
HOMOMORPHISMS ON NORMED ALGEBRAS

BERTRAM YOOD

1. Introduction Let Bλ and B be real normed Q-algebras (not
necessarily complete) and T be a homomorphism of Bx into B. Our
main object is to show that, for certain algebras B, T will always be
either continuous or closed if the range T(B^) contains " enough" of
B. If B is the algebra of all bounded linear operators on a Banach
space H and T{Bτ) contains all finite-dimensional operators then T is
continuous. If B is primitive with minimal one-sided ideals, T(Bj) is
dense in B and intersects at least one minimal ideal of B then T is
closed. Other examples are given. In these results we can obtain the
conclusion for ring homomorphism as well as algebra homomorphism if
we assume that p(T(x))^p(x), xeBlf where p{x) is the spectral radius
of x. Note that this is a necessary condition for real-homogeneity.
For the application of these results it is desirable to have examples of
algebras which are Q-algebras in all possible normed algebra norms.
Examples are given in § 2. For previous work on the continuity of
homomorphisms and the homogeneity of isomorphisms on Banach alge-
bras see [8], [9], [11], [12] and [14].

2. Normed Q-algebras and continuity of homomorphisms. For
the algebraic notions used see [6]. Let B be a normed algebra over
the real field (completeness is not assumed). As in [8], [11] a complex
number λΦθ is in the spectrum of xeB if it is in the usual complex
algebra spectrum of (x, 0) in the complexification of B. If B is already
a complex algebra then the spectrum of x in this sense is the smallest
set in the complex plane symmetric with respect to the real axis which
contains the spectrum of x in the complex algebra sense. Let ρ(x) be
the spectral radius of x, p(x) = suip \λ\ for λ in the spectrum of x. B

is called a Q-algebra At the set of quasi-regular elements of B is open.
Every regular maximal one-sided or two-sided ideal in a Q-algebra is
closed. Hence the radical of a Q-algebra is closed and so also is any
primitive ideal. See [10 77].

2.1. LEMMA. For a normed algebra B the following statements are
equivalent.

(a) B is a Q-algebra.
(b) p(x) = Km \\xn\\1/n, xeB.
(c) p(x)^\\x\\,xeB.
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Suppose (a). Then there exists a number c > 0 such that x is quasi-
regular for all x, \\x\\<c. Set k = [(l+c)1/2~-l~]-\ L e t ^ e f i a n d λ=a+bi
be any complex number ^ 0 where U|>fc|l#ll. Then

1*11 + \\χ\\2)< 2k-1 + £r2 < c

This shows that p(x)^k\\x\\. Thus

P(x) = p(xn)1/n ^k1/n\\xn\\1/n

for every positive integer n. Letting w—>oo we see that ^
| | # w | | ΐ / w . But lira \\xn\\1/n = p{x\Bc), the spectral radius of x in the com-
pletion Bc of B. Hence p(x)^p(x\Bc). Since p(x\Be)^p(a), (b) follows.
Clearly (b) implies (c). Suppose that (a) is false. Then there exists a
sequence {xn}y xn—>0 where xn is not quasi-regular. Then p(xn)^l for
each n and (c) is false.

Let X be a Banach space and let @(3c) be the Banach algebra of
all bounded linear operators on ϊ in the uniform topology. Let
be the ideal of all elements of @(ϊ) with finite dimensional range.

2.2. LEMMA. Let j be an idempotent in a normed algebra B. Then
the non-zero spectrum of an element in jBj is the same whether computed
in jBj or B.

This is given in [9 375] in the complex case. The real case of-
fers no new difficulty.

2.3. THEOREM. Let U be a ring hcmomorphism or anti-homomor-
phism of a normed Q-algebra Bx into (£(X) where Ό(B^)~D%{^) and
p[U(V)]^ρ(V), VeBlt Then U is continuous.

