
ASYMMETRY OF A PLANE CONVEX SET WITH

RESPECT TO ITS CENTROID

B. M. STEWART

A. S. Besicovitch [1] proved that every bounded plane convex set
K has a central subset of area at least 2m(i£)/3 where m{K) denotes
the area of K. His method is to construct a semi-regular hexagon of
center N whose vertices belong to the boundary of K.

Ellen F. Buck and R. C. Buck [2] showed that for every K there
exists at least one point X, called a six-partite point, such that there
are three straight lines through X dividing K into six subsets each of
area m(K)j6. H. G. Eggleston [3] showed that any six-partite point of
K is the center of a semi-regular hexagon of area 2m(iΓ)/3 contained
in K.

I. Fary and L. Redei [4] and S. Stein [5] defined for each point P
the subset S(P) of K determined by the intersection of K with its radial
reflection in P and considered the function f(P)—m(S(P))lm(K). By use
of the Brunn-Minkowski theorem these authors showed that if a is a
real number, then the set of points at which f(P)^a is convex; and
the maximum /* of f{P) is attained at a single point. (Moreover, these
results apply to an ^-dimensional bounded convex set in n-dimensional
Euclidean space.) Note that these conclusions may be false if the set
K is not convex : for example, consider an L-shaped region formed by
deleting one quarter of a square.

The results of Besicovitch and Eggleston imply /(iV)^2/3 and f(X)
^2/3, hence/* ̂ 2/3.

We obtain the following theorem.

THEOREM. // G is the centroid of K, then /((?):>2/3.

To see that this result is not included in the theorems previously
mentioned, consider the isosceles trapezoid with vertices (—4,0), (4,0),
(2,2), ( — 2,2). For this example there is only one point N: (0,1) and
only one point X: (0, 4—4l/.6 ) and the closure of these points does not
include G : (0, 8/9).

Proof of the theorem. If K has central symmetry, then f(G) = l. In
any case S(G) has central symmetry about G hence if K does not have
central symmetry, the part M of K outside S(G) has G at its centroid.
Then as in Figure 1 let T be any maximal connected subset of M with
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A and B as terminal points of the boundary curve common to K and
T. Let Pf denote the reflection of a point P i n G. Note that the con-
gruent triangles AGB and AGB' are contained in S{G).

If for every T the area m(T)
is less than or equal to the area
Δ of the corresponding triangle
AGB, then m(S(G))^2m(M). Since

m(K)=m(M)+m(S(G))

Fig. 1.

it follows that/(G)^2/3.
In the contrary case, if we

assume for any T that m(T)>J,
we can arrive at a contradiction
of the fact that G is the centroid
of M.

Let line L through G parallel to AB cut the boundary of K in
points C and D. To fix ideas suppose in length CG>GD. Let lines BD
and AC meet at H and intersect line AB' in P and Q, respectively.
Let .4(7 and 577 meet at i2 then BD and A'C" meet at R' and 22 is
on the side of L toward T,

Considerations of convexity imply that on the side of L away from
T the maximum possible moment of M with respect to L is u+w2 where
u is the moment of triangle RAP and w.z is the moment of trapezoid
CQB'Π. On the other side the minimum possible moment of M with
respect to L is wY + v where wλ is the moment of triangle RCD' and v
is the moment of a trapezoid of area m{T) inscribed in triangle ABH
and having AB as one base.

We will show that if m{T)>Δ, then wi + v>u + w29 in contradiction
to G being the centroid of ikf. It will suffice to show v>u + w where

w — w.,—wι is the moment of triangle RQB\
Let a=AB, let d be the distance from G to AB and let h be the

distance from H to AS. Let α,=,4/P and α2=Qδ ;. From similar triangles
(a1+a2+a)ila = (2d+h)lh, so that ai + a.z^2adlh. The combined moments
of triangles P'A'P and RQBr are equivalent to those of a single triangle
of base αx+α2 and altitude d with centroid at a distance 2eZ/3 from L,
hence u + w — 2addjSh.

Let c be the altitude of a trapezoid Z of area Δ inscribed in triangle
ABH and having AB as one base. A direct computation shows the
moment v' of Z with respect to L to be

v U +
2 V 3(2/i-c)

Since m{T)>Δ implies v>v' the inequality v>u+w will hold if



ASYMMETRY OF A PLANE CONVEX SET 33?

v'>u+w. Since m(Γ)>zί also implies h>d>c, the inequality v'>u+w
reduces to

(6hd-3cd+3ch-2c2)h>4:d2(2h-c) .

Comparison of the areas of Z and triangle ABG shows c2=2ch—hd.
Then the previous inequality may be rearranged and factored to obtain
the equivalent inequality

8hd(h-d)>c(h+Ad)(h-d)

whose truth follows readily from h>d>c.
The case that length CG — GD may be treated in the same manner

(even if BD and AC are parallel). This completes the proof of the
theorem.

We do not see how to extend the theorem about f(G) to higher
dimensions. Possibly the lower limit for f(G) for the general bounded
convex set is the same as f(G) for a simplex of corresponding dimension.
The value of the latter is given in [4] (but incorrectly given in Theorem
6 of [5], an error for which Professor Stein wishes this note to serve
in lieu of a formal corrigendum).

Note that for as simple an example as a trapezoid / * > / ( £ ) . Some
necessary conditions for determining P such t h a t / ( P ) = / * have been
given in [6].
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