HOMOMORPHISMS ON NORMED ALGEBRAS

BERTRAM YOOD

- 1. Introduction Let B_1 and B be real normed Q-algebras (not necessarily complete) and T be a homomorphism of B_1 into B. Our main object is to show that, for certain algebras B, T will always be either continuous or closed if the range $T(B_1)$ contains "enough" of B. If B is the algebra of all bounded linear operators on a Banach space \mathfrak{X} and $T(B_1)$ contains all finite-dimensional operators then T is continuous. If B is primitive with minimal one-sided ideals, $T(B_1)$ is dense in B and intersects at least one minimal ideal of B then T is closed. Other examples are given. In these results we can obtain the conclusion for ring homomorphism as well as algebra homomorphism if we assume that $\rho(T(x)) \leq \rho(x)$, $x \in B_1$, where $\rho(x)$ is the spectral radius of x. Note that this is a necessary condition for real-homogeneity. For the application of these results it is desirable to have examples of algebras which are Q-algebras in all possible normed algebra norms. Examples are given in § 2. For previous work on the continuity of homomorphisms and the homogeneity of isomorphisms on Banach algebras see [8], [9], [11], [12] and [14].
- 2. Normed Q-algebras and continuity of homomorphisms. For the algebraic notions used see [6]. Let B be a normed algebra over the real field (completeness is not assumed). As in [8], [11] a complex number $\lambda \neq 0$ is in the spectrum of $x \in B$ if it is in the usual complex algebra spectrum of (x, 0) in the complexification of B. If B is already a complex algebra then the spectrum of x in this sense is the smallest set in the complex plane symmetric with respect to the real axis which contains the spectrum of x in the complex algebra sense. Let $\rho(x)$ be the spectral radius of x, $\rho(x) = \sup |\lambda|$ for λ in the spectrum of x. B is called a Q-algebra if the set of quasi-regular elements of B is open. Every regular maximal one-sided or two-sided ideal in a Q-algebra is closed. Hence the radical of a Q-algebra is closed and so also is any primitive ideal. See [10; 77].
- 2.1. Lemma. For a normed algebra B the following statements are equivalent.
 - (a) B is a Q-algebra.
 - (b) $\rho(x) = \lim ||x^n||^{1/n}, x \in B.$
 - (c) $\rho(x) \leq ||x||, x \in B$.

Received January 14, 1958. This research was supported in part by the National Science Foundation, research grant NSF-G 2573.

Suppose (a). Then there exists a number c>0 such that x is quasi-regular for all x, ||x|| < c. Set $k = [(1+c)^{1/2}-1]^{-1}$. Let $x \in B$ and $\lambda = a+bi$ be any complex number $\neq 0$ where $|\lambda| > k||x||$. Then

$$|\lambda|^{-2} ||2ax - x^2|| \le |\lambda|^{-2} (2|\lambda| ||x|| + ||x||^2) < 2k^{-1} + k^{-2} < c$$

This shows that $\rho(x) \leq k ||x||$. Thus

$$\rho(x) = \rho(x^n)^{1/n} \le k^{1/n} ||x^n||^{1/n}$$

for every positive integer n. Letting $n\to\infty$ we see that $\rho(x) \le \lim \|x^n\|^{1/n}$. But $\lim \|x^n\|^{1/n} = \rho(x|B^c)$, the spectral radius of x in the completion B^c of B. Hence $\rho(x) \le \rho(x|B^c)$. Since $\rho(x|B^c) \le \rho(x)$, (b) follows. Clearly (b) implies (c). Suppose that (a) is false. Then there exists a sequence $\{x_n\}$, $x_n\to 0$ where x_n is not quasi-regular. Then $\rho(x_n) \ge 1$ for each n and (c) is false.

Let \mathfrak{X} be a Banach space and let $\mathfrak{G}(\mathfrak{X})$ be the Banach algebra of all bounded linear operators on \mathfrak{X} in the uniform topology. Let $\mathfrak{F}(\mathfrak{X})$ be the ideal of all elements of $\mathfrak{G}(\mathfrak{X})$ with finite dimensional range.

2.2. Lemma. Let j be an idempotent in a normed algebra B. Then the non-zero spectrum of an element in jBj is the same whether computed in jBj or B.

