DaKβ, n=2. Assume that L satisfies (i), (ii)
and that {aiό{x)) is continuous at infinity with 0̂ (̂00) — ̂ ^. // Lu(x)^0
in the open set Drΰ=DΠ\x\>r0, u(x)^0 on dDrQ and for some

lim rΰrm(rk) = § (rk -> 00 as k ~> 00) ,
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and if r0 is sufficiently large (depending only on L, β and γf), then u(x)^0

v
By u(x)^0 on dG we mean: liminf u{x)^§ as x tends to dG(xeG).

in Dro.

Proof. Following the Gilbarg-Hopf method, it is enough to prove the
existence of functions vR(x), rQ<R<cof with the following properties:

if \x\^R , xedDrn

(3)
if \x\=R , xeDrQ ,

(4) LvR(x)^0 if \x\<R , xeDrQ,

(5 ) for every x e DrQ , RYvR(x) is bounded as R -> oo .

Denote by h(x[, x2) the harmonic function defined in the semicircle
C": xl2+x2

2<l, x'2>0, which takes the value 0 on the diameter and the
value 1 on the rest of the boundary. The transformation z' = z\ where
γ'<δ<γ, zf — Xϊ+ix[, z=x2+ixlt maps S=Kβf]\x\<l onto a domain S ' c C .
The function k{xly x2)—h(x{, x2) is harmonic in £ and takes boundary
values ^0 on the radii and the value 1 on the rest of the boundary.

We shall find vB(x) in the form vΛ(α)=Λ(fc(—

If we show, in addition to L/R^O, that

(6) Λ(0) = 0, Λ(l) = l , 0£fR(k)£l if O^fc^l, and

(7) fR(k) = 0(kr") uniformly in R, as k-+0 ,

then (3), (4), (5) follow. Note, in proving (5), that iPJcf—) is bounded
\R J

as i2->co. The construction of fR proceeds as in Hopf's proof [4], ex-
cept for the facts that property d) p. 421 and the inequality

(8) Σ
(χ)\

do not hold for the corresponding k.
The image of Kβ under the mapping z' = z8 is a 2-dimensional cone

UL*_8 (ε>0) with opening π — e and S;czK^s. From Hopf's proof it is
clear that instead of satisfying d), it is enough for k to satisfy:

dr) along each equipotential arc k(x) = const.,

1/2

dx.

on the axis of x2 (say at x), H>0. Since the equipotential arcs of k{x)
is S correspond to equipotental arcs of h(xf) in S\ we have
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dz ~~ dx'2 dx2

^ Hdh(x') g|y.(δ-D/δ _ _ H &k(x)
~ d' d

where x' is the image of x and i ϊ > 0 . Here, in the case <5<1, we used
the inequality \xf\<Rλ\x'\ (ίZ;>0), noting that S'aK^t.

The estimation of Σ a>tj(x)Kj(£) i n Lk (see [4; p. 423]) has to be
modified, since (8) does not hold for k. Defining

( 9 ) eij{x) = atJ(x) — δtJ , ε(r) = sup

and using the harmonicity of k, we get

where A and B are constants, and |£|
Using the inequality 2\ξ'\^h{ξ') ([1 p. 414]), we obtain

Define r0 to be such that if r>r0 then Be(r)<l—γrjd. Then, the last
inequality for / shows that Hopf 's method can be applied to prove that
L / R ^ O , provided that fR satisfy:

(10) ί ^ ± ζ l * £^L
/'(fc) fc H(dk(x)ldx2)

where 5 = (0, x2) (k is a monotone function of x2).
Solving (10) we obtain,

(11) f m = Ek^'1 exp (- ACk-P(x2)) , Λ(0) = 0 ,

where

Jo
exp ( - A C -

The verification of (6), (7) is immediate and the proof is thereby com-
pleted.

