REMARKS ON THE MAXIMUM PRINCIPLE FOR PARABOLIC EQUATIONS AND ITS APPLICATIONS

AVNER FRIEDMAN

Introduction. In [3] Nirenberg has proved maximum principles, both weak and strong, for parabolic equations. In § 1 of this paper we give a generalization of his strong maximum principle (Theorem 1). Hopf [2] and Olainik [4] have proved that if $Lu \ge 0$ and L is a linear elliptic operator of the second order, if the coefficient of u in L is nonpositive, and if u (\ne const.) assumes its positive maximum at a point P° (which necessarily belongs to the boundary) then $\partial u/\partial \nu < 0$, where ν is the inwardly directed normal. In § 2 we extend this result to parabolic operators (Theorem 2). A further discussion of the assumptions made in Theorem 2 is given in § 3. Application of Theorem 2 to the Neumann problem is given in § 4. In § 5 we apply the weak maximum principle to prove a uniqueness theorem for certain nonlinear parabolic equations with nonlinear boundary conditions, and thus extend the special case considered by Ficken [1]. An even more special case arises in the theory of diffusion (for references, see [1]).

1. Consider the operator

(1)
$$Lu = \sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial^{2}u}{\partial x_{i}\partial x_{j}} + \sum_{i=1}^{n} a_{i}(x,t) \frac{\partial u}{\partial x_{i}} + a(x,t)u - \frac{\partial u}{\partial t}$$

with $a(x, t) \leq 0$. Here, $(x, t) = (x_1, \dots, x_n, t)$ varies in the closure \overline{D} of a given (n+1)-dimensional domain D. Assume that L is parabolic in \overline{D} , that is, for every real vector $\lambda \neq 0$ and for every $(x, t) \in \overline{D}$ we have

$$\sum a_{ij}(x,t)\lambda_i\lambda_j>0$$
.

All the coefficients of L are assumed to be continuous in \overline{D} and u is assumed to be continuous in \overline{D} and to have a continuous t-derivative and continuous second x-derivatives in D. From [3; Th. 5] it follows that, under the above assumptions, if $Lu \ge 0$ and if u assumes its positive maximum at an interior point P^0 , then $u \equiv const.$ in $S(P^0)$. Here, $S(P^0)$ denotes the set of all points Q in D which can be connected to P^0 by a simple continuous curve in D along which the coordinate t is non-decreasing from Q to P^0 . In the following theorem we consider the case

Received October 29, 1957. Prepared under ONR Contract Nonr-908 (09), NR 041 037 with Indiana University.

in which P^0 is a boundary point of D. We may assume that P^0 is the origin. Let $t=\varphi(x)$ be the equation of the boundary of D near P^0 . Assume that t=0 is the tangent hyperplane to the boundary of D at P^0 . Therefore $\partial \varphi/\partial x_t|_{P^0}=0$. Let D be on the side $t<\varphi(x)$.

Theorem 1. If $Lu \ge 0$ in D, if u assumes its positive maximum M at P° , if

(2)
$$\lim_{P \to P0} \frac{\partial u(P)}{\partial x_i} = 0, \ \lambda \equiv \lim_{P \to P0} \sum_{i} a_{i,i}(P) \frac{\partial^{i} u(P)}{\partial x_i \partial x_j} \leq 0 \qquad P \in D$$

and if

(3)
$$1 + \sum a_{ij} \frac{\partial^3 \varphi}{\partial x_i \partial x_j} \bigg|_{P^0} > 0 \qquad \qquad \varphi \in C^{\prime\prime}$$

then u = M in $S(P^0)$.

REMARK 1. Without making any use of (3) one can deduce the following:

Put $\mu \equiv \lim_{P \to P0} \sup \frac{\partial u(P)}{\partial t}$ $(P \in D)$, then $\mu \geq 0$ since $\mu < 0$ will contradict $u(P^0) \geq u(P)$. Letting $P \to P^0$ in $Lu(P) \geq 0$ and using (2), we obtain $\lambda + a(P^0)M - \mu \geq 0$, from which it follows that $\lambda \geq 0$. Since, by (2), $\lambda \leq 0$, we conclude that $\lambda = 0$. Hence $a(P^0)M - \mu \geq 0$, from which it follows that $\mu \leq 0$ and, therefore, (since $\mu \geq 0$) $\mu = 0$. We also get $a(P^0) = 0$.

