DISTRIBUTIVITY AND THE NORMAL COMPLETION
OF BOOLEAN ALGEBRAS

R. S. PIERCE

1. Introduction. In a recent paper, [4], Smith and Tarski studied
the interrelations between completeness and distributivity properties of
a Boolean algebra. Independently, the author also obtained some of the
results of Smith and Tarski. This work was reported in [2]. The present
paper continues the study of distributivity in Boolean algebras. Specifi-
cally, it deals with the problem of imbedding a Boolean algebra B in
an «-distributive, S-complete algebra, a and S being infinite cardinal
numbers. If it is required that the imbedding be regular, that is, preserve
existing joins and meets, then (see [3]) the problem is equivalent to the
question of when the normal completion of B (or a subalgebra of the
completion) is a-distributive. Our two main results can be briefly stated
as follows :

THEOREM 38.1. Ewery a-distributive Boolean algebra con be regularly
wmbedded in an a-complete, a-distributive Boolean algebra.

THEOREM 5.1. There exists an a-field of sets whose normal com-
pletion is not a-distributive.

Between these principal results, we obtain two simple conditions,
one of which is necessary, the other sufficient for the normal completion
of a Boolean algebra to be a-distributive. These appear naturally as
particular cases of more general facts relating properties which are
similar to, but not identical with a-distributivity and F-completeness.

2. Preliminary results. The notation of this paper will be the same
as that of [2]. The Greek letters «, # and 7 always denote cardinal
numbers, while p, o and ¢ are used as indices belonging to sets R, S
and T respectively. The symbol o will be used as though it were
a largest cardinal. This is a notational convenience, and in no case in-
volves questionable logic. As in [2], a subset A of an arbitrary Boolean
algebra B is called a covering (of B) if the least upper bound of A4 in
B is the unit # of B. If the elements of the covering A are disjoint,
then A is termed a partition. Finally, if the covering (partition) A is
of cardinality less than, or equal to «, symbolically A<«, then 4 is
called an a-covering (respectively, a-partition). If A and A are sub-
sets of B, then A is said to refine A when every ae A is<some ac A.
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DEFINITION 2.1 (Smith-Tarski). A Boolean algebra B is called («,
B)-distributive if

/\UES\/’TETba'T:\/¢€F/\G€Sb6(p(0> ] F:TS

holds identically when §§a, fZ=’§ﬂ and the bounds are assumed to exist
in B.
Some elementary consequences of this definition are worth noting :

(2.2) If B is (a, f)-distributive and o’'<«a, f'<f, then Bis (a, f')-
distributive. Any regular' subalgebra of an («, 5)-distributive Boolean
algebra is («, B)-distributive. Every Boolean algebra is (n, 5)-distributive,
where n is finite and j is arbitrary.

The last assertion of (2.2) is a variant of the Tarski-von Neumann
theorem (see [1], p. 165). This infinite distributivity is a property of
Boolean algebras which we use repeatedly and without mention.

A useful characterization of («, f)-distributive Boolean algebras is
given by the following theorem, which, in somewhat different terms,
appears in [4]. Since this characterization is used often in the sequal,
we sketch a proof.

THEOREM 2.3. Let a and f be arbitrary cardinal numbers. A Boolean
algebra B is («, f)-distributive if and only if, for any family {A,|oc € S} of f-
coverings of B with S=a, there is a covering of B which refines every A,.

Proof. Suppose B is («, f)-distributive. Let {A,loe S} be a given
family of f-coverings with S<a. It can be assumed that every A, is
indexed by the same set 7: A,={a,.[cr=T}. Let A={ac B|{a} refines
every A,}. Clearly A refines every A,. If A is not a covering of B, there
exists b+#0 (the zero of B) which is disjoint from every ae A. Setting
b,y =0a,, Ab, it is easy to see that A,V.b..=0>0=V,Ab,4». This con-
tradicts («, f)-distributivity. Thus A is a covering.

