
THE RELATIONS BETWEEN A SPECTRAL

OPERATOR AND ITS SCALAR PART

S. R. FOGUEL

1. Introduction. It is shown in Dunford's theory of spectral
operators, that every spectral operator T can be decomposed into the
sum of a scalar operator S, and a generalized nilpotent JV [1]. We study
here properties which are inherited by S from T. The main results are :

1. If the spectral operator T is compact, weakly compact, or has
a closed range, then respectively S is compact, weakly compact, or has
a closed range.

2. The relations between the point spectra, continuous spectra, and
residual spectra of S and T are investigated.

3. If the sum of two commuting spectral operators is spectral,
then the sum of their scalar parts is scalar.

2. Notation. Most of the notation is taken from [1]. Let X be
a complex Banach space. A spectral measure is a set function £*(•)>
defined on Borel sets in the complex plane, whose values are projections
on X, which satisfy :
(a) For any two Borel sets σ and δ E{σ)E{d) = E{σ n S).
(β) Let Φ be the void set and p the complex plane.
Then

E(Φ)^0 and E(p)=I.

(γ ) There exists a constant M such that \E(<r)\<LM, for every Borel
set σ.
(δ) The vector valued set function E( )x is countable additive for
each xe X.

The operator T is a spectral operator, whose resolution of the identity
is the spectral measure E(-) if
( a ) for every Borel set σ E(σ)T^TE(σ).
(b) Let Ta denote the restriction of T to the subspace E(a)X, (Ta

= T\E(a)X) then
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where a (A) is the spectrum of A.

Throughout the paper T denotes a spectral operator, E(-) its reso-

lution of the identity, S its scalar part given by S= I λE{dλ), N its

radical given by N=T—S. The operator N is a generalized nilpotent,
and the operators N, S, T, E(a) commute [1]. A spectral operator is
of finite type, if for some integer n, Nn+1=0. We shall denote iV 2£«0»
by N09 hence N0=TE«0»=E«0»T.

3. Topological properties. In this section, several topological pro-
perties will be shown to be valid for S whenever they are valid for T.
The following lemma will be used.

LEMMA 1. S is in the uniformly closed operator algebra generated
by the projections E(a) with O0α.

Proof. S—\ λE{dλ) and <τ(T) is bounded, see [1] Theorem 1. Given
Jσ(r)

ε>0 let σ(T) be divided into the disjoint sets α0, alf , an with

0 e a0 , 0 φ

diam(α:ί) < e

Let λo — O and λteat. Then

i = l, 2, , n and

i=0, 1, 2, , n .

= |t
I J<

(r)

If λ 6 σ(Γ) then

Σ

Now by [1], p. 330, for every bounded measurable function defined on σ(T)

I ( f{λ)E{dλ)
)

λ e σ(Γ)} 4M .

Hence

S- <4Mε .

THEOREM 1. Let % be a uniformly closed right (left) ideal in the
algebra of operators on X. If T belongs to 91 so do S, N, and E(a) with

Proof. By condition b of § 2 TΛ with 0 0 a possesses a bounded
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everywhere defined inverse T"1. Let us define PΛ by Potx=Ta1E(a)xf

xeX, 0$ά. PΛ is a bounded everywhere defined operator. Now

TPΛx = T{T-ιE(a)x)=

Also

Hence if 0 0 a then Z?(α) e SI. Note that this fact remains true even if
3ί is not uniformly closed. Now by Lemma 1 SeSΐ and therefore
iVeSί too.

COROLLARY 1. If T is compact then so are S, N and E(a) (O0α).

COROLLARY 2. If T is weakly compact then so are S, N and E(a)
with 0 $ a.

COROLLARY 3. If TXa Y ivhere Y is a closed subspace of X, then
SXcz Y and NX a Y and E(a)Xa Y, 0 0 a. Hence

and if the range of T is separable so are the ranges of S, N and E(a),

COROLLARY 4. // AQT=0 (TAQ=0) then A0S=A0N=0 and A0E(ά) = 0,
0 0 a (SA0=NA0=E(a)A0=0 if O0α). In particular T is a spectral
operator of finite type if and only if some power of N annihilates T.

COROLLARY 5. If Tx=0 then Nx^Sχ—E(ά)x=0 where a does not
contain 0.