Suppose that U is not continuous. By the additivity of U (see [2;
54]) there exists a sequence {Tn} in Bλ such that HTJIr+O and ||Σ7(Γn)||
->oo where | |Γ|li is the norm in Bλ and | | Ϊ Ί | is the usual norm in Qf(3E).
Consider any idempotent J of ©(36) such that JQf(X) is a minimal right
ideal of @(ϊ). By the work of Arnold [1] these elements J are the
linear operators on 3£ of the form J(x)=x*(x)y where af^eϊ*, yeJL and
x*(y) = l. Let U(W) = J and U(Tn)=Vn. Since || WTnW\\^0 we have,
by Lemma 2.1, p{WTnW)^Q and therefore io(JVr

wJ)->0. By Lemma 2.2
and the Gelfand-Mazur theorem, || JVnJ\\-*0. Note that JVnJ(x)=x*(x)
x*lVn(y)}y. Hence α?*[FB(2/)]^0. Fix yφO in 3c. Then x*[Vn(y)]^>0 for
all x* e K= {x* e%*\x*(y)φθ}. Let z * e £ * , z*(y) = 0. Since z* can be
written as the sum of two elements of K, x*[Vn(y)]->0 for all α;* e F .
Hence sup H V»(2/)ll<«> for each yel. By the uniform boundedness
theorem, sup | | F J | < o o . This is a contradiction.

2.4. THEOREM. Let T be a ring homomorphism or anti-homomor-
phism of a normed Q-algebra onto a dense subring of a semi-simple
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finitedimensional normed algebra B where p[T(x)~\^p(x), xeBτ. Then T
is continuous.

By [7 698] B is strongly semi-simple and so, by Theorem
proved below, T is real-homogenous and closed. Let H#||i (\\x\\) denote
the norm in BL(B). Suppose that T is not continuous. Then there ex
ists a sequence {xn} in B1 such that ||a?«||i-»0 and ||Γ(a?n)|| = l, w = l , 2,
There exists a subsequence {yn} of {xn} such that \\T(yn)—w\\~^0 for
some weB. Since | |w| | = l we contradict the fact that T is a closed
mapping.

A normed algebra B is called a permanent Q-algebra if it is a Q-
algebra in all normed algebra norms. We say that the normed algebra
B has the spectral extension property if the spectral radius of xeB is
the same as the spectral radius of x considered as an element of any
Banach algebra Bλ in which B may be algebraically imbedded. Ex-
amples of algebras with this property are £*-algebras [13] and annihila-
tor Banach algebras [3]. To test if a normed algebra B has this pro-
perty it is sufficient to consider the completions of B in all possible
normed algebra norms.

2.5. LEMMA. A normed algebra B is a permanent Q-algebra if and
only if B has the spectral extension property.

Let B be a permanent Q-algebra, xeB. Then lim ||α?n||1/w has the
same value p(x), by Lemma 2.1, for any normed algebra norm for B.
Thus B has the spectral extension property. If B has the latter pro-
perty then for any norm | | # | | , (̂2?) = lim | | ^ | | 1 / w and B is a permanent
Q-algebra by Lemma 2.1.

2.6. THEOREM. Any two sided ideal I of @(ϊ) where /Dg(X) and
any closed subalgebra B of Gf(36), Bz^%(H) have the spectral extension
property.

Let R be any such ideal / or closed subalgebra B. Let | |Γ | | i be a
normed algebra norm for R and | | Γ | | the usual norm. For TeR let
p(T) be its spectral radius as an element of R, pτ{T) as an element of
the completion of R in the norm | |Γ | | i and p2(T) as an element @(ϊ).
In the ideal case if UeR has a quasi-inverse V in G?(X) then VeR. In
every case p(T)—p.z(T).