Conversely, let B satisfy the condition of the theorem. Suppose
Vorerbor s NoesVrerber=0 and A ,edhooy exist for all oe S and all e F
=T5. Let w be a symbol not in T. Put T"=TU {0}, bep=b", A,={b,,|
€T}, b= Asesboocor for all ¢ € F. Then each A, is a f-covering, so by
assumption there is a covering A which refines every A,. If ac 4, then
either a<b, for some ¢eF, or else a<?d'. Thus, if ¢=b, for all ¢,
cVvb'=lu.b. A=u (the unit of B). Hence, ¢=b. Since b is obviously
an upper bound of all b,, it follows that b= A ,cb,.

For simplicity, an («, a)-distributive B. A. is just called a-distribu-
tive.

1 A subalgebra B of a Boolean algebra B is called regular (see [3]) if, whenever a

=l.ub. 4 in B (aeﬁ, Agﬁ), then a=lu.b. 4 in B also. Of course, in a Boolean al-
gebra, this property implies its dual and conversely.
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COROLLARY 2.4. A Boolean algebra B is a-distributive +f and only
if every family {A,lo €S} of binary partitions with S<a has a common
refining covering.

Indeed, if {4,|ceS} (§§_a) is a family of a-coverings, say A,
={a,,lre T}, then, setting A, =[a¢,., (.)], the set {A,loceS, reT} is
a family of no more than « binary partitions of B and any covering which
refines all A4,,is a common refinement of all 4, (because A,(a,,)=0.

For future reference, we list some of the well known properties of
the normal completion (or completion by *‘ cuts’’) of a Boolean algebra.
The Stone-Glivenko theorem ((2.5) below) is proved in the standard re-
ference [1]. The proofs of (2.6) to (2.8) are conveniently collected
in [3].

(2.5) (Stone-Glivenko) The normal completion of a Boolean algebra
is a Boolean algebra.

(2.6) Let B be the normal comgletion of the Boolean algebra B.
Then B is a regular subalgebra of B.

(2.7) Any Boolean algebra B is dense in its normal completion B.
That is, if 0+be B, then there exists be B with 0£b=<b.

(2.8) If the Boolean algebra B is a dense subset of the complete
Boolean algebra B, then B is lSOmOI‘pth to the normal .l completion of
B. Moreover, if B Bc B and B is complete, then B=

DEFINITION 2.9. Let B be a Boolean algebra. Let B be the normal
completion of B. Let « be an infinite cardinal number. The normal a-
completion of B is the intersection of all a-complete subalgebras of B
which contain B. Denote this algebra B*. It will also be convenient
to write B> for B.

Clearly, B® is the smallest a-complete subalgebra of B= containing
B. Moreover, B is dense in B® and is regularly imbedded in B=.

3. The imbedding theorem. The primary purpose of this section
is to prove Theorem 3.1 (stated in the introduction). However, the
method of the proof is used several times in the following sections, so
it behooves us to present it in a form which is sufficiently general to
cover all future needs.

LEMMA 3.2. Let B be a complete Boolean algebra. Let A be a non-
empty Sfamily of partition of B such that if {A,loc e S} and S<a, then
some Ae U refines every A,. Let B be the set of all joins of subsets of
the partitions A in UA. Then B is an a-complete Boolean algebra such
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that ASB for every Ae and every a—covering of B is refined by some
AeU. Hence, B is a-distributive.