COROLLARY 6. // (xn) is a bounded sequence of vectors, and the
sequence {Txn) has a limit then the sequences (Sxn), (Nxn) and (E(a)xn)
with 0 0 a have limits.

To prove these corollaries one has to note that:
( a ) The classes of compact and weakly compact operators are uniformly
closed two-sided ideals. (See [3] Chapter 6).
(b) The classes of operators A satisfying AXaY or A0A=0 are uni-
formly closed right ideals.
( c) The classes of operators A satisfying A E = 0 or AAQ—0 or the limit
of Axn exists are uniformly closed left ideals.

REMARK TO COROLLARY 6. By the proof of Theorem 1 the sequence
(E(a)xn), O0α, has a limit whenever the sequence (Txn) has, even if
the sequence (xn) is not bounded.
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THEOREM 2. AT=0 if and only if AE(p-<0» = 0 (A=AE«0») and
AN»=0. Similarly TA=0 if and only if E(p-<0»A = NQA=0.

Proof If ANQ=AE(p-<p» = 0 then AE(a) = AE(p-<fl>)E(a) = O if
O^α, thus by Lemma 1 AS=0. Now

AN= ANE(φy)+ANE(p - <0» = AN0 + (AE(p - <0»)iV= 0 .

Thus AT=AS+AN=0. Conversely if AT=0 then
and AE(a) = 0 if 0$~a. Now for each xeX

AE(p-<ϋy)x=\\m AE\z
n

;=0

by countable additivity.
The second half of the theorem is proved in the same way.
Using Corollary 5 one can prove in the same way that Tx — Q if

and only if Nύx=E(p-<Qy)x=0.

COROLLARY 1. // £ « 0 » = 0 , then AT=0 or TA=0 if and only if
A=0.

Proof. By Theorem 2 if AT=0 or TA = 0 then A=AE«θy) or

COROLLARY 2. If £ τ «0»=0 then ΨX=X.

Proof. If TXψX then there exists a bounded functional x*Φ§ such
that #*(JPX) = 0. Let Ax—x^(x)x1 where x1 is any vector different from
0. AT—0 and AφO which contradicts Corollary 1.

THEOREM 3. If T has a closed range so does S.

1. Proof Let JE'«O» = O then Corollary 2 of Theorem 2 shows that
TX=X. But by assumption TX=TX, thus TX=X. Also, the operator
T is one-to-one by [1] p. 327 and thus T possesses a bounded every-
where defined inverse. Thus 0φσ(S) = σ(T) and SX=X.

2. Let E(ζθy)Φθ. The operator Tp-<d> is a spectral operator whose
resolution of the identity F( ) is given by F(a)—E(a)E(p—(θy)=E(a
-<0», hence F « 0 » = 0. Now if Tp-<Q>xn-+y(ye JE(p-<0»X), then, there
exists a vector x in X such that Tx—yy because T has a closed range.
Therefore
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Hence Tp.<0> satisfies the same conditions assumed for T in the first part
and therefore 0$ σ(Γp_<a>) and

Sp-<Q>X=E(p-<0»X, but SP-<Q>X=SX,

so S has a closed range.
By the proof of the last theorem it follows that if T has a closed

range then 0 0 σ-(Tp_<0>), hence 0 is an isolated point of the spectrum
of T.

THEOREM 4. The operator T has a closed range if and only if
1. 0 is an isolated point of o (T).
2. The operator NQ has a closed range.

Proof. We proved that Condition 1 is necessary. Now if NQxn-+y
then E«O»Noxn-+E«θy)y but #«0»iV0=iV0 thus E«θy)y=y. Also No

= Γ£'«0>) and T has a closed range, thus if T(E«0>)xn)-^y then for
some x, Tx=y. Hence TE(<θy)x=Nox=E(ζϋ))y=y. Conversely if 1.
and 2. are satisfied let Txn-*y. Then

TE(p - <0>K+TE«0»x n =TE(p - <0»a?n

Multiplying this equation by E(p—(θy) and JS7«0» one gets the following
two equations

-» E(p-<θy)y

NQxn -> E«θy)y

By 1. 2V<0> possesses a bounded everywhere defined inverse. Hence,
for some x1 in E(p -<0»X, Tx1=E(p-<θy)y.
By 2. for some vector x2, Nox2=E((θy)y. Thus

T(x1+E«0y)x2) = Tx1+N&9=y.