REMARK 2. The assumptions (2) and (3) can be verified if we assume that $\varphi(x)=o(|x|^2)$ and that u belongs to C'' in the closure of the domain $V\cap\{t<0\}$, where V is some neighborhood of P^0 . Indeed, by making an appropriate orthogonal transformation we can assume that $a_{ij}(P^0)=\delta_{ij}$. By the mean value theorem we have

$$u(x,t)-u(0,0)=\sum x_i\frac{\partial}{\partial x_i}u(\tilde{x},\tilde{t})+t\frac{\partial}{\partial t}u(\tilde{x},\tilde{t}).$$

Taking $(x, t) \in \overline{D} \cap V \cap \{t < 0\}$ such that |t| = o(|x|) and noting that $u(x, t) \le u(0, 0)$, one can show that $\partial u(P^0)/\partial x_i = 0$. Noting that $\varphi(x) = o(|x|^2)$ and expanding [u(x, t) - u(0, 0)] in terms of the first and second derivatives of u, one can show that $\partial^2 u(P^0)/\partial x_i^2 \le 0$, and (2) is thereby proved. The proof of (3) is immediate.

PROOF OF THEOREM 1. For simplicity we shall prove the theorem only in case n=1; the proof of the general case is analogous. Lu takes the form

(4)
$$Lu = A \frac{\partial^2 u}{\partial x^2} + a \frac{\partial u}{\partial x} + cu - \frac{\partial u}{\partial t} \qquad c \leq 0, A > 0.$$

From the strong maximum principle [3; Th. 5] it follows that all we need to prove is that u(P) = M if $P \in V' \cap S(P^0)$ where V' is some neighborhood of P^0 .

There are two possibilities: Either there exists a sequence $\{P^k\}$ such that $P^k \in S(P^0)$, $P^k \to P^0$, $u(P^k) = M$, or there exists a neighborhood $V = \{x^2 + t^2 < R^2\}$ of P^0 such that u(P) < M for all $P \in V \cap S(P^0)$, $P \neq P^0$. In the first case we can use [3; Th. 5] to conclude that $u(P) \equiv M$ if $P \in V' \cap S(P^0)$ where V' is some neighborhood of P^0 (since u(P) = M for all $P \in S(P^k)$).

It remains therefore to consider the case in which u(P) < M for all $P \in V \cap S(P^0)$, $P \neq P^0$. We shall prove that this case cannot occur by deriving a contradiction. Writing

$$\varphi(x) = Kx^2 + o(x^2) ,$$

we define a domain D_{δ} ($\delta > 0$) as the intersection of $S(P^{0})$ with the set of points (x, t) in V for which

$$t < \tilde{\varphi}(x) = (K - \delta)x^2$$
.

If K<0 then, because of (3), we can choose δ sufficiently small such that

$$1 + A \frac{\partial^2}{\partial x^2} \tilde{\varphi}(x)|_{x=0} > 0.$$

If $K \ge 0$, we can obviously take δ such that $K - \delta < 0$ and such that (5) holds.

We now can take R sufficiently small such that $\tilde{\varphi}(x) < \min(0, \varphi(x))$ for all (x,t) in D_{δ} , $x \neq 0$. Consequently, u(x,t) < M if $t = \tilde{\varphi}(x)$, $x \neq 0$. The function $h(x,t) = -t + \tilde{\varphi}(x)$ vanishes on $t = \tilde{\varphi}(x)$ and is positive in D_{δ} . Therefore, if $\varepsilon > 0$ is sufficiently small, then $v = u + \varepsilon h$ is smaller than M at all points on the boundary of D_{δ} with the exception of P^{0} , where $v(P^{0}) = M$. Noting that $\tilde{\varphi}'(0) = 0$ and using (5), we conclude that

$$Lh = 1 + A\tilde{\varphi}''(x) + a\tilde{\varphi}'(x) + ch > 0$$

if R has been chosen sufficiently small. Hence, $Lv=Lu+\varepsilon Lh>0$. It follows that v cannot assume its positive maximum at interior points of D_{δ} and, therefore, it assumes its maximum M at P^{0} . We thus obtain $\partial v/\partial t \geq 0$ at P^{0} and, consequently,

$$\frac{\partial u}{\partial t} = \frac{\partial v}{\partial t} - \varepsilon \frac{\partial h}{\partial t} \ge \varepsilon > 0$$