This is given in [9; 375] in the complex case. The real case offers no new difficulty.

2.3. THEOREM. Let U be a ring homomorphism or anti-homomorphism of a normed Q-algebra B_1 into $\mathfrak{C}(\mathfrak{X})$ where $U(B_1)\supset\mathfrak{F}(\mathfrak{X})$ and $\rho[U(V)]\leq\rho(V),\ V\in B_1$. Then U is continuous.

Suppose that U is not continuous. By the additivity of U (see [2; 54]) there exists a sequence $\{T_n\}$ in B_1 such that $||T_n||_1 \to 0$ and $||U(T_n)|| \to \infty$ where $||T||_1$ is the norm in B_1 and ||T|| is the usual norm in $\mathfrak{G}(\mathfrak{X})$. Consider any idempotent J of $\mathfrak{G}(\mathfrak{X})$ such that $J\mathfrak{G}(\mathfrak{X})$ is a minimal right ideal of $\mathfrak{G}(\mathfrak{X})$. By the work of Arnold [1] these elements J are the linear operators on \mathfrak{X} of the form $J(x) = x^*(x)y$ where $x^* \in \mathfrak{X}^*$, $y \in \mathfrak{X}$ and $x^*(y) = 1$. Let U(W) = J and $U(T_n) = V_n$. Since $||WT_nW||_1 \to 0$ we have, by Lemma 2.1, $\rho(WT_nW) \to 0$ and therefore $\rho(JV_nJ) \to 0$. By Lemma 2.2 and the Gelfand-Mazur theorem, $||JV_nJ|| \to 0$. Note that $JV_nJ(x) = x^*(x)$ $x^*[V_n(y)]y$. Hence $x^*[V_n(y)] \to 0$. Fix $y \neq 0$ in \mathfrak{X} . Then $x^*[V_n(y)] \to 0$ for all $x^* \in K = \{x^* \in \mathfrak{X}^* | x^*(y) \neq 0\}$. Let $z^* \in \mathfrak{X}^*$, $z^*(y) = 0$. Since z^* can be written as the sum of two elements of K, $x^*[V_n(y)] \to 0$ for all $x^* \in \mathfrak{X}^*$. Hence sup $||V_n(y)|| < \infty$ for each $y \in \mathfrak{X}$. By the uniform boundedness theorem, sup $||V_n(y)|| < \infty$. This is a contradiction.

2.4. Theorem. Let T be a ring homomorphism or anti-homomorphism of a normed Q-algebra onto a dense subring of a semi-simple

finitedimensional normed algebra B where $\rho[T(x)] \leq \rho(x)$, $x \in B_1$. Then T is continuous.

By [7; 698] B is strongly semi-simple and so, by Theorem proved below, T is real-homogenous and closed. Let $||x||_1(||x||)$ denote the norm in $B_1(B)$. Suppose that T is not continuous. Then there exists a sequence $\{x_n\}$ in B_1 such that $||x_n||_1 \to 0$ and $||T(x_n)|| = 1$, $n = 1, 2, \cdots$. There exists a subsequence $\{y_n\}$ of $\{x_n\}$ such that $||T(y_n) - w|| \to 0$ for some $w \in B$. Since ||w|| = 1 we contradict the fact that T is a closed mapping.

A normed algebra B is called a permanent Q-algebra if it is a Q-algebra in all normed algebra norms. We say that the normed algebra B has the spectral extension property if the spectral radius of $x \in B$ is the same as the spectral radius of x considered as an element of any Banach algebra B_1 in which B may be algebraically imbedded. Examples of algebras with this property are B^* -algebras [13] and annihilator Banach algebras [3]. To test if a normed algebra B has this property it is sufficient to consider the completions of B in all possible normed algebra norms.

2.5. Lemma. A normed algebra B is a permanent Q-algebra if and only if B has the spectral extension property.

Let B be a permanent Q-algebra, $x \in B$. Then $\lim ||x^n||^{1/n}$ has the same value $\rho(x)$, by Lemma 2.1, for any normed algebra norm for B. Thus B has the spectral extension property. If B has the latter property then for any norm ||x||, $\rho(x) = \lim ||x^n||^{1/n}$ and B is a permanent Q-algebra by Lemma 2.1.

