HOMOMORPHISMS ON NORMED ALGEBRAS

BERTRAM YOOD

1. Introduction Let B, and B be real normed Q-algebras (not
necessarily complete) and 7" be a homomorphism of B, into B. Our
main object is to show that, for certain algebras B, 7' will always be
either continuous or closed if the range T(B,;) contains ‘ enough” of
B. If B is the algebra of all bounded linear operators on a Banach
space X and 7T(B,) contains all finite-dimensional operators then 7 is
continuous. If B is primitive with minimal one-sided ideals, T'(B,) is
dense in B and intersects at least one minimal ideal of B then T is
closed. Other examples are given. In these results we can obtain the
conclusion for ring homomorphism as well as algebra homomorphism if
we assume that po(T(z))<p(x), € B, where p(x) is the spectral radius
of 2. Note that this is a necessary condition for real-homogeneity.
For the application of these results it is desirable to have examples of
algebras which are Q-algebras in all possible normed algebra norms.
Examples are given in §2. For previous work on the continvity of
homomorphisms and the homogeneity of isomorphisms on Banach alge-
bras see [8], [9], [11], [12] and [14].

2. Normed Q-algebras and continuity of homomorphisms. For
the algebraic notions used see [6]. Let B be a normed algebra over
the real field (completeness is not assumed). As in [8], [11] a complex
number 1+0 is in the spectrum of ze B if it is in the usual complex
algebra spectrum of (z, 0) in the complexification of B. If B is already
a complex algebra then the spectrum of z in this sense is the smallest
set in the complex plane symmetric with respect to the real axis which
contains the spectrum of z in the complex algebra sense. Let p(x) be
the spectral radius of x, p(x)=sup |2| for 2 in the spectrum of z. B
is called a Q-algebra if the set of quasi-regular elements of B is open.
Every regular maximal one-sided or two-sided ideal in a Q-algebra is
closed. Hence the radical of a Q-algebra is closed and so also is any
primitive ideal. See [10; 77].

2.1. LEMMA. For a normed algebra B the following statements are
equavalent.

(a) B is a Q-algebra.

(b) p@)=lm |lz*|[", z e B.

(¢) p@)=|lzll, zeB.
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Suppose (a). Then there exists a number ¢>0 such that « is quasi-
regular for all , ||x||<c. Set k=[(1+¢)/*—1]"'. Let ze B and 1=a+b%
be any complex number =0 where |A|>Ek|lz|l. Then

|22 1 2az—a?]] < 1217 @14] [l2]l + |z < 2k + k> < e
This shows that p(x)<k||z|l. Thus
p(x) = p(a™)/» < K/ ||am)| |

for every positive integer n. Letting n—c we see that c(x)=<lim
[lz*||Y». But lim ||z*||"*=p(x|B°), the spectral radius of « in the com-
pletion B° of B. Hence p(x)<p(x|B°). Since p(x|B°)=p(x), (b) follows.
Clearly (b) implies (¢). Suppose that (a) is false. Then there exists a
sequence {x,}, x,—0 where @, is not quasi-regular. Then p(x,)=1 for
each n and (c) is false.

Let ¥ be a Banach space and let &(X) be the Banach algebra of
all bounded linear operators on X in the uniform topology. Let (%)
be the ideal of all elements of &(X) with finite dimensional range.

2.2. LEMMA. Let j be an idempotent in a normed algebra B. Then
the non-zero spectrum of an element in jBj is the same whether computed
wn jBj or B.

This is given in [9; 375] in the complex case. The real case of-
fers no new difficulty.

2.3. THEOREM. Let U be a ring hemomorphism or anti-homomor-
phism of a mnormed Q-algebra B, into €(X) where U(B)DOF(X) and
pLlUZo(V), VeB,. Then U is continuous.