Proof. If C<Ae, then (Lu.b. C)Y=lub. (A—C), since A is
a partition. Hence B is closed under complementation. Suppose {c,|o e S}
is a subset of B with S<a. By definition of B, for each o€ S, there
exists a partition A,e U and a subset C,= A, such that ¢,=l.u.b. C,.
Then A, refines the binary partition {c,, (c,)’}. Let Ae A be a common
refinement of all A,. Then A is a common refinement of all {c,, (c,)'}
and g.lb. {¢,JoeS}=Lub. {aedla=<c, all seS} eB. Indeed, c=lu.b.
{aeAla=<c,, all 0 e S} =<V ,ee, is clear. But also, ¢'=Lu.b. {aedlaZ
(c.), seme o€ S} < Ases(¢o) =(Agest,). Hence, B is an a—complete B.A.
Obviously, ASB for all Ae9. If A is an a—covering of B, then, as
proved above, every binary partition {c, ¢’} withce A is refined by some
A,eA. Choosing A€ U to be a refinement of all these 4, gives a refine-
ment of A. In fact, any ae A satisfies either a<e¢, or a<¢ for all
ceA. If a<c¢ for every ¢, than a< Neez¢ =(l.u.b. Zl)’zO, since A is
a covering. Thus every ac A satisfies a<c¢ for some ce A.

Proof of (3.1). Let B be the normal completion of B. Let A be
the set of all partitions of B, which are of the form Il,csA4,= {b,|¢ € 25},
where the A,= {a,, a,,} are binary partitions of B and b,= A seslop o) € B.
The fact that Il,es4, is a partition follows directly from the assumed
distributivity of B. If A,=I,c5mnA,. €A for all re T with T<«, then
A=, e, e5cnA-€U is a common refinement of all A,. Thus, the
hypotheses of (3.2) are satisfied. Consequently, there is an a—complete,
a—distributive Boolean algebra B with BE6B<B. Since B is a regular
subalgebra of B, it is also a regular subalgebra of B.

4, Conditions for distributivity. In this section, we will examine
the following five properties of a Boolean algebra B :
( I, ) B is a-complete;
( II, ) every subset of an a-partition of B has a l.u.b. in B;
(III;) every p-covering of B can be refined by a [-partition ;
(IV.) B is («, p)-distributive ; _
(Vus) If {A,lceS} is a set of f-partitions of B with S<«, then there
is a covering of B which is a common refinement of every A,.
Certain relations between these properties are more or less evident.

(4.1) (a) I, and II, are hereditary in «, that is, I, implies I, and
II, implies II, for all y<«;

(b) IV, and V,; are hereditary in both « and 3;

(¢) I, implies 11,;

(d) IV, implies V,4;
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(e) V. and III; together imply IV, ;

(f) if I, holds for all a<f, then IIl,, is satisfied ;

(g) IV,, is equivalent to V,, and hence to V,,;

(h) III.. is always satisfied, so IV,. is equivalent to V...

Proofs. The statements (a)-(e) are obvious. If B is a-complete for
all a<f, and A= {as} is a f—covering of B indexed by the set of all
ordinals ¢ of cardinality less than fj, then {Cglz:<ﬁ} will be a f-partition
refining A if ¢s=a;A(V,«a,)’. The assertion of (g) is a restatement of
(2.4). Finally, with the help of Zorn’s lemma, it is always possible to
construct a partition to refine any covering. This construction, the de-
tails of which we omit, proves (h).

It appears from (4.1) (e)-(h) that the condition V,, is only slightly
weaker than IV,,. On the other hand, the condition II, is substantially
weaker than I,, as the following example indicates. Let X be a set of
cardinality £ ; let B be the Boolean algebra of finite subsets of X and
their complements. If « is any cardinal number less than [, then any
a-partition of B is finite. Consequently, B satisfies II,. In one case
however, the properties I, and II, are equivalent, namely :

(4.2) II. is equivalent to I..

Proof. Let C be an arbitrary subset of B. Let C'={d e Bldrc=0,
all ceC}. Then clearly, u is the only upper bound of the set Cu(’,
that is, CuC’ is a cover. By (4.1) (h), there is a partition A refining
CuC'. If D={ac Al|{a} refines C}, then A—D={ae Alarc=0, all ce C}.
Hence l.u.b. C=l.u.b. D exists by II..