LEMMA 2. Suppose DaKβ, n—2. Assume that L satisfies (i), (ii)
and that (a^x)) is continuous at infinity with aίj(oo) — Sίj. If rQ is suf-
ficiently large, then there exists a function w(x), defined in DrQ, and
having the following properties:
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(a) w(x)^0 if xedDrQ,

(b) w(x) = l if xeD, \x\=rQ ,

(c) IAV(X)^0 if xeDrQf and

(d) w(x) —> 0 uniformly in DrQ as \x\ -> oo .

o

Proof. To prove the lemma, define v(x')=—&(x'), where &{x') is
π

the polar angle of the point xr with (—r'o, r'o) as a pole. Define also
v(x) = v(x'), where x' is the image of x under the mapping zr—zyj where
γ—πlβ, zf — x2+ix[, z=x2+ixlt We try to find w in the form w=f(v).

(c) implies that

(12) f»(v) Σ M ^ ^ I ^ + Z X ^ Σ M » ) - ^ 5 - + Σ 6.(^-1^)^0.

Using the harmonicity of v(x) we conclude, after some calculations (see
[1 p. 414]), that (12) is a consequence of the inequalities:

(13) ζM < -AA\x\)^ ~A\x\p(\x\)^}- , f(v)>0 ,
f(v) r0 r0

where Alf A2 are proper constants and ε(r) is defined by (g).
Taking r0 to be such that 2A1ε(r) + 2A/rp(r)<l-δ (0<^<l) if r>r0

(note that rp(r)-^O), and using the elementary inequalities

we conclude that if f(v) satisfies:

(14) /»//'(v)= -(l-δ)lv , f(v)>6,

then (13) follows. Solving (14) we find that the function f{v)—v8 satis-
fies (a)-(d).

THEOREM 1. Suppose DaKβ, n=2, and assume that L satisfies (i),
(ii) and that (α^(a )) is continuous at infinity with aίj(co) = δίj. If Lu{x)
= 0 in Dj and, for some η,

(15) lim^P-=0 {yyOifβΦπ, 7 = 0 if β=π) ,

and if u(x) -> 0 on 3D as \x\ -> oo, then u(x) -> 0 uniformly in D as

Proof. Given ε>0, there exists ro>O such that — ε<zφ;)<ε for
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xedD, \x\^r0. Denoting MQ=ma,x\u(x)\, we can apply Lemma 1 (in the
M-η,

case β=π we apply the Gilbarg-Hopf theorem) to the function v{x)—u(x)
+MQw(x) + ε in the open set DrQ. We get v{x)^0 in Dro. Taking rτ to
be such that MQw(x)<e in Z) r i, we conclude that u(x)>— 2ε in Drr

Similarly we get u(x)<2e in Drχ and the theorem is proved.

REMARK. Using a proper linear transformation we conclude that
the assumption ai3(<χ>) = δl5, can be dismissed if in (15) β is replaced by
β', where βf is the angular opening of the image of Kβ under the linear
transformation. The continuity assumption of the ai3(x) at infinity can
be replaced by the weaker assumption that the oscillation of the atJ(x)
near infinity is sufficiently small.

We can reduce the case 0</?^2τr to the case β—π by the conformal
mapping rf=z*lβ, where z=x2+ixl9 zf=x'2+ίxΊ. Applying Theorem 1, we
get the following theorem after some calculation.

THEOREM 2. Let DaKβ, n=2, and assume that L satisfies (i), (ii),
that (aij(x)) is Dini continuous at infinity with aίj(co) = δίj, and that
rι~yp(r) (ΐ=πjβ) is monotone decreasing. If Lu(x) = 0 in D, and

and if u(x) -• 0 on 3D as \x\ -> 00, then u(x) -> 0 uniformly in D as
\x\ -> 00.

As in Theorem 1, the restriction αtj(oo) = δ<i can be dismissed, but
then in (16) and in rλ~Ί/p{r), β should be replaced by β'.

In analogue with Theorem 2, one can formulate an extension of
the Gilbarg-Hopf theorem to the case 0</2^2τr. Serrin's results [8] can
also be extended to domains DczKβ (0</9^2π) such that the image of
D under the mapping zr = zrt/β contains a half plane x'2>c. In particular
we have the following.