Suppose that U is not continuous. By the additivity of U (see [2;
54]) there exists a sequence {7} in B, such that ||7,|,—0 and || U(T,)I|
—oo where ||T'||, is the norm in B, and ||T']| is the usual norm in E(X).
Consider any idempotent J of &(¥X) such that JE&(X) is a minimal right
ideal of &(X). By the work of Arnold [1] these elements J are the
linear operators on ¥ of the form J(z)=x*(x)y where x*e€ X*, ye X and
z*(y)=1. Let U(W)=J and U(T,)=V,. Since ||WT,W|,—»0 we have,
by Lemma 2.1, p(WT,W)—0 and therefore p(JV,J)—0. By Lemma 2.2
and the Gelfand-Mazur theorem, ||JV,J||—>0. Note that JV, J(x)=x*(x)
z*[V.(¥)ly. Hence z*[V,(y)]—0. Fix y+#0 in X, Then x*[V, (y)]>0 for
all ¥ e K= {a* e X*|o*(y)#0}. Let z*eX*, 2*(y)=0. Since 2z* can be
written as the sum of two elements of K, x*[V,(y)]—0 for all o* e X*.
Hence sup || V,(¥)||< for each yeX. By the uniform boundedness
theorem, sup || V,.||<o. This is a contradiction.

2.4. THEOREM. Let T be a ring homomorphism or anti-homomor-
phism of a normed Q-algebra onto a dense subring of a semi-simple
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JSinitedimensional normed algebra B where p[T(x)]<p(x), x€ B,. Then T
18 continuous.

By [7; 698] B is strongly semi-simple and so, by Theorem
proved below, T is real-homogenous and closed. Let |||, (||=]]) denote
the norm in B(B). Suppose that 7' is not continuous. Then there ex
ists a sequence {x,} in B; such that ||z,||,—0 and || T(z,)]|=1, n=1, 2, ---.
There exists a subsequence {y,} of {x,} such that |[|T(y,)—w||—0 for
some weB. Since ||w||=1 we contradict the fact that T is a closed
mapping.

A normed algebra B is called a permanent Q-algebra if it is a Q-
algebra in all normed algebra norms. We say that the normed algebra
B has the spectral extension property if the spectral radius of xe B is
the same as the spectral radius of a considered as an element of any
Banach algebra B, in which B may be algebraically imbedded. Ex-
amples of algebras with this property are B*-algebras [13] and annihila-
tor Banach algebras [3]. To test if a normed algebra B has this pro-
perty it is sufficient to consider the completions of B in all possible
normed algebra norms.

2.5. LEMMA. A normed algebra B is a permanent Q-algebra if and
only if B has the spectral extension property.

Let B be a permanent Q-algebra, xe B. Then lim ||2*||* has the
same value p(x), by Lemma 2.1, for any normed algebra norm for B.
Thus B has the spectral extension property. If B has the latter pro-
perty then for any norm ||z||, p(x)=Ilim ||2"|/» and B is a permanent
Q-algebra by Lemma 2.1.

2.6. THEOREM. Any two sided ideal I of (X)) where IDF(X) and
any closed subalgebra B of E(X), BOF(X) have the spectral extension
property.

Let R be any such ideal I or closed subalgebra B. Let ||T||, be a
normed algebra norm for R and ||7|| the usual norm. For T eR let
o(T) be its spectral radius as an element of R, p(T) as an element of
the completion of R in the norm [|T||, and p(7T) as an element G(%).
In the ideal case if Ue R has a quasi-inverse V in &(X) then Ve R. In
every case o(T)=p[(T).