2.6. Theorem. Any two sided ideal I of $\mathfrak{S}(\mathfrak{X})$ where $I\supset\mathfrak{F}(\mathfrak{X})$ and any closed subalgebra B of $\mathfrak{S}(\mathfrak{X})$, $B\supset\mathfrak{F}(\mathfrak{X})$ have the spectral extension property.

Let R be any such ideal I or closed subalgebra R. Let $||T||_1$ be a normed algebra norm for R and ||T|| the usual norm. For $T \in R$ let $\rho(T)$ be its spectral radius as an element of R, $\rho_1(T)$ as an element of the completion of R in the norm $||T||_1$ and $\rho_2(T)$ as an element $\mathfrak{C}(\mathfrak{X})$. In the ideal case if $U \in R$ has a quasi-inverse V in $\mathfrak{C}(\mathfrak{X})$ then $V \in R$. In every case $\rho(T) = \rho_2(T)$.

It is enough to show the identity imbedding of R (with norm $||T||_1$) into $\mathfrak{C}(\mathfrak{X})$ (with norm ||T||) is continuous. For then there exists c>0, $||T|| \leq c||T||_1$, $T \in R$, whence

$$||T^n||^{1/n} \leq c^{1/n} ||T^n||^{1/n}$$

for all positive integers n. Consequently $\rho(T) \leq \rho_1(T)$. Since $\rho_1(T) \leq \rho(T)$ we would have $\rho(T) = \rho_1(T)$.

Theorem 2.3 cannot be applied since it is not known a priori that R is a Q-algebra in the norm $||T||_1$. If, however, the imbedding is discontinuous there exists a sequence $\{T_n\}$ in R such that $||T_n||_1 \to 0$ and $||T_n|| \to \infty$. By the arguments of [1], the minimal ideals of R are the same as the minimal ideals of $\mathfrak{C}(\mathfrak{X})$. For each idempotent generator J of a minimal right ideal of R, JRJ is a normed division algebra and hence has a unique norm topology by the Gelfand-Mazur theorem. Since $||JT_nJ||_1 \to 0$ we have $||JT_nJ||_0 \to 0$. The remainder of the proof may be handled as in Theorem 2.3.

For a ring B and a subset $A \subset B$ we denote the left (right) annihilator of A by L(A) (R(A)). Bonsall and Goldie [4] have considered topological rings called annihilator rings in which for each proper right (left) closed ideal I, $L(I) \neq (0)$ ($R(I) \neq (0)$). We consider the related purely algebraic concept of a modular annihilator ring which is defined to be a ring in which $L(M) \neq (0)$ ($R(M) \neq (0)$) for every regular maximal right (left) ideal. From the standpoint of algebra these rings appear to be a natural class containing H^* -algebras, etc. In view of what follows it is natural to ask if the two concepts agree for semi-simple normed Q-algebras or semi-simple Banach algebras. A affirmative answer would settle an unsolved problem in the theory of annihilator algebras.

2.7. Lemma. Let B be a semi-simple normed annihilator Q-algebra and I be a closed two-sided ideal in B. Then I is a modular annihilator Q-algebra.

Thus if we had affirmative answer to the above question, any closed two-sided ideal of a semi-simple annihilator Banach algebra would also be one. The analogous result is known for dual algebras [7; 690].

Let M be a regular maximal right ideal of I. Since I is a Q-algebra (as an ideal in B), M is closed in B. Since L(I)=R(I), ([4; 159]), L(I+R(I))=(0) so that I+R(I) is dense. The arguments of [7; Theorem 2] show that M is a right ideal in B. We must show $L(M)\cap I\neq (0)$. Suppose the contrary. Then I L(M)=(0) and $L(M)\subset R(I)=L(I)$. As $M\subset I$, $L(M)\supset L(I)$. Therefore L(M)=L(I). R(M)M=(0) since it is a nilpotent ideal in B. Thus $R(M)\subset L(M)=R(I)$. Then since $R(M)\supset R(I)$ we see that R(M)=L(M). If $x\in L(M+R(M))$ then $x\in L(M)=R(M)$ and $x\in LR(M)$. Thus $x^2=0$ and, by semi-simplicity and the annihilator property, M+R(M) is dense in B. Then (M+R(M)) $I=(M+L(I))I\subset M$ and $BI\subset M$. Let f be a left identity for f modulo f. Then f and f are f and f and f and f and f and f and f are f and f and f are f and f and f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f are f are f ar

2.8. Lemma. In a semi-simple modular annihilator ring, every proper right (left) ideal contains a minimal right (left) ideal. A normed

modular annihilator algebra B has the spectral extension property.