It is appropriate now to explain the object of studying the various
properties listed above. Our main interest, of course, is the relation
between I, and IV,,, and specifically we would like to find simple neces-
sary and sufficient conditions for the normal completion of a Boolean
algebra to satisfy IV,,. It is rather easy to prove that IV,.. is sufficient
and IV, . 1S necessary for a-distributivity in B=. The effort to fit
these two facts into a broader pattern leads to consideration of conditions
II, and V,. It turns out that properties I, and V,, are tied together
rather closely. Unfortunately I, and IV, do not enjoy such an intimate
relationship and the two conditions mentioned above are the more or less
accidental offspring of I, and V,, rather than the progeny of I; and
IV .

THEOREM 4.3. If the Boolean algebra B satisfies V., and II,, where
r=p% then B satisfies V.

Proof. The theorem is trivial if « is finite, so it will be assumed
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that « is an infinite cardinal number. Let A be a r- partition of B.
Then A can be indexed by a subset of 7%, where T— B and S=«, say
A={a,}. Since B satisfies II,, it is meaningful to define b,,=l.u.b.
{ayl¢(c)=7} for each e S, reT. Then A,={b,|reT} is a [-partition
of B and it is easy to see that any common refinement of all 4, is also
a refinement of A. Now suppose {4,|pe R} is a set of y-partitions of
B and R<«a. For each p in R, define (as above) a set of p-partitions
{A,,|c€S,} with the property that a common refinement of every A,
with oe S, is also a refinement of A,. Consider the set of all -parti-
tions {4,,|l0e S, peR}. There are at most a*=« of these, so by pro-
perty V,s, there is a covering A which refines every A4,.. But then 4
refines every A,. Thus, B satisfies V,,.

COROLLARY 4.4 (Smith-Tarski [4]). If B is a~distributive and 2*-com-
plete, then B is («, 2%)-distributive.

COROLLARY 4.5. A mnecessary condition that BP be a-distributive,
where f=2%, is that B be (a, 2%)-distributive.

Indeed, if B? is a-distributive, then by (4.4) it is («, 2%)-distributive.
But B is a regular subalgebra of B? and hence (by (2.2)) B is also («,
2*)-distributive.

We do not know whether the converse of 4.5 holds. That is, if
B is (a, 2%)-distributive, does it follow that B* is a-distributive? This
seems doubtful, but if the goal of 2*-completeness (that is, property I,,)
is replaced by the property II,, then a positive result is obtained (in
Corollary 4.8 below).

THEOREM 4.6. Let B be an arbitrary Boolean algebra. Define B to
be the intersection of all algebras B with the property II; such that
BSB< B>, Then B satisfies Il;. Moreover, B has property Vi if and
only iof B has property V.. Also, iof B is a—complete and satisfies Vg,
where B*=p, then B is a-complete.

Proof. Clearly B satisfies II,. Since B is a regular subalgebra of
B, the property Ve for B implies the same property for B. To estab-
lish the converse, it is sufficient to show that every [-partition of B can
be refined by a F-partition of B.

Let 9 be the set of all f-partitions of B. By (2.5), every Ae U can
be considered as a partition of B~. By (2.2), every finite subset of 2
has a common refinement in . Let B be the set of all joins in B* of
a subset of some A€ U. By (3.2), B is a Boolean algebra containing B.
Clearly BSB. Suppose A is a f-partition of B, say A={alre T}. Then
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a,=V {b,lceS,} with b,,€B, b,nb,,=0 for o+, and S,<B. Con-
sequently, A={b,,|ceS, ceT} is a f-partition of B which refines A.
The join of any subset of A is also the join of a subset of A and
therefore in B. Since A was an arbitrary (-partition, B has property
II,. Consequently, B<B. Thus every f-partition of B=B can be re-
fined by a B-partition of B.