It is enough to show the identity imbedding of R (with norm ||7||,)
into G(¥) (with norm |[|T'||) is continuous. For then there exists ¢>0,
NWTl<ell T, TeR, whence

HTn”l/n § CI/”HT"HIV”

for all positive integers n. Consequently o(T)<p/(T). Since p(T)<p(T)
we would have p(T)=p(T).
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Theorem 2.3 cannot be applied since it is not known a prior: that
R is a Q-algebra in the norm |[|T'|,. If, however, the imbedding is
discontinuous there exists a sequence {7} in R such that ||7,|[,—0 and
|T,||=>. By the arguments of [1], the minimal ideals of R are the
same as the minimal ideals of &(¥). For each idempotent generator J
of a minimal right ideal of R, JRJ is a normed division algebra and
hence has a unique norm topology by the Gelfand-Mazur theorem.
Since ||JT,J||,—0 we have |[JT,J||—0. The remainder of the proof
may be handled as in Theorem 2.3.

For a ring B and a subset ACB we denote the left (right) an-
nihilator of A by L(A) (R(4)). Bonsall and Goldie [4] have considered
topological rings called annihilator rings in which for each proper right
(left) closed ideal I, L(I)=+(0) (R(I)#(0)). We consider the related pure-
ly algebraic concept of a modular annihilator ring which is defined to
be a ring in which L(M)=+(0) (R(M)=+(0)) for every regular maximal
right (left) ideal. From the standpoint of algebra these rings appear
to be a natural class containing H*-algebras, etec. In view of what
follows it is natural to ask if the two concepts agree for semi-simple
normed Q-algebras or semi-simple Banach algebras. A affirmative ans-
wer would settle an unsolved problem in the theory of annihilator al-
gebras.

2.7. LEMMA. Let B be a semi-simple normed annihilator Q-algebra
and I be a closed two-sided ideal in B. Then I is a modular annihilator
Q-algebra.

Thus if we had affirmative answer to the above question, any closed
two-sided ideal of a semi-simple annihilator Banach algebra would also
be one. The analogous result is known for dual algebras [7; 690].

Let M be a regular maximal right ideal of I. Since I is a Q-al-
gebra (as an ideal in B), M is closed in B. Since L(I)=R(I), ([4; 159]),
L(I+R(I)) = (0) so that I+R(I) is dense. The arguments of [7; Theorem
2] show that M is a right ideal in B. We must show L(M) N I+(0). Suppose
the contrary. Then I L(M)=(0) and L(M)cR(I)=L(I). As Mcl,
L(M)>I(I). Therefore L(M)=IL(I). R(M)M=(0) since it is a nilpotent
ideal in B. Thus R(M)cL(M)=R(I). Then since R(M)DR(I) we see
that R(M)=L(M). If x e L(M+ R(M)) then x = L(M)=R(M) and x € LR(M).
Thus 2*=0 and, by semi-simplicity and the annihilator property, M+
R(M) is dense in B. Then (M+R(M)) I=(M+IL(I)IcM and BICM.
Let j be a left identity for I modulo M. Then jua—xe M, xel and
jee M, xel. Hence ICM which is a contradiction.

2.8. LEMMA. In a semi-simple modular amnihilator ring, every
proper right (left) ideal contains o minimal right (left) ideal. A normed
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modular annihilator algebra B has the spectral extension property.

Since the first statement is shown by stripping the arguments of
Bonsall and Goldie [4] of all topological connotations, a sketch of the
argument is sufficient. As in [4, Lemma 2], if j is not right (left)
quasi-regular there exists £+#0 in B where aj=x(jx=x). The arguments
of [4, Theorem 1] show that if M is a regular maximal right (left) ideal
of B then L(M) (R(M)) is a minimal left (right) ideal generated by an
idempotent. Also the left (right) annihilator of a minimal right (left)
ideal is a regular maximal left (right) ideal. Consider the socle K of
B. By the reasoning of [4, Theorem 4], L(K)=R(K)=(0). Let I be a
proper right ideal of B. If I contained no minimal right ideals of B
then, as in the proof of [4, Lemma 4], IC L(K), which is impossible.

Let ze B and let B’ be the completion of B in the normed algebra
norm ||zl|l,. Consider 2=a+bi=0 in sp(x|B). Then u=|21|"? (2ax—2x?)
has no quasi-inverse in B. As in [3; p 159] there exists y+0 such
that uy=y and » has no quasi-inverse in B’. Then p(z|B’)=p(z|B).