Since the first statement is shown by stripping the arguments of Bonsall and Goldie [4] of all topological connotations, a sketch of the argument is sufficient. As in [4, Lemma 2], if j is not right (left) quasi-regular there exists $x \neq 0$ in B where xj = x(jx = x). The arguments of [4, Theorem 1] show that if M is a regular maximal right (left) ideal of B then L(M) (R(M)) is a minimal left (right) ideal generated by an idempotent. Also the left (right) annihilator of a minimal right (left) ideal is a regular maximal left (right) ideal. Consider the socle K of B. By the reasoning of [4, Theorem 4], L(K) = R(K) = (0). Let I be a proper right ideal of B. If I contained no minimal right ideals of B then, as in the proof of [4, Lemma 4], $I \subset L(K)$, which is impossible.

Let $x \in B$ and let B' be the completion of B in the normed algebra norm $||x||_1$. Consider $\lambda = a + bi \neq 0$ in sp(x|B). Then $u = |\lambda|^{-2}$ $(2ax - x^2)$ has no quasi-inverse in B. As in [3; p 159] there exists $y \neq 0$ such that uy = y and u has no quasi-inverse in B'. Then $\rho(x|B') = \rho(x|B)$.

3. Closure of homomorphisms and anti-homomorphisms. Throughout this section the following notation is assumed. Let $B_1(B)$ be a real normed algebra with norm $||x||_1(||x||)$. T is a ring homomorphism or anti-homomorphism of B_1 onto a dense subset of B. T is called closed if $||x_n-x||_1\to 0$, $||T(x_n)-y||\to 0$ imply that $y\in T(B_1)$ and y=T(x). By the separating set S of T we mean the set of all $y\in B$ such that there exists a sequence $\{x_n\}$ in B_1 where $||x_n||_1\to 0$ and $||y-T(x_n)||\to 0$. We assume that $\rho[T(x)] \leq \rho(x)$, $x\in B_1$. Note that this condition is automatic if T is real-linear.

The next lemma is an adaptation of results of Rickart [11].

3.1. Lemma. T is closed and real-homogeneous if and only if S=(0). S is a closed two-sided ideal in B and $T^{-1}(S)$ a closed two-sided ideal in B_1 . If B_1 is a normed Q-algebra then every element of S is a topological divisor of zero in B.

Clearly T is rational-homogeneous. Let $x \in B_1$ and $r_n \to r$ where each r_n is rational and r is real. Then $||r_n x - rx||_1 \to 0$ and $||rT(x) - T(rx) - T(r_n x - rx)|| \to 0$. Hence $rT(x) - T(rx) \in S$. The first statement follows by a straightforward argument.

Let $y_n \in S$, $||w-y_n|| \to 0$. There exists, for each n, an element $z_n \in B_1$ such that $||y_n - T(z_n)|| < n^{-1}$ and $||z_n||_1 < n^{-1}$. Then $||w - T(z_n)|| \to 0$ so that $w \in S$. Hence S is closed in B. Since $x \in S$ and r rational imply $rx \in S$ it follows that S is a real linear manifold. To show that S is an ideal in B it is enough to show that xy and $yx \in S$ for $x \in S$ and $y = T(z) \in T(B_1)$. This, however, is a simple matter. Suppose next that $||x_n - x||_1 \to 0$ where each $x_n \in T^{-1}(S)$. For each n there exists $y_n \in B_1$ such that $||T(x_n) - T(y_n)|| < n^{-1}$ and $||y_n||_1 < n^{-1}$. Then $||x - (x_n - y_n)||_1 \to 0$ while

 $||T(x)-T[x-(x_n-y_n)]|| \to 0$ whence $T(x) \in S$. Hence $T^{-1}(S)$ is closed. It is readily seen to be a two-sided ideal in B_1 .