(Here

$$\frac{\partial g}{\partial t} = \liminf_{t \to 0} \frac{g(0, 0) - g(0, t)}{-t} .$$

On the other hand, letting in (4) $P \to P^0$ in an appropriate way and using (2) and the inequality $Lu(P) \ge 0$, we get

$$egin{aligned} 0 & \leq \lim A(P) rac{\partial^{\imath} u(P)}{\partial x^{\imath}} + \lim a(P) rac{\partial u(P)}{\partial x} + C(P^{\scriptscriptstyle 0}) M - \lim \sup rac{\partial u(P)}{\partial t} \leq \\ & - \lim \sup rac{\partial u(P)}{\partial t} \;. \end{aligned}$$

We have thus obtained

$$\limsup_{P \to P^0} \partial u(P)/\partial t \leq 0 < \varepsilon \leq \partial u/\partial t.$$

This is however a contradiction (since

$$\frac{\partial u}{\partial t} = \lim_{t_k \to 0} \frac{\partial u(0, t_k)}{\partial t} \le \limsup_{P \to P^0} \frac{\partial u(P)}{\partial t}$$

for an appropriate sequence $\{t_k\}$), and the proof is completed.

REMARK (a) Consider the following example: $n=1, P^0=(0, 0)$ and D defined by

$$x^2+t^2 < R, t < \gamma_1 x, t < \gamma_2 x$$
 $\gamma_1 > 0 > \gamma_2.$

The function $u(x, t) = (t - \gamma_1 x)(\gamma_2 x - t)$ satisfies the following properties: u < 0 in D, u = 0 at P^0 , and

$$Lu = A \frac{\partial^2 u}{\partial x^2} + a \frac{\partial u}{\partial x} - \frac{\partial u}{\partial t} = -2A\gamma_1\gamma_2 + 0(|x| + |t|) \ge 0$$
,

provided R is sufficiently small. Consequently, (3) and the second assumption in (2) are not satisfied and also the assertion of Theorem 1 is false.

REMARK (b). Consider now the case in which the tangent hyperplane at P^0 is not of the form t = const.. We shall prove that in this case Theorem 1 is false. Take n=1 and consider first the case in which D is defined by

$$x > 0$$
, $x^2 + t^2 < R^2$.

If $Lu \equiv \partial^2 u/\partial x^2 - \partial u/\partial t$, then the function u(x, t) = -x takes its maximum in \overline{D} at $P^0 = (0, 0)$, Lu = 0, but $u \neq 0$ in $S(P^0)$.

Consider next the case in which \overline{D} is defined by

$$x > \alpha t$$
, $x^2 + t^2 < R^2$.

and take $Lu = \partial^2 u/\partial x^2 - \alpha \partial u/\partial x - \partial u/\partial t$.

The transformation t'=t, $x'=x-\alpha t$ carries the present case into the previous one.

Note that if the tangent hyperplane H at P^0 is not the plane t=0 and the axes are rotated so as to give H the equation t'=0 (in new x', t' coordinate), then Lu loses the form (1), for $u_{x't'}$ and $u_{t't'}$ will appear in it.

REMARK (c). If in Theorem 1 the domain D is on the side $t > \varphi(x)$, then the theorem is false. Indeed, as a counter-example take u = -t, and D bounded from below by t = 0.