It is enough to show the identity imbedding of R (with norm | |T| | i)
into G?(X) (with norm | |T | | ) is continuous. For then there exists c>0,

, TeR, whence

for all positive integers n. Consequently p(T)£pL(T). Since p1(T)^p(T)
we would have ( T ) ( Γ )
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Theorem 2.3 cannot be applied since it is not known a priori that
R is a Q-algebra in the norm \\T\\λ. If, however, the imbedding is
discontinuous there exists a sequence {Tn} in R such that IITJIχ-^0 and
||5PJ|->oo. By the arguments of [1], the minimal ideals of R are the
same as the minimal ideals of @(£). For each idempotent generator J
of a minimal right ideal of R, JRJ is a normed division algebra and
hence has a unique norm topology by the Gelfand-Mazur theorem.
Since WJTJW^O we have l(J2V||->0. The remainder of the proof
may be handled as in Theorem 2.3.

For a ring B and a subset AaB we denote the left (right) an-
nihilator of A by L(A) (R(A)). Bonsall and Goldie [4] have considered
topological rings called annihilator rings in which for each proper right
(left) closed ideal /, L(I)Φ(0) (R(I)Φ(ϋ)). We consider the related pure-
ly algebraic concept of a modular annihilator ring which is defined to
be a ring in which L(M)Φ(O) (R(M)Φ(O)) for every regular maximal
right (left) ideal. From the standpoint of algebra these rings appear
to be a natural class containing H*-algebras, etc. In view of what
follows it is natural to ask if the two concepts agree for semi-simple
normed Q-algebras or semi-simple Banach algebras. A affirmative ans-
wer would settle an unsolved problem in the theory of annihilator al-
gebras.

2.7. LEMMA. Let B be a semi-simple normed annihilator Q-algebra
and I be a closed two-sided ideal in B. Then I is a modular annihilator
Q-algebra.

Thus if we had affirmative answer to the above question, any closed
two-sided ideal of a semi-simple annihilator Banach algebra would also
be one. The analogous result is known for dual algebras [7; 690].

Let M be a regular maximal right ideal of I. Since I is a Q-al-
gebra (as an ideal in B), M is closed in B. Since L(I)—R(I)f ([4 159]),
L(I+R(Γ)) = (0) so that I+R(I) is dense. The arguments of [7 Theorem
2] show that M is a right ideal in B. We must show L(M) Γ\IΦ(0). Suppose
the contrary. Then / L(M)=(0) and L{M)aR(I)=L(I). As Me/,
L(Λf)3L(I). Therefore L(M) = L(I). R{M)M=(0) since it is a nilpotent
ideal in B. Thus R(M)czL(M)=R(I). Then since R(M)z>R(I) we see
that R(M)=L(M). lΐxe L(M+R(M)) then x s L{M) = R(M) and x e LR{M).
Thus x2=0 and, by semi-simplicity and the annihilator property, M+
R(M) is dense in B. Then (M+R(M)) I=(M+L(I))I(zM and BIczM.
Let j be a left identity for / modulo M. Then jx—xeM, xel and
jxeM, xel. Hence IaM which is a contradiction.

2.8. LEMMA. In a semi-simple modular annihilator ring, every
proper right (left) ideal contains a minimal right (left) ideal, A normed
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modular annihilator algebra B has the spectral extension property.
Since the first statement is shown by stripping the arguments of

Bonsall and Goldie [4] of all topological connotations, a sketch of the
argument is sufficient. As in [4, Lemma 2], if j is not right (left)
quasi-regular there exists x^O in B where qj=x(jx=x). The arguments
of [4, Theorem 1] show that if M is a regular maximal right (left) ideal
of B then L(M) (R(M)) is a minimal left (right) ideal generated by an
idempotent. Also the left (right) annihilator of a minimal right (left)
ideal is a regular maximal left (right) ideal. Consider the socle K of
B. By the reasoning of [4, Theorem 4], L{K)=R(K) = (0). Let / be a
proper right ideal of B. If / contained no minimal right ideals of B
then, as in the proof of [4, Lemma 4], IaL(K), which is impossible.

Let xeB and let Br be the completion of B in the normed algebra
n o r m | |ατ|li. C o n s i d e r λ^a+biΦO in sp(x\B). T h e n u = \λ\~2 (2ax—xλ)
has no quasi-inverse in B. As in [3 p 159] there exists yφO such
that uy=y and u has no quasi-inverse in B'. Then p{x\Br)—p{x\B).

