ASYMMETRY OF A PLANE CONVEX SET WITH RESPECT TO ITS CENTROID

B. M. Stewart

A. S. Besicovitch [1] proved that every bounded plane convex set K has a central subset of area at least $2 m(K) / 3$ where $m(K)$ denotes the area of K. His method is to construct a semi-regular hexagon of center N whose vertices belong to the boundary of K.

Ellen F. Buck and R. C. Buck [2] showed that for every K there exists at least one point X, called a six-partite point, such that there are three straight lines through X dividing K into six subsets each of area $m(K) / 6$. H. G. Eggleston [3] showed that any six-partite point of K is the center of a semi-regular hexagon of area $2 m(K) / 3$ contained in K.
I. Fáry and L. Rédei [4] and S. Stein [5] defined for each point P the subset $S(P)$ of K determined by the intersection of K with its radial reflection in P and considered the function $f(P)=m(S(P)) / m(K)$. By use of the Brunn-Minkowski theorem these authors showed that if a is a real number, then the set of points at which $f(P) \geqq a$ is convex; and the maximum f^{*} of $f(P)$ is attained at a single point. (Moreover, these results apply to an n-dimensional bounded convex set in n-dimensional Euclidean space.) Note that these conclusions may be false if the set K is not convex : for example, consider an L-shaped region formed by deleting one quarter of a square.

The results of Besicovitch and Eggleston imply $f(N) \geqq 2 / 3$ and $f(X)$ $\geqq 2 / 3$, hence $f^{*} \geqq 2 / 3$.

We obtain the following theorem.
Theorem. If G is the centroid of K, then $f(G) \geqq 2 / 3$.
To see that this result is not included in the theorems previously mentioned, consider the isosceles trapezoid with vertices $(-4,0),(4,0)$, $(2,2),(-2,2)$. For this example there is only one point $N:(0,1)$ and only one point $X:(0,4-4 \sqrt{.6})$ and the closure of these points does not include G : ($0,8 / 9$).

Proof of the theorem. If K has central symmetry, then $f(G)=1$. In any case $S(G)$ has central symmetry about G; hence if K does not have central symmetry, the part M of K outside $S(G)$ has G at its centroid. Then as in Figure 1 let T be any maximal connected subset of M with

[^0]A and B as terminal points of the boundary curve common to K and T. Let P^{\prime} denote the reflection of a point P in G. Note that the congruent triangles $A G B$ and $A^{\prime} G B^{\prime}$ are contained in $S(G)$.

Fig. 1.

If for every T the area $m(T)$ is less than or equal to the area Δ of the corresponding triangle $A G B$, then $m(S(G)) \geqq 2 m(M)$. Since

$$
m(K)=m(M)+m(S(G))
$$

$$
\leqq 3 m(S(G)) / 2
$$

it follows that $f(G) \geqq 2 / 3$.
In the contrary case, if we assume for any T that $m(T)>\Delta$, we can arrive at a contradiction of the fact that G is the centroid of M.
Let line L through G parallel to $A B$ cut the boundary of K in points C and D. To fix ideas suppose in length $C G>G D$. Let lines $B D$ and $A C$ meet at H and intersect line $A^{\prime} B^{\prime}$ in P and Q, respectively. Let $A C$ and $B^{\prime} D^{\prime}$ meet at R; then $B D$ and $A^{\prime} C^{\prime}$ meet at R^{\prime}; and R is on the side of L toward T.

Considerations of convexity imply that on the side of L away from T the maximum possible moment of M with respect to L is $u+w_{2}$ where u is the moment of triangle $R^{\prime} A^{\prime} P$ and w_{2} is the moment of trapezoid $C Q B^{\prime} D^{\prime}$. On the other side the minimum possible moment of M with respect to L is $w_{1}+v$ where w_{1} is the moment of triangle $R C D^{\prime}$ and v is the moment of a trapezoid of area $m(T)$ inscribed in triangie $A B H$ and having $A B$ as one base.

We will show that if $m(T)>\Delta$, then $w_{1}+v>u+w_{2}$, in contradiction to G being the centroid of M. It will suffice to show $v>u+w$ where $w=w_{2}-w_{1}$ is the moment of triangle $R Q B^{\prime}$.

Let $a=A B$, let d be the distance from G to $A B$ and let h be the distance from H to $A B$. Let $a_{1}=A^{\prime} P$ and $a_{2}=Q B^{\prime}$. From similar triangles $\left(a_{1}+a_{2}+a\right) / a=(2 d+h) / h$, so that $a_{1}+a_{2}=2 a d / h$. The combined moments of triangles $R^{\prime} A^{\prime} P$ and $R Q B^{\prime}$ are equivalent to those of a single triangle of base $a_{1}+a_{2}$ and altitude d with centroid at a distance $2 d / 3$ from L, hence $u+w=2 a d^{3} / 3 h$.

Let c be the altitude of a trapezoid Z of area Δ inscribed in triangle $A B H$ and having $A B$ as one base. A direct computation shows the moment v^{\prime} of Z with respect to L to be

$$
v^{\prime}=\frac{a d}{2}\left(d+\frac{c(3 h-2 c)}{3(2 h-c)}\right)
$$

Since $m(T)>\Delta$ implies $v>v^{\prime}$ the inequality $v>u+w$ will hold if
$v^{\prime}>u+w$. Since $m\left(T^{\prime}\right)>\Delta$ also implies $h>d>c$, the inequality $v^{\prime}>u+w$ reduces to

$$
\left(6 h d-3 c d+3 c h-2 c^{2}\right) h>4 d^{2}(2 h-c) .
$$

Comparison of the areas of Z and triangle $A B G$ shows $c^{2}=2 c h-h d$. Then the previous inequality may be rearranged and factored to obtain the equivalent inequality

$$
8 h d(h-d)>c(h+4 d)(h-d)
$$

whose truth follows readily from $h>d>c$.
The case that length $C G=G D$ may be treated in the same manner (even if $B D$ and $A C$ are parallel). This completes the proof of the theorem.

We do not see how to extend the theorem about $f(G)$ to higher dimensions. Possibly the lower limit for $f(G)$ for the general bounded convex set is the same as $f(G)$ for a simplex of corresponding dimension. The value of the latter is given in [4] (but incorrectly given in Theorem 6 of [5], an error for which Professor Stein wishes this note to serve in lieu of a formal corrigendum).

Note that for as simple an example as a trapezoid $f^{*}>f(G)$. Some necessary conditions for determining P such that $f(P)=f^{*}$ have been given in [6].

References

1. A. S. Besicovitch, Measure of asymmetry of convex curves, J. London Math. Soc. 23 (1948), 237-240.
2. Ellen F. Buck and R. C Buck, Equipartition of convex sets, Math. Mag. 22 (1949), 195-198.
3. H. G. Eggleston, Some properties of triangles as extremal curves, J. London Math Soc. 28 (1953). 32-36.
4. I. Fáry and L. Rédei, Der zentralsymmetrische Kern und die zentralsymmetrische Hülle von konvexen Körpern, Math. Ann. 122 (1950), 205-220.
5. S. Stein, The symmetry function in a convex body, Pacific J. Math. 6 (1956), 145-147. 6. B. M. Stewart, The two-area covering problem, Amer. Math. Monthly 50 (1951), 394403.

Michigan State University

[^0]: Received October 10, 1957.