3. Closure of homomorphisms and anti-homomorphisms. Through-
out this section the following notation is assumed. Let B,(B) be a real
normed algebra with norm {|z|,({lz|)). T is a ring homomorphism or
anti-homomorphism of B; onto a dense subset of B. T is called closed
if ||z,—z|,—0, [|T(x,)—y||—=0 imply that yeT(B,) and y=T(x). By
the separating set S of T we mean the set of all ye B such that
there exists a sequence {«,} in B, where ||z,|,—0 and ||y—T(z,)||—0.
We assume that p[7T(z)]<p(x), xc B,. Note that this condition is auto-
matic if T is real-linear.

The next lemma is an adaptation of results of Rickart [11].

3.1. LEMMA. T is closed and real-homogencous if and only if S=(0).
S is a closed two-sided tideal in B and T-%S) a closed two-sided ideal
in B.. If B, is a normed Q-algebra then every element of S is a topological
divisor of zero in B.

Clearly T is rational-homogeneous. Let xe B, and r,—r where each
r, is rational and 7 is real. Then ||r,z—rz|,—0 and ||»T(z)—T(rz)—
T(r,c—rx)||—>0. Hence rT(x)—T(rx)e S. The first statement follows by
a straightforward argument.

Let y,eS, |]lw—vy,||=0. There exists, for each n, an element
2, € B, such that ||y, —T(z,)ll<n' and ||z,]<n"'. Then |lw—T(z,)||—0
so that weS. Hence S is closed in B. Since xS and r rational im-
ply rze S it follows that S is a real linear manifold. To show that S
is an ideal in B it is enough to show that xy and yxe S for xeS and
y=T(z) e T(B,). This, however, is a simple matter. Suppose next that
|z,—2|l;—>0 where each x,e T-(S). For each n there exists y, e B, such
that ||T(x,)—T(v.)||<n™" and [|y,l.<n"'. Then ||&—(z,—¥y,)|,—0 while
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| T(x) —T[x—(x,—¥.)]l|>0 whence T(x)cS. Hence T-(S) is closed. It
is readily seen to be a two-sided ideal in B..

Let B° be the completion of B where we use ||z|| to denote the
norm in B and p(x) the spectral radius there. To show that seS is a
topological divisor of zero in B it is sufficient to show that it is one in B°.
Choose a sequence {,} in B, such that ||s—T(x,)||—0 and ||z,|,—0. If B,
is a normed Q-algebra s is the limit of quasi-regular elements of B° by
Lemma 2.1. Hence so also is is for any real 2. By the arguments of
[11; 621] it suffices to rule out the possibility that both B° has an
identity 1 and that s has a two-sided inverse in 5B°.

Suppose this is the case. Let S, be the separating set for 7 con-
sidered as a mapping of B, into B°. Clearly ScS,. Then as S, is an
ideal in B, Sy=B° and 1S,  There exists a sequence {u,} in B, such
that ||1—T7(«,)||—>0 and ||%,||,—0. Since 1—T(u,) and T(u,) permute we
have by Lemma 2.1,

1=pQ1) = p(1=T(ua)) + o(T(wr)) = |11—=T(@a)|] + p(nB)—0

This contradication completes the argument.

If B, and B are Banach algebras, by the closed graph theorem [2;
41] S=(0) will imply that T is continuous. In every case S=(0) will
imply real-homogeneity for 7' and the closure of 7-(0).

3.2. LEMMA. Let B, be a normed Q-algebra and B be semi-simple
with minimal one-sided ideals. Suppose that there exists o minimal one-
sided ideal I of B, such that T(B)NI+0. Then SNI=(0).