Let B^c be the completion of B where we use ||x|| to denote the norm in B^c and $\rho(x)$ the spectral radius there. To show that $s \in S$ is a topological divisor of zero in B it is sufficient to show that it is one in B^c . Choose a sequence $\{x_n\}$ in B_1 such that $||s-T(x_n)|| \to 0$ and $||x_n||_1 \to 0$. If B_1 is a normed Q-algebra s is the limit of quasi-regular elements of B^c by Lemma 2.1. Hence so also is λs for any real λ . By the arguments of [11; 621] it suffices to rule out the possibility that both B^c has an identity 1 and that s has a two-sided inverse in B^c .

Suppose this is the case. Let S_0 be the separating set for T considered as a mapping of B_1 into B^c . Clearly $S \subset S_0$. Then as S_0 is an ideal in B^c , $S_0 = B^c$ and $1 \in S_0$. There exists a sequence $\{u_n\}$ in B_1 such that $||1 - T(u_n)|| \to 0$ and $||u_n||_1 \to 0$. Since $1 - T(u_n)$ and $T(u_n)$ permute we have by Lemma 2.1,

$$1 = \rho(1) \le \rho(1 - T(u_n)) + \rho(T(u_n)) \le ||1 - T(u_n)|| + \rho(u_n|B_1) \to 0$$

This contradication completes the argument.

If B_1 and B are Banach algebras, by the closed graph theorem [2; 41] S=(0) will imply that T is continuous. In every case S=(0) will imply real-homogeneity for T and the closure of $T^{-1}(0)$.

3.2. Lemma. Let B_1 be a normed Q-algebra and B be semi-simple with minimal one-sided ideals. Suppose that there exists a minimal one-sided ideal I of B_1 such that $T(B_1) \cap I \neq 0$. Then $S \cap I = (0)$.

We consider the case where I is a right ideal and T is a homomorphism. The other cases follow by the reasoning employed. Set $I_1 = T^{-1}(I)$. I_1 is a right (ring) ideal of B_1 . Let I=jB, $j^2=j$ and consider $x_0 \in I_1$ where $T(x_0)=jv\neq 0$. By the semi-simplicity of B, $jvB\neq (0)$ and, as jB is minimal, jvB=jB. Then $jvT(B_1)$ is dense in I. It follows that $T(I_1^2)\neq (0)$ for otherwise $[jvT(B_1)]^2=(0)$ and $I^2=(0)$. Select $x\in I_1$, $T(x)=jw\neq 0$ and $T(x^2)\neq 0$. Let R be the set of elements y in B for which $jy\in T(I_1)$. As observed, jR is dense in jB. Hence jRj is dense in jBj. But jBj is a normed division algebra and therefore, by the Gelfand-Mazur theorem, finite-dimensional in B. Thus jRj=jBj. There exists $z\in R$ such that jzjwj=jwjzj=j. For some $x_1\in I_1$, $T(x_1)j=jzj$. Then $T(x_1x)=jzjw=T((x_1x)^2)$. Set jzjw=h and $x_1x=u$. Then h is a non-zero idempotent in $I\cap T(B_1)$. Clearly hB=I so that hBh is a division algebra hence isomorphic to the reals, complexes or quaternions.

We show that $h \notin S$. For suppose otherwise. Then there exists a sequence $\{y_n\}$ in B_1 such that $||h-T(y_n)|| \to 0$ and $||y_n||_1 \to 0$. Thus $||uy_nu||_1 \to 0$ and $||h-T(uy_nu)|| \to 0$. By Lemma 2.2 and the fact that hBh is the reals, complexes or quaternions, $||hT(y_n)h|| \to 0$. This is a

contradiction as $h \neq 0$. Now $S \cap I$ is a right ideal of B, $S \cap I \neq I$. Since I is minimal, $S \cap I = (0)$.

3.3. THEOREM. Let B_1 be a normed Q-algebra and B be primitive with minimal one-sided ideals. If $T(B_1) \cap I \neq (0)$ for a minimal one-sided ideal I of B then T is closed and real-homogeneous.

Let K be the socle of B. If $S \neq (0)$ then $K \subset S$ by [6; 75]. Then $I \subset S$ which is impossible by Lemma 3.2.