If Lu^O in D and u^O on dD, then lim r"W βm(r) exists and is ^ 0 .
T—>oo

3* In this section we consider the case

LEMMA 3. Suppose DaKβ, —^β<π, n^3. Assume that L satisfies
ό

(i), (ii) and that (ai3(x)) is continuous at infinity with a>tj(
c°) = δtj. If

)^0 in DrQ, u(x)^0 on ΘDrQ, and, for some γ'<γ=πlβ,

lim rky'm(rk) = 0 (rk -> 00 as k -> 00) ,
k-*o<
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and if r0 is sufficiently large, then u(x)^0 in DrQ.

Proof. The proof proceeds as in Lemma 1, if (following Hopf [4]),
we define

x) = k(p, xn) , P=Vxi+ +x2

n.1=Vr*-xl , 0<r<l ,

where k is the function defined in the proof of Lemma 1. The only
essential difference will be in estimating Σ a>ίj(%Wί'j(ξ)• Clearly,

and

V \K"(<r>\\< A V \k"\4-A (W\<^Λ A ^ 0

P dP

If we show that

(17) j=λ^L/\j^\^B1 and \J\^B1+ψ
p dp I k

where Bτ and B2 are positive constants, then we can proceed as in the
proof of Lemma 1, and the proof of Lemma 3 will be completed.

To prove the first part of (17), we write J in the form

T l^Γ1 sin d& 1 lzΓ1cos(a--l)ff dh
sin# p'

^ Oh __J,J
dxn ' 2

etc.. Since is bounded near p'=0, and since \h\z')\ is bounded
P' ®P'

where Jτ is the first term and z' = z8, z=xn+ip, z'=xn+ip', p — \z\ si

etc.. Since is bounded near p'=0,
P' ®P'

from below by a positive constant, we get
Since dM^l^o and s m ^ ~ 1 ^ ^0 if

dx'n sm &
take l < δ < 3 ) , it follows that J 2 ^ 0 and consequently, J%Bλ.

Since dM^l^o and s m ^ ~ 1 ^ ^0 if l<δ<3 (since Kγ^S we can
dx'n sm &

The second part of (17) follows from noting that \J2\tί
2\z\8 k

LEMMA 4. Lemma 2 is true also in the case

Proof. The function t(x)=rΓ2\x\2~n satisfies (a), (b) and (d). We
shall find w(x) in the form f(t). Condition (c) implies that
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(18) f"(t) Σ M«0 ( w ~

By our assumptions, Σ Iα4j(a?)—3o|^e(|a?|) -*0 as |a?|-*0. Using the
harmonicity of \x\2~n, we find that if f(t) satisfies

(19) /"(*)//'(*)< -(BAlxD+BMpimίt , f'(t)>0 ,

where Bx and B2 are proper constants, then (18) follows. Now, if r0 is
such that 2?1e(r)+2?2rp(r)<l--δ (0<<5<l) for r>r0, and if

(20) f»(t)lf(t)= -(l-δ)t-* , f'(t)>0 ,

then (19) follows. Solving (20) we get the function f{t) = t\ which
satisfies (a)-(d).

With Lemmas 2 and 3 at hand, we can use the argument used in
proving Theorem 1 and thus get the following.

THEOREM 3. Suppose DaKβ, ^^β^π, n^S. Assume that L satis-
3

fies (i), (ii) and that atj(x)) is continuous at infinity with α4J(oo) = δ υ . If
Lu(x) — 0 in D, and for some η,

Km ^ ^ - 0 (?>0 if βΦπ , ? = 0 if β = π) ,

and if u(x) -> 0 on dD as \x\ —> oo, then u(x) -> 0 uniformly in D as
\χ\ -> oo.

REMARKS, (a) The remark which follows Theorem 1, applies also
to Theorem 3.

(b) If we assume in Theorem 3, that %(^)=0(r2~w+δ), δ>0 on dD
then the same holds in D. This follows by applying the maximum
principle to functions of the form u(x)±Ar2~n+8±εf where A is a proper
fixed constant and ε>0 (compare [2; 324-325]).