We consider the case where I is a right ideal and 7 is a homomor-
phism. The other cases follow by the reasoning employed. Set I,=
T-Y(I). I, is a right (ring) ideal of B,. Let I=jB, j*=j and consider
x,€ I, where T(x,)=jv+0. By the semi-simplicity of B, juB+(0) and, as
4B is minimal, jvB=jB. Then jvT(B)) is dense in I. It follows that
T(I?)#(0) for otherwise [jvT(B,)F=(0) and I*=(0). Select xel,, T(x)=
jw#0 and T(2*)#0. Let R be the set of elements y in B for which
jye T(I,). As observed, jR is dense in jB. Hence jRj is dense in jBj.
But jBj is a normed division algebra and therefore, by the Gelfand-
Mazur theorem, finite-dimensional in B. Thus jRj=jBj. There exists
z€ R such that jywj=jwjzj=j. For some wz,el,, T(x)j=jzj. Then
T(xx)=jzjw=T((xx)*). Set jzjw=h and xw=u. Then % is a non-zero
idempotent in INT(B,). Clearly hB=1I so that ABh is a division algebra
hence isomorphic to the reals, complexes or quaternions.

We show that ~¢ S. For suppose otherwise. Then there exists a
sequence {y,} in B, such that ||2—T(y,)||>0 and |[|y,|l,—0. Thus
uyu |, =0 and ||A—T(uy,u)||>0. By Lemma 2.2 and the fact that
hBh is the reals, complexes or quaternions, ||2T(y,)k||—0. This is a
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contradiction as A#0. Now SNI is a right ideal of B, SNI+I. Since
I is minimal, SNI=(0).

3.3. THEOREM. Let B, be a normed Q-algebra and B be primitive
with minimal one-sided ideals. If T(B,)NI#(0) for a minimal one-sided
ideal I of B then T is closed and real-homogeneous.

Let K be the socle of B. If S#(0) then KcS by [6; 75]. Then
IcS which is impossible by Lemma 3.2.

3.4. COROLLARY. Let B be any subalgebra of G(X) closed in the
uniform norm ||T|| where BOF(X). Let ||T|, be any normed algebra
norm for B such that the completion B° of B in this norm is primitive.
Then the two norms are equivalent.

By Theorem 2.6 and Lemma 2.5, B is a Q-algebra in the norm
|IT1]l,. By Theorem 2.3, there exists ¢>0 such that [|T|[Z¢||T]l;, T € B.
Consider the embedding mapping I of B (with norm ||T']|) into B°. B
is a primitive algebra with a minimal right ideal JB, J*=.J. Then
I(J)I(B)I(J) a normed division algebra and, by the Gelfand-Mazur theorm,
closed in B°. Since I(J) is an idempotent, its closure in B° is I(J)BI(J).
Therefore I(J)B° is a minimal right ideal of B°. From Theorem 3.3, I
is closed. The closed graph theorem [2; 41] shows that I is continuous.
Hence there exists ¢,>0 such that ||T||,<e||T]], T e B.

3.5. THEOREM. Let B, and B be normed Q-algebras. Then S is
contained in the Brown-McCoy radical of B. If B is strongly semi-
simple then T is closed and real-homogeneous.

The Brown-McCoy radical [5] coincides with the intersection of the
regular maximal two-sided ideals of B. Let M be such an ideal of B.
Since B is a normed Q@Q-algebra, M is closed. Let = be the natural
homomorphism of B onto B/M. Since T(B,) is dense in B, then = T(B,)
is dense in B/M. Also p[=zT(x)]1=ZplT(x)]<p(x), x e B;. Hence our theory
applies to the mapping =T

Let S, be the separating set for n7T'. Since B/M is simple with an
identity, Sy=(0) by Lemma 8.1. Let wyeS, ||z,|,—>0, |ly—T(x,)|—0.
Then ||z(y)—=T(x,)||>0 or =(y)eS,. Therefore ScM. B is called
strongly semi-simple if its Brown-McCoy radical is (0).