3.4. COROLLARY. Let B be any subalgebra of $\mathfrak{C}(\mathfrak{X})$ closed in the uniform norm ||T|| where $B\supset\mathfrak{F}(\mathfrak{X})$. Let $||T||_1$ be any normed algebra norm for B such that the completion B^c of B in this norm is primitive. Then the two norms are equivalent.

By Theorem 2.6 and Lemma 2.5, B is a Q-algebra in the norm $||T||_1$. By Theorem 2.3, there exists c>0 such that $||T|| \le c ||T||_1$, $T \in B$. Consider the embedding mapping I of B (with norm ||T||) into B^c . B is a primitive algebra with a minimal right ideal JB, $J^2=J$. Then I(J)I(B)I(J) a normed division algebra and, by the Gelfand-Mazur theorm, closed in B^c . Since I(J) is an idempotent, its closure in B^c is $I(J)B^cI(J)$. Therefore $I(J)B^c$ is a minimal right ideal of B^c . From Theorem 3.3, I is closed. The closed graph theorem [2;41] shows that I is continuous. Hence there exists $c_1>0$ such that $||T||_1\le c_1||T||$, $T\in B$.

3.5. Theorem. Let B_1 and B be normed Q-algebras. Then S is contained in the Brown-McCoy radical of B. If B is strongly semi-simple then T is closed and real-homogeneous.

The Brown-McCoy radical [5] coincides with the intersection of the regular maximal two-sided ideals of B. Let M be such an ideal of B. Since B is a normed Q-algebra, M is closed. Let π be the natural homomorphism of B onto B/M. Since $T(B_1)$ is dense in B, then π $T(B_1)$ is dense in B/M. Also $\rho[\pi T(x)] \leq \rho[T(x)] \leq \rho(x)$, $x \in B_1$. Hence our theory applies to the mapping πT .

Let S_0 be the separating set for πT . Since B/M is simple with an identity, $S_0=(0)$ by Lemma 3.1. Let $y \in S$, $||x_n||_1 \to 0$, $||y-T(x_n)|| \to 0$. Then $||\pi(y)-\pi T(x_n)|| \to 0$ or $\pi(y) \in S_0$. Therefore $S \subset M$. B is called strongly semi-simple if its Brown-McCoy radical is (0).

3.6. Theorem. Let B_1 and B be semi-simple normed Q-algebras where B_1 has a dense socle K and B has an identity Let T be real-linear. Then T is closed.

Let P be a primitive ideal of B and π be the natural homomorphism of B onto B/P. Since B is a Q-algebra then P is closed, π is continuous and $\pi T(B_1)$ is dense in B/P. Let S_0 be the separating set for πT

as a mapping of B_1 into B/P. We show first that $T(K) \subset P$ is impossible. Suppose $T(K) \subset P$. Since $K \subset (\pi T)^{-1}(S_0)$, by Lemma 3.1 we have $B_1 = (\pi T)^{-1}(S_0)$ and $S_0 = B/P$. Since B/P has an identity this is contrary to Lemma 3.1. Hence there exists a minimal right ideal jB_1 of B_1 , $j^2 = j$ such that $T(j) \notin P$. Set $\pi T(j) = u$, $\pi T(B_1) = B_2$. πT is an isomorphism or anti-isomorphism of the division algebra jB_1j onto uB_2u . Hence uB_2u is a normed division algebra and thus, by the Gelfand-Mazur theorem closed in B/P. Since u is an idempotent, u(B/P) is a minimal right ideal of B/P. By Theorem 3.3, πT is closed from which we obtain $S \subset P$. Since B is semi-simple, S = (0).

3.7. Theorem. Let B_1 be a normed Q-algebra and B semi-simple where either B is a modular annihilator algebra or has dense socle. If $T(B_1)$ contains the socle of B then T is closed and real-homogeneous.

By Lemma 3.2, $S \cap I = (0)$ for every minimal one-sided ideal of B. Let I be a minimal right ideal. Then SI = (0). Thus S annihilates the socle. It follows (see the proof of Lemma 2.8) that S = (0) in the first case. In the second case we have $S^2 = (0)$ and S = (0) by semi-simplicity.