2. Consider the linear operator

$$(6) \qquad L'u \equiv \sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i,j=1}^{m} b_{ij}(x,t) \frac{\partial^{2} u}{\partial t_{i} \partial t_{j}} + \sum_{i=1}^{n} a_{i}(x,t) \frac{\partial u}{\partial x_{i}} + \sum_{i=1}^{m} b_{i}(x,t) \frac{\partial u}{\partial t_{i}} + a(x,t)u \qquad a(x,t) \leq 0,$$

where $x=(x_1, \dots, x_n)$ and $t=(t_1, \dots, t_m)$ vary in the closure of a given (n+m)-dimensional domain D. We assume that L' is elliptic in the variables x and parabolic in the variables t, that is, for every real vector $\lambda \neq 0$,

(7)
$$\sum a_{i,i} \lambda_i \lambda_i > 0, \quad \sum b_{i,i} \lambda_i \lambda_i \ge 0.$$

All the coefficients appearing in (6) are assumed to be continuous in \overline{D} and u is assumed to be continuous in \overline{D} and to have a continuous t-derivative and continuous second x-derivatives in D. Under these assumptions, Nirenberg [3; Th. 2] has proved a weak maximum principle from which it follows that, if $L'u \ge 0$ in D then u must assume its positive maximum on the boundary.

Let $P^0=(x^0, t^0)$ be a point on the boundary of D such that $u(P^0)=M>0$ is the maximum of u in \overline{D} . Assume that there exists a neighborhood $V: |x-x^0|^2+|t-t^0|^2 < R_0^2$ of P^0 such that u(x, t) < M in $V \cap D$. We then can prove the following theorem.

THEOREM 2. If there exists a sphere $S: |x-x'|^2 + |t-t'|^2 < R^2$ passing through P^0 and contained in \overline{D} , and if $x^0 \neq x'$ then, under the assumptions made above (in particular, $L'u \geq 0$, u(x, t) < M in $V \cap D$), every nontangential derivative $\partial u/\partial \tau$ at (x^0, t^0) , understood as the limit inferior of $\Delta u/\Delta \tau$ along a non-tangential direction τ , is negative.

By a non-tangential direction we mean a direction from P^0 into the interior of the sphere S.

REMARK (a). If a(x, t) = 0 then the assumption M > 0 is superflows.

REMARK (b). In § 3 we shall show that the assumption $x^0 \neq x'$ is essential. We shall also discuss the case in which u(x, t) is not smaller than M at all the points of $V \cap D$.

Proof. For simplicity we give the proof in the case m=n=1, so that

(8)
$$L'u = A \frac{\partial^2 u}{\partial x^2} + B \frac{\partial^2 u}{\partial t^2} + a \frac{\partial u}{\partial x} + b \frac{\partial u}{\partial t} + cu \quad A > 0, B \ge 0, c \le 0;$$

the proof of the general case is quite similar. Without loss of generality we can take (x', t') = (0, 0) and $x^0 > 0$. Furthermore, we may assume that, with the exception of P^0 , S lies in $V \cap D$, so that u(x, t) < M in $S - P^0$. Denote by C the intersection of S with the plane $x > \delta$, where $0 < \delta < x^0$. The function

$$h(x, t) = \exp(-\alpha(x^2+t^2)) - \exp(-\alpha R^2)$$

satisfies the following properties: h=0 on the boundary of S, $h \ge 0$ in C; if α is large enough, then

$$L'h = \exp(-\alpha(x^2+t^2))[4\alpha^2(Ax^2+Bt^2)-2\alpha(A+B+ax+bt)+c]$$

 $-c \exp(-\alpha R^2) > 0.$

(Here we used $x>\delta>0$, $c\leq 0$.)

If ε is sufficiently small, then the function $v=u+\varepsilon h$ is smaller than M at all points of the boundary of C with the exception of P^0 , where $v(P^0)=M$. Since $L'v=L'u+\varepsilon L'h>0$, v cannot assume its positive maximum in \overline{C} at the interior of C (since, otherwise, at such interior points L'v would be non-positive). Hence, v assumes its maximum at P^0 and, consequently, $\partial v/\partial \tau = \liminf (\Delta v/\Delta \tau) \le 0$. Since along the normal v (i. e., along the radius through P^0) $\partial h/\partial v>0$ and since along the tangential direction σ $\partial h/\partial \sigma=0$, it follows that $\partial h/\partial \tau>0$. Using the definition of v, we conclude that $\partial u/\partial \tau = \partial v/\partial \tau - \varepsilon \partial h/\partial \tau < 0$, and the proof is completed.