3. Closure of homomorphisms and anti-homomorphisms. Through-
out this section the following notation is assumed. Let B^B) be a real
normed algebra with norm | |# | | i ( | |# | | ) . T is a ring homomorphism or
anti-homomorphism of Bτ onto a dense subset of B. T is called closed
if Wxn-xW^O, \\T{xn)~y\\^0 imply that yeT{Bτ) and y=T(x). By
the separating set S of T we mean the set of all yeB such that
there exists a sequence {xn} in Bι where H^JI^O and \\y—T(xn)\\-^0.
We assume that p[T(x)]<,p(x), xeBλ. Note that this condition is auto-
matic if T is real-linear.

The next lemma is an adaptation of results of Rickart [11].

3.1. LEMMA. T is closed and real-homogeneous if and only if S=(0).
S is a closed two-sided ideal in B and T~\S) a closed two-sided ideal
in Bx. If Bλ is a normed Q-algebra then every element of S is a topological
divisor of zero in B.

Clearly T is rational-homogeneous. Let xeBλ and rn-+r where each
rn is rational and r is real. Then \\rnx—rx\\l-^0 and 11rT(x) — T(rx) —
T(rnx-rx)\\->0. Hence rT(x) — T(rx) e S. The first statement follows by
a straightforward argument.

Let yneS, \\w—yn\\-+0. There exists, for each n, an element
zneB1 such that I I ^ - Γ ^ J I K ^ " 1 and \\zn\\τ<n-\ Then \\w-T(zn)\\-+0
so that weS. Hence S is closed in B. Since x e S and r rational im-
ply rx e S it follows that S i s a real linear manifold. To show that S
is an ideal in B it is enough to show that xy and yxe S for x e S and
y=T(z)eT(B1). This, however, is a simple matter. Suppose next that
\\%n—Λ?1IT—>0 where each ^ e Γ ' ^ S ) . For each n there exists ^ e ^ s u c h
that WTixJ-TtyJWKnr1 and \\yJKn~1. Then |k-(^-^)ld->0 while
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\\T(x)-T[x-(xn-yn)]\\-+0 whence T(x)eS. Hence T~\S) is closed. It
is readily seen to be a two-sided ideal in Bλ.

Let Bc be the completion of B where we use \\x\\ to denote the
norm in Bc and p(x) the spectral radius there. To show that s e S is a
topological divisor of zero in B it is sufficient to show that it is one in Bc.
Choose a sequence {xn} in Bx such that \\s — T(xn)\\-+0 and |la?»||i->0. If Bx

is a normed Q-algebra s is the limit of quasi-regular elements of Bc by
Lemma 2.1. Hence so also is As for any real λ. By the arguments of
[11 621] it suffices to rule out the possibility that both Bc has an
identity 1 and that s has a two-sided inverse in Bc.

Suppose this is the case. Let So be the separating set for T con-
sidered as a mapping of Bι into B°. Clearly S(zSQ. Then as So is an
ideal in B% SO=BC and leS0. There exists a sequence {un} in Bλ such
that | | l -T(O | | ->0 and IKIk^O. Since 1 - Γ « ) a n d T(un) permute we
have by Lemma 2.1,

1 = P(l) £ P(l-T(un)) + p(T(un)) ^ \\l~T(un)\\ + piUnlB^O

This contradication completes the argument.
If Bλ and B are Banach algebras, by the closed graph theorem [2

41] S=(0) will imply that T is continuous. In every case S=(0) will
imply real-homogeneity for T and the closure of T~\ϋ).

3.2. LEMMA. Let B1 be a normed Q-algebra and B be semi-simple
with minimal one-sided ideals. Suppose that there exists a minimal one-
sided ideal I of Bτ such that T{Bλ)^IφQ. Then SfU=(0).