4 Let D belong to the half space xn>0 and denote by Cr the open
set Df]\x\<r. We shall consider the behavior of solutions near x—0;

it is therefore assumed that OeZλ
We first observe that the construction of w(x) in Lemma 4, can be

easily modified to derive functions wr(x) defined in Cr=CrQf)\x\>r for all
0 < r < r 0 , and having the following properties:
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(a) wr(x)>0 if xedC'r,

(b) wr(x)=l if xeCro, \x\=r,

(c) Lwr(x)<^0 in C'r, and

(d) there exists δ (0<<5<l) depending on r0 (δ-*l asr o->O), such that

Inn r8(-2~^wr(x) = 0 if x 6 Crn

here, r0 is assumed to be sufficiently small, and, (α^(#)) is assumed to
be continuous at # = 0 with atj(0) = δiJm

With the aid of wr(x) we can prove an analogue of the Gilbarg-Hopf
theorem.

If Lu^O in C ro, ^ 0 on ΘCrQ and

and if r0 is sufficiently small (depending on <5), then u^O in CrQ.

We can now use the method used in proving Theorem 1, noting
that the role that w(x) played in that proof is now given to the function

frj(k\—)) of Gilbarg-Hopf. The following theorem is thus proved.

THEOREM 4. Let D belong to the half space xn>0, n^S. Assume
that L satisfies (i), (ii) and that (&«/#)) is continuous at x=0. If Lu(x)
= 0 in D, and, for some positive e,

and if u(x) -> 0 on ΘD as \x\ -> 0, then u(x) —> 0 uniformly in D as |#| —• 0.

The continuity assumption on the atJ(x) at x=0, can be weakened.
The case n—2 can be treated in a similar manner. Note that now,

instead of modifying Lemma 4, we rather modify Lemma 2 and thus

( 2 V

— ΰ (x[, x2) 1 , where (x[, x'2) is the image of
π /

(x19 x.z) under the mapping z' — z"1'^. We have the following.

THEOREM 5. Let DcKβ, n—2, and assume that L satisfies (i), (ii)
and that (a^ix)) is continuous at x—0 with a>ij(0) = δiJ. If Lu(x) = 0 in
D, and, for some positive e,
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and if u(x) —> 0 on dD as \x\->0, then u(x) -> 0 uniformly in D as \x\ -> 0.

Another way to treat the case n=2, is to reduce it to Theorem 1,
using the mapping z' — z"*^. We thus get the following.

THEOREM 6. Let DaKβ, n—2, and assume that L satisfies (i), (ii)
and that {ai3(x)) is Dini continuous at x=0 with aiJ(0) = δiJ. Assume
further that r1+7ί/3p(r) is monotone increasing. If Lu(x) = 0 in D and

limr*lβμ(r) = 0 ,

and if u(x) -> 0 on dD as \x\ -> 0, then u(x) -+ 0 uniformly in D as \x\ -> 0.

By using the same mapping z' = z~*lβ, we can derive theorems analo-
gous with the Gilbarg-Hopf ([1], [4]) and Serrin's ([8]) theorems, provided
that L satisfies the assumptions of Theorem 6.

In the case ^ ^ 3 , β^π9 such theorems can also be obtained, by
using the transformation x't = xtl\x\n (i = l, -- ,^) .

PART II

5 Let x=(x19 -- ,xn) and denote X=(x, t), \X\ = (\x\2+tψ\ Con-
sider the operator

(1) Lu^± al3{X) -^L- + Σ ψ
« J i dxβX < i

defined in an unbounded domain D. We shall assume that L satisfies
the following conditions:

(i) Σ Kj(JC)| is bounded in D, and, for all XeD, ξt real,

(ii) for all XeD, \X\=R,

(2)
i

where p(R) (0<B<oo) is bounded and p(B)-+0 a sβ->oo.
Beside the functions m(R), μ{R) defined in Part I, we introduce the

functions

m\R) = inf u(X) , μ\R) = sup \u{X)\ ,
xeτ xeτ

where Ta=Dn\x\2+\t\=R.
Let Kβ denote the cone with angular opening β, whose axis is the
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positive ί-axis and whose vertex is in the origin. In what follows,

u(X) is assumed to belong to C\D). In Theorems 8, 10 u{X) is also

assumed to be continuous in D.