Added in proof. Theorem 2 was recently and independently proved also by R. Viborni, On properties of solutions of some boundary value problems for equations of parabolic type, Doklody Akad. Nauk SSSR, 117 (1957), 563-565.

3. From now on we shall consider only parabolic operators of the form (1). Suppose the assumption u < M in $V \cap D$, made in Theorem 2, is replaced by $u \le M$. If there exists a sequence of points $\{P^k\}$ such

that $P^k \to P^0$, $P^k \in D$, $P^k = (x^k, t^k)$ and $t^k \ge t^0$, $u(P^k) = M$, then, by [3; Th. 5], u = M in $S(P^k)$. Hence, if the boundary of D near P^0 is sufficiently smooth, u = M in some set $V' \cap D$ where V' is some neighborhood of P^0 . Consequently $\partial u/\partial \tau = 0$ for every τ .

If $u(P) \leq M$ for all $P \in V \cap D$, if u(P) is not strictly smaller than M for all $P \in V \cap D$, $P \neq P^0$, and if the previous situation does not arise, then one and only one of the following cases must occur:

- (i) u < M at all points (x, t) in $V \cap D$ with $t \ge t^0$. Using [3; Th. 5] one can easily conclude that there exists a neighborhood V' of P such that u < M in $V' \cap D$, and Theorem 2 remains true.
- (ii) u < M at all points (x, t) in $V \cap D$ with $t > t_0$ and $u \equiv M$ at all points (x, t) in $V \cap D$ with $t \ge t_0$. We then consider only those directions τ along which u < M. We claim that *Theorem 2 is not true for the present situation*. To prove this, consider the following simple counterexample:

$$P^0 \! = \! (0,0), \, M \! = \! 0, \, Lu \! = \! rac{\partial^2 \! u}{\partial x^2} \! - \! rac{\partial u}{\partial t} \; , \; u(x,\,t) \! = \! \left\{ egin{matrix} -t^2 & ext{if} & t \! > \! 0 \ 0 & ext{if} & t \! < \! 0 \end{array}
ight. \; .$$

u satisfies $Lu \ge 0$ and assumes its maximum 0 for $t \le 0$. But, the derivative $\partial u/\partial \tau$ at $P^0 = (0, 0)$, along any direction τ , is zero.

As another counter-example (with Lu=0) one can take a fundamental solution of the heat equation.

Note that the preceding counter-examples are valid without any assumptions on the behavior of the boundary of D near P^0 .

We shall now consider the case $x^1=x^0$ which was excluded by the assumptions of Theorem 2. We shall assume that at $P^0=(0,0)$ there passes a tangent hyperplane t=0. If D is above this hyperplane, then the preceding counter-examples show that Theorem 2 is not true. It remains to consider the case in which D is "essentially" below t=0, that is, if we denote by $t=\varphi(x)$ the equation of the boundary of D near P^0 , then D is on the side $t<\varphi(x)$. In this case, however, Theorem 1 tells us that in general we cannot assume both $u(P^0)=\max u(P)>0$ $(P\in \overline{D})$ and $u< u(P^0)$ in $V\cap D$.

The example in § 1 Remark (a) can also serve as a counter-example to Theorem 2 in case P^0 is a vertex-point. Indeed, along the t-direction

$$\frac{\partial u}{\partial t}\Big|_{P^0} = \frac{\partial}{\partial t} [(t - \gamma_1 x)(\gamma_2 x - t)]\Big|_{x = 0, t = 0} = 0.$$

By a small modification of this counter-example one can get a counter-example to the analogue of Theorem 2 for elliptic operators [2] [4] in case P^0 is a vertex. Indeed, define D by

$$x^2+y^2 < R^2$$
, $y < \gamma_1 x$, $y > \gamma_2 x$ $\gamma_1 > 0 > \gamma_2$,

and take $Lu = \frac{\partial^2 u}{\partial x^2} + A \frac{\partial^2 u}{\partial y^2}$, where $A > |\gamma_1 \gamma_2|$. The function $u(x, y) = (y - \gamma_1 x)(y - \gamma_2 x)$ satisfies: u < 0 in D, u = 0 at the origin, $Lu = 2\gamma_1 \gamma_2 + 2A > 0$. But along any direction τ within D, $\frac{\partial u}{\partial \tau}|_{x=0, y=0} = 0$.