We consider the case where / is a right ideal and T is a homomor-
phism. The other cases follow by the reasoning employed. Set Iλ =
T~ι{I). Iγ is a right (ring) ideal of Bx. Let I=jB, f=j and consider
Xoβ^ where T(xo)=jvΦθ. By the semi-simplicity of B, jvBΦ(0) and, as
jB is minimal, jvB—jB. Then jvT(Bλ) is dense in /. It follows that

for otherwise b'vTiBJj^φ) and P = (0). Select xellf T(x) =
and T(x2)Φθ. Let R be the set of elements y in B for which

As observed, jR is dense in jB. Hence jRj is dense in jBj.
But jBj is a normed division algebra and therefore, by the Gelfand-
Mazur theorem, finite-dimensional in B. Thus jRj=jBj. There exists
zeR such that jzjwj=jwjzj=j. For some x1el1, ^{x^j—jzj. Then
T(x1x)—jzjw = T((x1xf). Set jzjw—h and xLx—u. Then h is a non-zero
idempotent in I{ΛT{Bλ). Clearly hB—I so that hBh is a division algebra
hence isomorphic to the reals, complexes or quaternions.

We show that hφS. For suppose otherwise. Then there exists a
sequence {yn} in B1 such that ||/& —Γ(2/n)||->0 and ||2/J|r-*0. Thus
11̂2/nWlli—•O and \\h—T(uynu)\\-+0. By Lemma 2.2 and the fact that
hBh is the reals, complexes or quaternions, 11 AJP(2/Λ)Λ 11 —>0, This is a
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contradiction as hΦO. Now Sni is a right ideal of B, SΓϊIφJ. Since
/ is minimal, Sn/=(0).

3.3. THEOREM. Let B1 be a normed Q-algebra and B be primitive
with minimal one-sided ideals. If T(Bλ) Π Iφ (0) for a minimal one-sided
ideal I of B then T is closed and real-homogeneous.

Let K be the socle of B. If SΦ(0) then KaS by [6 75]. Then
IdS which is impossible by Lemma 3.2.

3.4. COROLLARY. Let B be any subalgebra of G?(X) closed in the
uniform norm \\T\\ where Bz^%(H). Let \\T\\λ be any normed algebra
norm for B such that the completion Bc of B in this norm is primitive.
Then the two norms are equivalent.

By Theorem 2.6 and Lemma 2.5, B is a Q-algebra in the norm
||TU. By Theorem 2.3, there exists c>0 such that HΓH^cHTU, TeB.
Consider the embedding mapping I oί B (with norm | |Γ| |) into Bc. B
is a primitive algebra with a minimal right ideal JB, J2—J. Then
I(J)I(B)I(J) a normed division algebra and, by the Gelfand-Mazur theorm,
closed in Bc. Since I(J) is an idempotent, its closure in Bc is I(J)BCI(J).
Therefore I(J)BC is a minimal right ideal of Bc. From Theorem 3.3, /
is closed. The closed graph theorem [2 41] shows that / is continuous.
Hence there exists cx>0 such that UTH^cJIΓU, TeB.

3.5. THEOREM. Let B1 and B be normed Q-algebras. Then S is
contained in the Brown-McCoy radical of B. If B is strongly semi-
simple then T is closed and real-homogeneous.

The Brown-McCoy radical [5] coincides with the intersection of the
regular maximal two-sided ideals of B. Let M be such an ideal of B.
Since B is a normed Q-algebra, M is closed. Let π be the natural
homomorphism of B onto B\M. Since T(B1) is dense in B, then π T^)
is dense in B\M. Also p\πT{x)~\<zp\T(x)~\<Lp{x), xeBj. Hence our theory
applies to the mapping πT.

Let So be the separating set for πT. Since B\M is simple with an
identity, S0=(0) by Lemma 3.1. Let yeS, ||α?fl||1->0, \\y-T(xn)\\-+0.
Then \\π(y)-πT(xn)\\->0 or π(y)eSQ. Therefore SczM. B is called
strongly semi-simple if its Brown-McCoy radical is (0).