4. Properties of spectral points. Let A be a bounded linear operator
on Xy define

σp{A)—{λ\λI—A is not one-to-one}

σc(A)—{λ\λl—A is one-to-one and {λl—A)X is dense in X, but not
equal to X}.

σr(A)={λ\λI-A is one-to-one and {λI-A)XφX}.

(See [6] p. 292.)

The sets <rp(A), <rc(A) and o r(A) are disjoint and

σ(A) = σp(A) U σc(il) U σ r(il) .
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THEOREM 1. // T is a spectral operator of finite type, then λ e σp(T)
if and only if E«λ»Φθ, and λβσc(T) if and only if E(φ) = 0, and
λ 6 σ{T). Thus σ(T) = σp{T) u σc(T).

Proof. If E(φ)Φ0 let xeE«λy)X, x<£0, then

Sx = [ μE{dμ)x = [ μE(dμ)E(φ)x = λx .
Jσ(ϊO Jσ(r)

Let v be the first integer such that Nvx=0, then

therefore λeσp(T). If S«A» = 0 then Corollary 2 of Theorem 2, §3,
applied to λl—T, shows that (λI-T)X=X. Also, by [1] Lemma 1, λl—T
is one-to-one and thus λ e σc(T).

THEOREM 2. σc(S)cσc(Γ) αwcZ ^

Proo/. If λ e σc(S) then £'«^» = 0, and by the last part of the proof
of Theorem 1, λeσc(T). Thus σc(S)dσc(T) and

σ,(Γ) U σ r(Γ) = σ(Γ) - σβ(Γ) C σ(3P) - σβ(S) = σ(S) - σβ(S) = σp(S) .

If ^«^» = 0 then i6σβ(Γ). Let us examine therefore the case
where JS«Λ»:£θ. To simplify notation assume that Λ = 0.

THEOREM 3. Lei £;«0»^0 then

1. θ€ίjp(Γ) i/ No is not one-to-one on E«fly)X.

2. Oeσc(Γ) if No is one-to-one on E(ζθy)X and iV0(£'«0»X)=

3. Oe σr(Γ) ί/ Λ̂ o is o^e-ίo-o^e on

Proo/.

1. If there exists a vector a; such that xΦO, x—E((θy)x and
Nox=O then

Γα=TE«θy)x=Nox=O

2. The operator 7V<0> is one-to-one on E(p—<0»Z by [1] Lemma
1. Now if iV0 is one-to-one on E((θy)X then T is one-to-one on X : If
Tx = 0 then £;«0»Γ^=iV0^=:iV0ί;(<0»^=0 and TE(p-<Oy)x=Tp..<o>E(P
-<0»£=0. Thus ί;«0»^=:0 and S(p-<0»α?=0, but then α=
+E(p-<0y)x=0. Now by Corollary 2 of Theorem 2, §3
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and by assumption

but

and

therefore

TXziX .

3. By Part 2, T is one-to-one. Let x be a vector in E((θy)X whose
distance from N0X is greater than some positive number r. Let y be
any vector in X. Then

Hence

Mι N ' M

Hence

The next theorem is valid for separable spaces only.

THEOREM 4. // X is separable, then σp(T){jσr(T) is countable.

Proof. Theorems 1 and 2 show that σp(T)Uσr(T)czσp(S)= {λ\E(ζλ»

. For any λ in σp(S) let xλ be a vector satisfying |α?λ| = l and
E{<sλy)xλ=xλ. Now if λxΦλ2 then

The set {a J i e σ ^ S ) } is separable because X is, hence the set is
countable.

We conclude this discussion by studying another subset of the
spectrum.

DEFINITION. Let A be a bounded linear operator on X, then σQ(A)
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= {λ I there exists a sequence (xn) such that | # J = 1 and {λl—A)xn->0}.
See [5] p. 51.

LEMMA 1. σp(S)czσ{)(T).

Proof, Let xΦO satisfy Sx — λx. If for some n, Nnx=0, let us
take the first such integer. Then

and thus λeσp(T)aσQ(T). If for every n, NnxΦθ then

T ^(S \-N) Nnχ -λ +
\Nnx\ \Nnx\ \Nnx\ \Nnx\

It is enough to show that for some subsequence nt

\m^χl _> 0
\Nnιχ\

Let us assume, to the contrary, that for some ε>0 \Nn+ιx\^ε\Nnx\ for
all n, then

but this would imply that

lim ί/]W\ = lim V\W\ ΐ/\^\ ^lim sup

= e .