4. Let D be a domain bounded by the two hyperplanes t=0, t=T>0 and a surface B between them. Assume that the intersection $\{t=T\}\cap \overline{D}$ is the closure of an open set on t=T, and denote by A the boundary of D on t=0. The Neumann problem for the parabolic equation Lu=0 consists in finding a solution to the equation Lu=0 which satisfies the following initial and boundary conditions:

$$u=f$$
 on A , $\frac{\partial u}{\partial \nu}=g$ on B

(f, g are given functions).

From Theorem 2 and from the strong maximum principle [3; Th. 5] we conclude: If for every point $P^0 = (x^0, t^0)$ of B (i) there exists a sphere with center (x', t'), $x' \neq x^0$, passing through P^0 and contained in \overline{D} , and (ii) $\overline{S(P^0)}$ contains interior points of A, then the Neumann problem has at most one solution. Clearly, this uniqueness property holds also for the more general problem where $\partial u/\partial \nu$ is replaced by $\partial u/\partial \tau$ and τ is a nontangential direction which varies on B.

As another application to Theorem 2, one can deduce the positivity of $\partial G/\partial \nu$, where G is the Green's function of Lu=0.

5. Let D be a domain bounded by t=0, t=T $(0 < T \le \infty)$ and surfaces Γ_k , $0 \le k \le m$, Γ_0 being the outer boundary. Suppose further that the intersection of each Γ_k with $t=t_0$ $(0 \le t_0 < T)$ is a simple closed curve $\gamma_k(t_0)$ which belongs to $C^{(3)}$ and does not reduce to a single point. Write $u_{x_i} = \partial u/\partial x_i$, $u_t = \partial u/\partial t$. We shall consider the following problem P:

(9)
$$\sum_{i,j=1}^{n} a_{ij}(x,t) u_{x_i x_j} - u_t = c(x,t,u,\nabla u)$$

(where ∇u denotes the vector $\partial u/\partial x_i$),

(10)
$$\frac{\partial u}{\partial \tau} \equiv \sum_{i=1}^{n} \alpha_i(x, t) u_{x_i} + \alpha(x, t) u_t = \varphi(x, t, u) \quad (x, t) \in \Gamma = \sum_{k=0}^{m} \Gamma_k$$

(11)
$$u(x,0)=\phi(x) \text{ on } A \qquad \qquad A=\overline{D}\cap\{t=0\}$$

We make the following assumptions:

(a) $a_{ij}(x, t)$ is continuous in \overline{D} ; $c(x, t, u, \gamma u)$ and it first derivatives with respect to u, γu are continuous for $(x, t) \in \overline{D}$ and for all values of u, γu .

- (b) φ and $\partial \varphi/\partial u$ are continuous for all $(x, t) \in \Gamma$ and for all u.
- (c) $\alpha_i(x, t), \alpha(x, t)$ are continuous for $(x, t) \in \Gamma$; $\psi(x)$ is continuous in A.
- (d) (9) is parabolic in \bar{D} , that is, there exists a positive constant δ such that

(12)
$$\sum a_{i,j}(x,t)\xi_i\xi_j \geq \delta \sum \xi_i^2$$

holds for all real ξ and for all $(x, t) \in \overline{D}$.

(e) On each surface Γ_k $(k=0,1,\cdots,m)$ either all the directions $\tau=(\alpha_i,\alpha)$ are exterior or all are interior, and in the exterior case $\alpha \ge 0$ and the directions $(\alpha_i,0)$ are exterior while in the interior case $\alpha \le 0$ and the directions $(\alpha_i,0)$ are interior.