Finally, suppose B is a-complete and satisfies V,, with g*=p5. If
{A,lce S}, S<a is a set of p-partitions of B, then J[,csdo=1{Acsds|
b,e A,} is a f*=p-partition. Hence, by (3.2), B=B is a—complete.

COROLLARY 4.7. The normal completion of & Boolean algebra B is
(a, o )-distributive if and only if B is («, o )-distributive.

Proof. By (4.6), (4.1) and (4.2).

COROLLARY 4.8. If the continuum hypothesis is true for the infinite
cardinal o« (that is, 2 covers «), then an a-complete Boolean algebra B
can be regqularly imbedded im an ca—complete, a—distributive algebra satis-
Sying I, of and only of B is (a, 2*)-distributive.

Proof. The sufficiency of («, 2%)-distributivity is a consequence of
(4.6) and (4.1). The necessity follows from (4.3), (4.1) and (2.2).

5. An example. Because of (4.5), the Theorem (5.1) of the intro-
duction can be proved by constructing an «-field which is not («, 2%)-
distributive.

Let X be a set of cardinality 2. Denote by Y the set of all ordinal
numbers of cardinality less than «. Let Z be the set of all bounded funec-
tions in Y%, that is, functions f for which there is an ¢ Y such that
Ax)<7y for all  in X. Let & be the collection of all sets of the form

L=Ly,={feZ|flw=¢},

where W< X, W<« and ¢e Y"”. Itis obvious that & contains the empty
set and is closed under a-intersections.

Let & be the a-field generated by <. It is to be shown that &
is not («, 2%)-distributive. The proof hinges on a lemma, which is useful
in its own right.

LEMMA 5.2. Let Z be a set. Suppose & 1s a nonempty family of sub-
sets of Z with the following properties :
(i) every a—imtersection of sets in & isin < ;
(ii) the complement of any set of & is a union of sets of <.
Let Z be the a-field generated by . Then & is dense in 7 .
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Proof. Let B be the complete B. A. of all subsets of Z. Let 2 be
the collection of all partitions A of B with Ac.&”. If {A,l0 e S},
S<a and say A;={L,lreT,}, then by (i), Ileesdo={Noeslopw |
€ [IoesT,} is in A and refines every A,. Let B consist of all sets
VEZ such that both V and V° are disjoint unions of set of .&<”. By
(3.2) and (i), .~ =B+P and B is an a-field. Thus, " <.7 <B. Since
every set of B is a union of sets of &7, the same is true of % and
in particular, .&° is dense in & .

We now proceed to prove that & is not («, 2%)-distributive. For
each pair (x,7) with xeX and 7eY, define T ,={feZ|f(x)=7}.
Clearly T, ., e.<". Foreach neY, let A,={T, »lve X}. The argument
is completed by showing
(1) A4, is a 2*-covering of 7 ;

(2) no covering of .7 refines every A4,.

Proof of (1). Evidently, Z:zw, so the only thing to prove is that
the l.u.b. of 4, in . is Z. The first step is to show that the conditions
(i) and (ii) of (5.2) are fulfilled, so that .~ is dense in & . Condition
(i) is clear. For condition (ii), let L=Ly ,e <. Then L'=U,en{f €Z|
S@)#¢(@)} = User{ U{T mln#¢()}) is a union of sets of <.

Since &7 is dense in &, it is enough, in proving (1), to show that
if Le &~ satisfies LNT(, n=¢ for all x, then L=¢. Suppose L=*¢ and
say L=Ly ,. Pick feL and let xe X—W. Define geZ by g(x)=7,
9(¥)=Ay) if y+«. Then ge T, and ge L. Hence, LNT, ¢, which
is the required conclusion.

Proof of (2). First note that N,ex(UA,)=¢. For otherwise there
would be an f'e Z whose range included every » € Y, contray to the bounded-
ness of the functions of Z. But if A is a subset of % which refines
every A,, then UAZS UA, for all . Hence, UAS N,e(UA4,)=¢, so 4
cannot be a covering.
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