But N is a generalized nilpotent and thus limy/\~Nn\ = 0.

THEOREM 5. σ(27)=σ0(27).

Proof. By Theorem 2 and Lemma 1 σp(T)υ σr(T)czσp(S)<zσQ(T).
Thus it is enough to show that σc(Γ)cσβ(Γ). Let λ e σc(T) we may
assume that λ = 0. If 0^σ-0(T) then \Tx\^e\x\, xeX, for some positive
ε. This implies that TX has a closed range, but TX=X hence TX=X,
which contradicts the assumption that 0 e ac(T).

Let us conclude this section with a few examples.
1. Define in lΎ the generalized nilpotent operator N by

N(xlf x2, x3, -) = (x2, 0, xi9 0, •)

and let ^ = 0 . S is compact while T is not weakly compact.
2. Let X be the space of continuous functions on [0, 1] vanishing
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at the point 0. Define N by Nf=g, g(x)=\f(s) ds, and let S=0. S
Jo

has a closed range while T does not. 0e<τp(S) but 0e<rc(T).
3. Let N be defined as in 2, and S=I. T and S have closed

ranges but the range of N is not closed.

5. Decompositions of spectral operators. Let T19 , Tn be n com-
muting operators. There exists a minimal algebra of operators 2ί, with
the properties :

1. 2^6 21, i = l , 2 , ••• ,n.
2. If Ue 21 and U~λ is a bounded everywhere defined operator then

3. The algebra SI is uniformly closed.
This algebra will be called the full algebra generated by Tlf , Tn,

and it is a commutativealgebra. Let Δ^ denote the space of homomor-
phisms from 31 to the algebra of complex numbers. By Condition 2,
and the Gelfand theory [4], if Ue% then σ(U)={μ(U)\μe Δ%} thus if
μ(JJ)—0 for each μeA% then U is a generalized nilpotent.

LEMMA 1. Every scalar operator S is the sum S^iS ^ where Sλ and
S2 are scalar operators and

2. σ(S1) and cr(Sz) are sets of real numbers.
3. The Boolean algebra of projections generated by the resolutions

of the identity of Sτ and S2 is bounded.

Proof Let E{ ) be the resolution of the identity of S then

S= [zE(dz)=

where

E1(a) = E{z\z=x+iy and xea}

E2(a)=E{z\z=x+iy and yea}

Conditions 1, 2, and 3 are readily verified.

THEOREM 1. Let T be a spectral operator. Then there exist two
operators R and J such that

1. T=R+iJ and RJ=JR
2. The sets σ{R) and σ(J) are real sets.
3. R is a scalar operator and J is a spectral operator.
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4. The Boolean algebra of projections generated by the resolutions
of the identity of R and J is bounded.

If R1 and J1 satisfy Conditions 1 and 2, then they are spectral
operators and there exists a generalized nilpotent M such that

R^R+M, Jτ=J+iM .

REMARK. By the last assertion and Theorem 8 of [1] Conditions 1,
2, and 3 insure uniqueness. We shall call R the real part of T and
J the imaginary part of T.

Proof. Let T=S+N. Using the notation of Lemma 1, put R=SU

J—S2—iN, and Conditions 1., 2., 3., and 4. follow by Lemma 1. Now,
if Rx and Jλ satisfy 1., and 2., then by Theorem 5 of [1], the operators
R, J, Rly Jλ commute. Let Sί be the full algebra generated by these
operators, if / / e % then

but μ(R—R1) and μiJ—J^ are real numbers by Condition 2. Hence

Thus if M—R—Rλ then M is a generalized nilpotent and J—J1—iM.

LEMMA 2. Every scalar operator S can be written as the product of
two scalar operators 2\ and T2 which satisfy

1. T^^TzT^S.
2. o(T^) is a set of non-negative numbers and σ(Γ2) is a subset of

the unit circle.
3. The Boolean algebra of projections generated by the resolutions of

the identity of Tλ and T2 is bounded.

Proof. It follows from the multiplicative property of the spectral
measure £"(•) of S that

S=[λE(dλ)=[\λ\E(dλ)[*gnλE(dλ) .

Thus S=TτT2 where

T1=^\λ\E(dλ) = ̂ μE1(dμ) if E1(')

is defined by

E1(a)=E{λ\\λ\ea}

and
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TA= fsgn λE(dλ)=\μEt(dμ)

where

It is easy to verify Conditions 1, 2, and 3.