Denote by Σ the class of functions u(x, t) defined and continuous in \overline{D} and satisfying the following conditions:

- (α) $\partial u/\partial t$, $\partial u/\partial x_i$, $\partial^2 u/\partial x_i\partial x_j$ are continuous in D;
- (β) For every R > 0, $\partial u/\partial x_i$ is bounded in $D \cap \{|x|^2 + t^2 < R^2\}$.

THEOREM 3. Under the assumptions (a)—(e) the problem P cannot have two different solutions in the class Σ .

We shall need the following lemma.

LEMMA. There exists a function $\zeta(x)$ defined in A and having the following properties: (i) ζ has continuous first derivatives in A and continuous second derivatives in the interior of A; (ii) $\partial \zeta/\partial \nu = -1$ and $\partial \zeta/\partial \mu = 0$ on $\gamma_0(0), \dots, \gamma_m(0)$, where $\partial/\partial \nu$ and $\partial/\partial \mu$ denote the derivatives with respect to the interior normal and to any tangential direction, respectively.

PROOF OF THE LEMMA. It will be enough to construct a function $\chi_0(x)$ which is C'' in A, which vanishes in a neighborhood of $\gamma_i(0)$ (i=1, \cdots , m) and for which $\partial \chi_0/\partial \nu = -1$, $\partial \chi_0/\partial \mu = 0$ along $\gamma_0(0)$; constructing $\gamma_1(x)$ in a similar manher, we can then take $\zeta(x) = \sum \chi_1(x)$. Since $\gamma_0(0)$ belongs to $C^{(3)}$, the normals issuing from $\gamma_0(0)$ and inwardly directed cover in a one-to-one manner a small inner neighborhood of $\gamma_0(0)$, call it A_0 . To each point x in A_0 there corresponds a unique point x^0 on the boundary of $\gamma_0(0)$, such that x lies on the normal through x^0 . Denote by $\sigma(x)$ the distance $|x-x^0|$. It is elementary to show that $\sigma(x)$ has continuous second derivatives in A_0 . Denote by A_1 the domain $0 \le \sigma \le \varepsilon_0$, where $\varepsilon_0 > 0$ is small enough so that $A_1 \subset A_0$. The function

$$\chi_{\scriptscriptstyle 0}(x) = egin{cases} rac{1}{3arepsilon_{\scriptscriptstyle 0}^2} (arepsilon_{\scriptscriptstyle 0} - \sigma(x))^3 & ext{if} & x \in ar{A}_1 \ 0 & ext{if} & x \in A - A_1 \end{cases}$$

belongs to C'' in A and satisfies: $\partial \chi_0/\partial \nu = \partial \chi_0/\partial \sigma = -1$ and $\partial \chi_0/\partial \nu = 0$ on $\gamma_0(0)$, and χ_0 vanishes near $\gamma_k(0)$, $(1 \le k \le m)$; the proof is completed.

PROOF OF THEOREM 3. We first consider the case n>1. We may suppose that the vectors (α_i, α) are exterior directions on $\Gamma_0, \dots, \Gamma_q$ and that (α_i, α) are interior directions on $\Gamma_{q+1}, \dots, \Gamma_m$. Suppose now that u and v are two solutions in Σ of the problem P, and define w=v-u. Writing

$$C(x, t, u, v) = \int_{0}^{1} \frac{\partial}{\partial u} c(x, t, u + \lambda w, \nabla u + \lambda \nabla w) d\lambda$$

$$C_{i}(x, t, u, v) = \int_{0}^{1} \frac{\partial}{\partial u_{x_{i}}} c(x, t, u + \lambda w, \nabla u + \lambda \nabla w) d\lambda$$

$$\Phi(x, t, u, v) = \int_{0}^{1} \frac{\partial}{\partial u} \varphi(x, t, u + \lambda w) d\lambda$$

and using (9), (10) and (11), we obtain for w the following system:

$$\sum a_{ij} w_{x_i x_j} - w_t = Cw + \sum C_i w_{x_i}$$

(14)
$$\frac{\partial w}{\partial \tau} = \sum \alpha_i w_{x_i} + \alpha w_i = \Phi w$$

$$(15) w(x,0) = 0.$$

Substituting $w(x, t) = z(x, t) \exp(Kt + M\zeta(x))$, where $\zeta(x)$ is the function constructed in the lemma and K, M are constant to be determined later, we get for z the following system:

(14)
$$\frac{\partial z}{\partial \tau} = \sum \alpha_i z_{x_i} + \alpha z_i = -M \sum \alpha_i \zeta_{x_i} z - \alpha K z + \Phi z$$

$$z(x, 0) = 0.$$

If $0 \le k \le q$, $\alpha \ge 0$ and $\sum \alpha_i(x,0)\zeta_{x_i}(x) > 0$ on $\gamma_k(0)$, since the angle between the vectors (α_i) and grad ζ is $<\pi/2$. By continuity we get $\sum \alpha_i(x,t)\zeta_{x_i}(x) \ge \gamma > 0$ on $\gamma_k(t)$, provided $0 \le t \le T'$ and T' is sufficiently small. Hence, we can choose M sufficiently large such that

$$(16) -M \sum \alpha_i \zeta_{x_i} - \alpha K + \emptyset < 0$$

holds on $\gamma_k(t)$, provided $K \ge 0$ and $0 \le t \le T'$.

If $q+1 \le k \le m$, $\alpha \le 0$ and $\sum \alpha_i(x,0)\zeta_{x_i}(x) < 0$, since the angle between (α_i) and $-\operatorname{grad} \zeta$ is $<\pi/2$. Again, if $K \ge 0$ and M is sufficiently large, then

$$(17) -M \sum \alpha_i \zeta_x - \alpha K + \Phi > 0$$

on $\gamma_k(t)$, $0 \le t \le T'$.

Having fixed M, we now choose K sufficiently large so that the coefficient of z on the right side of (13') becomes positive in the domain $D_{T'}=D\cup\{0< t< T'\}$. We claim that $z\equiv 0$ in $D_{T'}$. Indeed, if this is not the case then, using (15') and the weak maximum principle [3; Th. 2] we conclude that z assumes either its positive maximum or its negative minimum on the boundary $\sum_{k=0}^m \gamma_k(t)$, $0 \le t \le T'$, of $D_{T'}$. It will be enough to consider the case in which z assumes its positive maximum at a point P^0 on $\gamma_k(t)$. If $0 \le k \le q$, then $\partial z/\partial \tau \ge 0$ since τ is outwardly directed. On the other hand, using (14') and (16) we get $\partial z/\partial \tau < 0$, which is a contradiction. If $q+1 \le k \le m$, then $\partial z/\partial \tau \le 0$ since τ is inwardly directed. On the other hand, using (14') and (17) we get $\partial z/\partial \tau > 0$ which is a contradiction. We have thus proved that $z \equiv w \equiv 0$ in $D_{T'}$. We can now apply a classical procedure of continuation and thus complete the proof of the theorem for the case n > 1.

In the case n=1, $\Gamma = \Gamma_0$ is composed of two curves Γ_{01} and Γ_{02} . Suppose Γ_{0k} intersects t=0 at a_k , $a_1 < a_2$. The function

$$\zeta(x) = \frac{(x-a_1)(x-a_2)}{a_2-a_1}$$

can be used in the preceding proof. Note that it is not necessary to make any assumptions on the smoothness of the curves F_{0k} .

REFERENCES

- 1. F. A. Ficken, *Uniqueness theorems for certain parabolic equations*, J. Rational Mechanics and Analysis, 1 (1952), 573-578.
- 2. E. Hopf, A remark on linear elliptic differential equations of second order, Proc. Amer. Math. Soc., 3 (1952), 791-793.
- 3. L. Nirenberg, A strong maximum principle for parabolic equations, Comm. Pure and Appl. Math., 6 (1953), 167-177.
- 4. O. A. Olainik, On properties of some boundary problems for equations of elliptic type, Mat. Sb. (N.S.), **30** (72) (1952), 695-702.

INDIANA UNIVERSITY