3.6. THEOREM. Let Bλ and B be semi-simple normed Q-algebras
where B1 has a dense socle K and B has an identity Let T be real-linear.
Then Tis closed.

Let P be a primitive ideal of B and π be the natural homomorphism
of B onto B\P. Since B is a Q-algebra then P is closed, π is contin-
uous and πTiBJ is dense in B/P. Let So be the separating set for πT



380 BERTRAM YOOD

as a mapping of Bλ into BjP. We show first that T(K)aP is impos-
sible. Suppose T(K)aP. Since i f c ^ T ) " 1 ^ ) , by Lemma 3.1 we have

JB1=(π 2τ)-1(Sr

0) and S0=BIP. Since B\P has an identity this is contrary
to Lemma 3.1. Hence there exists a minimal right ideal jBλ of B19 f=j
such that T(j)φP. Set πT(j)=u, πT(B1)=B2. πT is an isomorphism or
anti-isomorphism of the division algebra jBJ onto uB%u. Hence uB2u is
a normed division algebra and thus, by the Gelfand-Mazur theorem
closed in B\P. Since u is an idempotent, u(B/P) is a minimal right
ideal of B\P. By Theorem 3.3, πT is closed from which we obtain
SczP. Since B is semi-simple, S=(0).

3.7. THEOREM. Let B1 be a normed Q-algebra and B semi-simple
where either B is a modular annihilator algebra or has dense socle. If
T{B^) contains the socle of B then T is closed and real-homogeneous.

By Lemma 3.2, Sn/=(0) for every minimal one-sided ideal of B.
Let 7 be a minimal right ideal. Then &/—(0). Thus S annihilates the
socle. It follows (see the proof of Lemma 2.8) that S=(0) in the first
case. In the second case we have S'2 = (0) and S~(0) by semi-simplicity.

Consider further a semi-simple normed modular annihilator algebra
B. B is a permanent Q-algebra by Lemma 2.5 and 2.8. From Theorem
3.7 we see that any algebraic homomorphism or anti-homomorphism of
B onto B is closed no matter which two norms are used for B.

Let B be a real normed algebra. By an involution on B we mean
a mapping x~^x* of B onto B which is a real-linear automorphism or
anti-automorphism of period two. Let H{K) be the set of self-adjoint
(skew) elements of B with respect to the involution x-+x*. B is the
direct sum H@Koί the linear manifolds H and K.

The mapping x-+x* of B onto B is subject to the above analysis.
Here S is the set of all xe B for which there exists a sequence {xn} in
B with ||a?J|->0 and | |α?-α?ί ||->0.

3.8. LEMMA. S=Ήf]K. S=(0) if and only if H and K are closed.
Let w 6 S. Then there exist sequences {hn} and {kn} in H and K

respectively such that \\w—(hn—&n)||-*0 and \\hn+kn\\->0. Therefore
\\w—2/y|->0 and \\w+2Jcn\\-+0 so weHf)K. Conversely suppose that
\\z-hn\\->0, \\z-kn\\->0 where each hneH, kneK. Then \\z-(hn+kn)l2\\
~>0 and \\(hn-kn)l2\\->0 and zeS.

If H and K are closed, clearly S=(0). Suppose S=(0). Let /^->

u+v where hne H, ue H and ve K. Then hn—u-+v and v e iϊni£". Then
^=0 and H is closed. Similarly K is closed.

Let B be a semi-simple normed annihilator algebra, for example an
iϊ*-algebra. Then it follows from the above that H and K are closed
in B for any involution on B and any normed algebra norm on B, For
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.B*-algebras we have been able to show only the following weaker re-
sult.

3.9. THEOREM. Let B be a B*-algebra with H(K) as the set of self-
adjoint (skew) elements in the defining involution for B. Then H and K
are closed in any norrned algebra norm topology for B.

B has the spectral extension property [13] and is therefore a per-
manent Q-algebra by Lemma 2.5. The arguments of [14; §3] can be
adapted to show that H and K are closed in any given normed algebra
norm \\x\h.
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