THEOREM 2. Let T be a spectral operator. Then there exist two
operators P and U such that

1. T=PU=UP.
2. σ(P) is a set of non-negative numbers and σ(U) is a subset of

the unit circle.
3. U is a scalar operator and P is spectral.
4. The Boolean algebra of projections generated by the resolutions of

the identity of P and U is bounded.
If Px and Ux satisfy 1. and 2., then they are spectral operators and

i P1=P+Ni where NL ond N2 are generalized nίlpotents and

REMARK. By the last assertion Conditions 1, 2, and 3 insure
uniqueness. The operator P will be called the absolute value of T and
U the argument of T.

Proof Let T=S+N. Using the notation of Lemma 2 put P—(Tι

+ T^N) and U=T2, then PU= T because T,N=NT2 (Theorem 8 of [1]).
Now, Conditions 1, 2, 3, and 4 follow by Lemma 2. Let Pλ and Uι

satisfy 1 and 2 then by Theorem 8 of [1], Plf U19 P, U commute.
Let 2ί be the full algebra generated by these operators. If μeΔ^ then
μ(T)=μ(P)μ(U) = μ(P1)μ(U1) and by Condition 2 μ(P)=μ(Pλ) and μ(U)
—μ{U^). Thus N1—U1 — U and N2=Pι—P are generalized nilpotents.
Now

or

hence

In order to apply these theorems we need the following result.
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THEOREM 3. A spectral operator T is a scalar operator whose
spectrum lies on the unit circle if and only if: T'1 is a bounded every-
where defined operator, and there exists a constant M such that

n=±l, ±2,

Proof If T=\ λE(dλ) then
J l λ | = i

λnE{dλ) ^4 sup {\E(a)\ \a a Borel set} ,

b y [1], p . 3 4 1 . C o n v e r s e l y a s s u m e t h a t \Tn\^M n— ± 1 , ± 2 , ••• t h e n

because that two series converge. Thus σ{T)d{λ\ U| = l} and \R(λ;T)\
^Λf/ | l-U| | if \λ\Φl. By Lemma 3.16 of [2] if T=S+N, where S is
scalar and N is a generalized nilpotent, then iV2=0. Hence

Therefore nN=(Tn-Sn)S-^n'1K
Thus %iV is a bounded sequence of operators and therefore N—0.

LEMMA 3. Let Sτ and S.z be two commuting scalar operators with
real spectra, if S1+S2 is spectral then it is scalar.

Proof. Let S1+S2=S+N where S is scalar and N is a generalized
nilpotent. By Theorem 3 the operator etcs+N) = etsι eis* is a scalar
operator, but

hence

but the operator ieisΣ——— possesses an inverse and thus N=0.

THEOREM 4. Let S1 and S2 be two commuting scalar operators, if
S1 + S2 is spectral then

1. Sι+S2 is a scalar operator.
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2. The real {imaginary) part of S1 + S2 is the sum of the real
{imaginary) parts of Sλ and S2.

Proof. Let Slf S2 and ASΊ+AŜ  be decomposed into real and imaginary
parts as in Theorem 1. Then

SL+S2=R+iJ

where Rlf Jlf R2, J2 and R are scalar operators, while J is spectral, and
would be scalar if and only if S^+S* is a scalar operator. The operators
Rif J\y R%J J% commute and thus by the Gelfand theory [4] Rλ+R2 and
Jλ+J2 have real spectra. By Theorem 1 R1+R2 = R+M and J1+J1 = J
+iM, where M is a generalized nilpotent. By Lemma 3 the operator
Rλ+R2 is a scalar operator, but R is scalar too, thus by Theorem 8 of
[1] ikΓ=O. Now JX+J%=J which is a spectral operator and, again, by
Lemma 3, J is scalar. Thus S x +S 2 is scalar and R1+R2=Rf J1+J2=J.

THEOREM 5. Let S1 and S2 be two commuting scalar operators. If
SλS2 is spectral then

1. Sβz is a scalar operator.
2. The absolute value {argument) of SΊ£2 is the product of the ab-

solute values {arguments) of S1 and S2.

Proof. Let S19 S2 and SJ32 be decomposed as in Theorem 2.

S1=P1U1 , SΛ=PtU% S1S1=PU.