3.6. THEOREM. Let B, and B be semi-simple mormed Q-algebras
where B, has a dense socle K and B has an identity Let T' be real-linear.
Then Tis closed.

Let P be a primitive ideal of B and = be the natural homomorphism
of B onto B/P. Since B is a Q-algebra then P is closed, = is contin-
uous and z7(B;) is dense in B/P. Let S, be the separating set for =T
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as a mapping of B, into B/P. We show first that T(K)c P is impos-
sible. Suppose T(K)cP. Since K (zT)-Y(S,), by Lemma 3.1 we have
B,=(=T)(S,) and S;=B/P. Since B/P has an identity this is contrary
to Lemma 3.1. Hence there exists a minimal right ideal jB, of B,, #=j
such that T'(j)¢ P. Set z71'(j)=u, zT(B,)=B,. =T is an isomorphism or
anti-isomorphism of the division algebra jB,j onto uBu. Hence uBu is
a normed division algebra and thus, by the Gelfand-Mazur theorem
closed in B/P. Since % is an idempotent, #(B/P) is a minimal right
ideal of B/P. By Theorem 3.3, T 1is closed from which we obtain
ScP. Since B is semi-simple, S=(0).

3.7. THEOREM. Let B, be a normed @Q-algebra and B semi-simple
where either B is ¢ modular annihilator algebra or has dense socle. If
T(B,) contains the socle of B then T 1is closed and real-homogeneous.

By Lemma 3.2, SNI=(0) for every minimal one-sided ideal of B.
Let I be a minimal right ideal. Then SI=(0). Thus S annihilates the
socle. It follows (see the proof of Lemma 2.8) that S=(0) in the first
case. In the second case we have S*=(0) and S=(0) by semi-simplicity.

Consider further a semi-simple normed modular annihilator algebra
B. B is a permanent @Q-algebra by Lemma 2.5 and 2.8. From Theorem
3.7 we see that any algebraic homomorphism or anti-homomorphism of
B onto B is closed no matter which two norms are used for B.

Let B be a real normed algebra. By an tnwvolution on B we mean
a mapping z—a* of B onto B which is a real-linear automorphism or
anti-automorphism of period two. Let H(K) be the set of self-adjoint
(skew) elements of B with respect to the involution az—z*. B is the
direct sum H @ K of the linear manifolds H and K.

The mapping z—z* of B onto B is subject to the above analysis.
Here S is the set of all xe€ B for which there exists a sequence {z,} in
B with ||z,]|—>0 and ||z—a)||—0.

3.8. LEMMA. S=HNK. S=(0)if and only if H and K are closed.
Let weS. Then there exist sequences {4,} and {k,} in H and K
respectively such that |lw—(k,—k,)||>0 and |[|4,+k,||—>0. Therefore

llw—2h,||—>0 and |[w+2k,||—>0 so we HNK. Conversely suppose that
llz—h,||—0, |lz—Fk,||—>0 where each k,e H, k,e K. Then |jz—(k,+k,)/2]|
—0 and [|(k,—E,)/2|]|>0 and zeS.

If H and K are closed, clearly S=(0). Suppose S=(0). Let &,—>
u+v where h,e H, ue H and ve K. Then h,—u—v and ve HNK. Then
v=0 and H is closed. Similarly K is closed.

Let B be a semi-simple normed annihilator algebra, for example an
H*-algebra. Then it follows from the above that H and K are closed
in B for any involution on B and any normed algebra norm on B. For
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B*-algebras we have been able to show only the following weaker re-
sult.

3.9. THEOREM. Let B be o B*-algebra with H(K) as the set of self-
adjoint (skew) elements in the defining involution for B. Then H and K
are closed in any normed algebra morm topology for B.

B has the spectral extension property [13] and is therefore a per-
manent Q-algebra by Lemma 2.5. The arguments of [14; § 3] can be
adapted to show that H and K are closed in any given normed algebra
norm ||z],.
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