THEOREM 7. Let D belong to the half space £>0, and assume that
L satisfies (i), (ii). // u(X)^0 on dD, Lu(X)^0 in D, and if

(3) lim 0 ( β f c o a s Λ > o o ) ,

R\

then u(X)^0 in D.

Proof. The function vR(X)=(\x\2+(t+K)2)IR? (K>0) has the follow-
ing properties:

(a) ^(X)^0 if XedD, \X\^R ,

(b) vR(X)^l if XeD, \X\=R ,

(c) LvR(X)<0 in CB=Dn\X\<R , if if is sufficiently large, and

(d) R2vR(X) is bounded, for every X, as R -> co.

The function u(X)=u(X)-σ(R)vR(X)f where σ(#)= min (0, m{R)), is non-
negative on dCR and Lu(X)<^0 in CB. Applying the (weak) minimum
principle [7], we conclude that ϋ(X)^0 in CB. Taking R=Rh-> CXD and
using (3), we get

REMARK. It is clear that the same proof holds under weaker as-
sumptions on L: (ii) may be replaced by ΣχA(X)^B> where H is a
constant, and in (i), the boundedness of Σ K J ( ^ ) I

 m & m a y be replaced
by the boundedness of Σ ^u(x) i n D and the boundedness of Σ K/-^)l
in each CR.

LEMMA 5. Let D belong to the half space t>0, and assume that L
satisfies (i), (ii). // Ro is sufficiently large, then there exists a function
w(X) defined in DRo=Df)\X\>Ro, and having the following properties:

(a)

(b)

(c)

(d)

ί T^\ —

Lw(X):

w(X)-

Proof.

0 if XedD

1 if XeD

^0 in D^ ,

> 0 uniformly

Define

in DRQ as \X\ oo.
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( C > 0 ' ε > 0 ' H > 0 ) '

Since W(X)>0 if \X\~R0, ί^O, we can choose C such that (b) is satis-
fied. Since (a) and (d) are also satisfied, it remains to verify (c).

2 H Y x b 2H+ ε

consequently, if

(4) AH Σ atjXtXj ̂  \x\2, 2H Σ α«+2H Σ «A ^ e ,

then Lw^O. Obviously we can choose H and β such that (4) is satisfied.

With Theorem 7 and Lemma 5 at hand, we can now proceed as in
the proof of Theorem 1 and get the following.

THEOREM 8. Let D belong to the half space £>0, and assume that
L satisfies (i), (ii). If Lu(X) = 0 in D and

( 5 ) lim^=0,

and ifu(X)-+0 on dD as |Jf|->oo, then u(X)~>0 uniformly in D as
|X|

Theorems 7, 8 are not true for domains D in the half space £<0.
As an example take D to be the whole half space £<0, and take u(x, t)
= t1/m, where m is an odd positive integer. Then

u=0 on ί = 0 , Lu=- — fL'm-1<0 if ί<0 ,
m

=0 if ±
m

but u(X)<0 if ί<0, and \imu(X) does not exist as |X|->oo, t^O.

6 THEOREM 9. Let DaKβ, 0</3<2τr, and assume that L satisfies
(i), (ii). // Lu(X)^0 in D, u(X)^0 on dD, and if

(6) lim^^^^-O (Rk-+oo as
fc-»°° Rl

then u(X)^0 in D.
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Taking vB(X) = 2(\x\*+Bt + C)]R2 (B and C are proper constants), we
proceed as in the proof of Theorem 7. Details will be omitted. The
remark that follows Theorem 7 applies also to Theorem 9.

Lemma 5 can also be generalized to the case DaKβy

Indeed, the function w{X) may be defined as follows:

if t>-RQ

0 if t^-R0.

Proceeding as in § 5, we get the following theorem.

THEOREM 10. Let DaKβf 0<β<2π, and assume that L satisfies (i),
(ii). // Lu(X) = 0 in D and

(7) lim^-=0,

and if u(X)~>0 on dD as \X\ -• oo, then u(X)->0 uniformly in D as

|X|-*co.

Note that (7) can be replaced by the stronger assumption

(70
R
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