The operators Ulf U2, U, Pτ and P2 are scalar, and P is a spectral
operator, which is scalar if and only if S& is scalar. Using commuta-
tivity of the operators in question and Theorem 2 we derive that

PXP2=P+N2 , U±U,= U+Nλ ,

where Nλ and N2 are generalized nilpotents and iV2= Σ£=o(—iV1?7"1)w+1-P.

By Theorem 3, JVi = O and hence iV2=0 too, which proves the second

assertion. In order to complete the proof it remains to show that P^

is scalar. Now P is spectral, let P=P1P2—S+M where S is scalar and

M a generalized nilpotent. Let E( ) and F( ) be the resolutions of the

identity of P1 and P2 respectively. Denote E{λ\λ>ε1}=Eil and F{λ\λ

>ε2}=FH, then the spectrum of E.P^JP^SE^F^+ME^F^ on EεFhX
is contained in the set {λlλ^ε^} by the Gelfand theory. The operator

log (2£8lPi2?8aP2) is thus well defined and it is not difficult to show that

it is equal to log {E^PJ + log {EHP2). This sum is spectral by [1], p. 340,

and by Theorem 4 it is scalar. Thus EZίPλFHP2 is scalar and therefore

MEζFS2=0. By countable additivity MEQFQ=0 but P1EQ=P1 and P2F0

= P 2 . Thus
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but P1P2=S+Mf hence S+M=SEQF0, therefore S=SE0FQ and M = 0 by
Theorem 8 of [1]. Hence PτP2=S is a scalar operator.

REMARK. From Theorems 4 and 5 it follows that the sum or pro-
duct of two commuting spectral operators is spectral, if and only if, the
sum or product of their scalar parts is scalar.

A decomposition of a non-spectral operator A into real and imagi-
nary parts is possible in some cases.

THEOREM 6. Let A be an operator and σ(A)aK where K satisfies
1. There exists a function f which is analytic and one-to-one in a

neighborhood of K.
2. The image of K is a subset of the unit circle.
3. The inverse function of f exists and is analytic in a neighborhood

of the unit circle, let us denote this function by g.

4. g@)=g(z) if \z\ = l.
Then A—A^iA^ where σ{Aλ) and σ{A2) are sets of real numbers and
A1ila=il2il1. // A=B1+iB2 where Bλ and B2 satisfy the same conditions
then B1=A1+N and B2—A2+iN and N is a generalized nilpotent.

Proof. Let φ(z)=g(l/f(z)) then φ is analytic in a neighborhood of
K and for zeK, φ(z) = z. Define

d A-φ(A)
2 2 Ϊ ~ " 'A

A l 2
If SI is the full algebra generated by A and

is the real part of μ(A), and μ{Az) is the imaginary part of μ(̂ 4). Thus
the first part of the theorem is proved. The second part is proved as
in Theorem 1.

We conclude this section by a study of roots of operators. The
operator B is said to be an nth. root of A if Bn—A. The operators A
and B commute AB=BA=Bn+1. Let SI be the full algebra generated
by B. If μeΔ% then μ{B)n=μ{A) thus

Thus if Bn = I then σ(B)a {λ\λn=l} and hence is a finite set. By
Theorem VII. 3.20 of [3], B is spectral and by Theorem 3, B is a scalar
operator. Thus
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n-l

if kφj, and Σ£=J-E^ =/.

THEOREM 7. Let S be a scalar operator with real spectrum whose

resolution of the identity is E('). Let S1=\λ1/nE(dλ) where arg λι/n

= (arg λ)ln. If S2 satisfies S?=S, then σ(S2)a(σ(S))ι/n, and if σ(S2)c {λι/n\λ
eσ(S) and arg Λ1/W = (arg λ)fn} then

S2=Sτ+N and N=NE«β» and Nn=0 .

Proof The operators Sλ and S.z commute by [1] p. 329. Let 3ί be the
full algebra generated by them. If μeΔs^ then μ{Sι) — μ(S.^) and thus
S2—S1—N\^ a generalized nilpotent. Now

therefore

but by Corollary 4 of Theorem 1, Section 3, JS7S -̂1=O. Thus by Theorem
2 of §3, N=NE(ζθy)9 but then NSϊ=0 for every integer q. Instead of
(1) we have, therefore,

S=Sn

1+Nn or Nn = 0

which completes the proof.
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