Consider further a semi-simple normed modular annihilator algebra B. B is a permanent Q-algebra by Lemma 2.5 and 2.8. From Theorem 3.7 we see that any algebraic homomorphism or anti-homomorphism of B onto B is closed no matter which two norms are used for B.

Let B be a real normed algebra. By an *involution* on B we mean a mapping $x \rightarrow x^*$ of B onto B which is a real-linear automorphism or anti-automorphism of period two. Let H(K) be the set of self-adjoint (skew) elements of B with respect to the involution $x \rightarrow x^*$. B is the direct sum $H \oplus K$ of the linear manifolds H and K.

The mapping $x \to x^*$ of B onto B is subject to the above analysis. Here S is the set of all $x \in B$ for which there exists a sequence $\{x_n\}$ in B with $||x_n|| \to 0$ and $||x - x_n^*|| \to 0$.

3.8. Lemma. $S = \overline{H} \cap \overline{K}$. S = (0) if and only if H and K are closed. Let $w \in S$. Then there exist sequences $\{h_n\}$ and $\{k_n\}$ in H and K respectively such that $||w - (h_n - k_n)|| \to 0$ and $||h_n + k_n|| \to 0$. Therefore $||w - 2h_n|| \to 0$ and $||w + 2k_n|| \to 0$ so $w \in \overline{H} \cap \overline{K}$. Conversely suppose that $||z - h_n|| \to 0$, $||z - k_n|| \to 0$ where each $h_n \in H$, $k_n \in K$. Then $||z - (h_n + k_n)/2|| \to 0$ and $||(h_n - k_n)/2|| \to 0$ and $|z \in S$.

If H and K are closed, clearly S=(0). Suppose S=(0). Let $h_n \to u+v$ where $h_n \in H$, $u \in H$ and $v \in K$. Then $h_n-u\to v$ and $v \in \overline{H} \cap \overline{K}$. Then v=0 and H is closed. Similarly K is closed.

Let B be a semi-simple normed annihilator algebra, for example an H^* -algebra. Then it follows from the above that H and K are closed in B for any involution on B and any normed algebra norm on B. For

 B^* -algebras we have been able to show only the following weaker result.

3.9. Theorem. Let B be a B^* -algebra with H(K) as the set of self-adjoint (skew) elements in the defining involution for B. Then H and K are closed in any normed algebra norm topology for B.

B has the spectral extension property [13] and is therefore a permanent Q-algebra by Lemma 2.5. The arguments of [14; § 3] can be adapted to show that H and K are closed in any given normed algebra norm $||x||_1$.

REFERENCES

- 1. B. H. Arnold, Rings of operators on vector spaces, Ann. of Math., 45 (1944), 24-49.
- 2. S. Banach, Theorie des operations lineairs, Monog. Mat., Warsaw, 1932.
- 3. F. F. Bonsall, A minimal property of the norm in some Banach algebras, J. London, Math. Soc., 29 (1954), 156-164.
- 4. F. F. Bonsall and A. W. Goldie, *Annihilator algebras*, Proc. London Math. Soc., 4 (1954), 154-167.
- 5. B. Brown and N. H. McCoy, Radicals and subdirect sums, Amer. J. Math., 69 (1947), 46-58.
- 6. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ. vol. 37, Providence, 1956.
- 7. I. Kaplansky, Dual rings, Ann. of Math., 49 (1948), 689-701.
- 8. I. Kaplansky, Normed algebras, Duke Math, J., 16 (1949), 399-418.
- 9. I. Kaplansky, Ring isomorphisms of Banach algebras, Can. J. Math., 6 (1954), 374-381.
- 10. E. A. Michael, *Locally multiplicatively-complex topological* algebras, Mem. Amer. Math. Soc. no. **11** (1952).
- 11. C. E. Rickart, The uniqueness of norm problem in Banach algebras, Ann. of Math. **51** (1950), 615-628.
- 12. C. E. Rickart, Representation of certain Banach algebras, Duke Math. J., 18 (1951), 27-39.
- 13. C. E. Rickart, On spectral permanence for certain Banach algebras, Proc. Amer. Math. Soc., 4 (1953), 191-196.
- 14. B. Yood, Topological properties of homomorphisms between Banach algebras, Amer. J. Math., **76** (1954), 155-167.

UNIVERSITY OF OREGON