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Introduction. In [3] Nirenberg has proved maximum principles,
both weak and strong, for parabolic equations. In § 1 of this paper we
give a generalization of his strong maximum principle (Theorem 1).
Hopf [2] and Olainik [4] have proved that if Lu^O and I is a linear
elliptic operator of the second order, if the coefficient of u in L is non-
positive, and if u (^ const.) assumes its positive maximum at a point P J

(which necessarily belongs to the boundary) then duldis<0, where v is the
inwardly directed normal. In § 2 we extend this result to parabolic
operators (Theorem 2). A further discussion of the assumptions made
in Theorem 2 is given in § 3. Application of Theorem 2 to the Neu-
mann problem is given in § 4. In § 5 we apply the weak maximum
principle to prove a uniqueness theorem for certain nonlinear parabolic
equations with nonlinear boundary conditions, and thus extend the spe-
cial case considered by Ficken [1]. An even more special case arises in
the theory of diffusion (for references, see [1]).

1. Consider the operator

n c\2Ί, n p\Ί, fa.

(1) Lu^ Σ atJ(x, t)—°^- + Σ a%{x91)™^ +a(x, t)u-ύ^
«j=i oxiaxj ί-i dxt at

with a(x, t)^0. Here, (x, t) = (x19 , xn91) varies in the closure ϋ of a

given (w+l)-dimensional domain D. Assume that L is parabolic in D,

that is, for every real vector λΦO and for every (x, t) eD we have

All the coefficients of L are assumed to be continuous in D and u is as-
sumed to be continuous in Ύ) and to have a continuous ^-derivative and
continuous second ^-derivatives in D. From [3 Th. 5] it follows that,
under the above assumptions, if Lu^O and if u assumes its positive
maximum at an interior point P°, then u — const. in S(P°). Here, S(P°)
denotes the set of all points Q in D which can be connected to P° by
a simple continuous curve in D along which the coordinate t is non-de-
creasing from Q to P\ In the following theorem we consider the case
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in which P° is a boundary point of D. We may assume that P° is the
origin. Let t = φ(x) be the equation of the boundary of D near P°.
Assume that £=0 is the tangent hyperplane to the boundary of D at P°.
Therefore dφldXi\Po~0. Let D be on the side t<φ(x).

THEOREM 1. If Lu^O in D, if u assumes its positive maximum M
at P°, if

(2) lim υUf\Γ> — Q ; = lim V r/ (P) κ } <Q P e D
y £4 ^ 11111 — V/, Λ 11111 / j LλJijiJL I • ̂  \J JL ^ JL-'

and if

(3) 1 + Σ««- >0 φeC"

ίAe^ u~M in S(P°).

REMARK 1. Without making any use of (3) one can deduce the
following :

Put μΞΞlim sup u^ r ( P e ΰ ) , then μ^O since μ<0 will contradict

u(P°)^u(P). Letting P->P° in Lιι(P)^0 and using (2), we obtain λ +
a(P°)M-μ>0, from which it follows that Λ^O. Since, by (2), ^ 0 , we
conclude that Λ = 0. Hence a(Pd)M— /;Ξ>0, from which it follows that
μ^O and, therefore, (since μ^O) μ~0. We also get α(P3) = 0.

REMARK 2. The assumptions (2) and (3) can be verified if we assume
that φ(x)=o(\x\2) and that u belongs to C" in the closure of the domain
Fn {£<0}, where V is some neighborhood of P°. Indeed, by making an
appropriate orthogonal transformation we can assume that aij(P°)=δij.
By the mean value theorem we have

* u(x, t)-u(09 0)= Σ Xi—u(x, t) + t—u(x, t) .
dxi dt

Taking (x, t) e Dn Fπ {t<0} such that 11 \ =o(\x\) and noting that u(x, ί ) ^
w(0, 0), one can show that du(P°)ldXi=:Q. Noting that φ(x)—o(\x\2) and
expanding [u(x, t)—u(0, 0)] in terms of the first and second derivatives
of u, one can show that dhί(P0)ldxt

2<Ξ,09 and (2) is thereby proved. The
proof of (3) is immediate.

PROOF OF THEOREM 1. For simplicity we shall prove the theorem
only in case n — 1 the proof of the general case is analogous. Lu takes
the form

(4) Lu^A-^+a^+cu-^ c^0, A>0 .
dxι dx dt
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From the strong maximum principle [3 Th. 5] it follows that all we
need to prove is that u(P)=M if P e V'nS(P°) where V is some neigh-
borhood of P°.

There are two possibilities : Either there exists a sequence {Pk}
such that P* e S(P°), Pfc -> P°,u(Pk)=M, or there exists a neighborhood
F={# 2 +f<# 2 } of P° such that u(P)<M for all P e VnS(P°), PφP\
In the first case we can use [3 Th. 5] to conclude that u(P)=M if
Pe V'nS(P°) where V is some neighborhood of P° (since u(P)=M for
all PeS(P*)).

It remains therefore to consider the case in which u(P)<M for all
Pe VnS(P°), PΦP°. We shall prove that this case cannot occur by
deriving a contradiction. Writing

we define a domain Dδ (<5>0) as the intersection of S(P°) with the set of
points (x, t) in V for which

If K<0 then, because of (3), we can choose δ sufficiently small such
that

(5) 1 + A^O*OU>0 .
dx2

If K^O, we can obviously take δ such that K— δ<0 and such that (5)
holds.
We now can take R sufficiently small such that ^(#)<min(0, ψ(x)) for
all (x,t) in DB, xΦO. Consequently, u(x,t)<M if t = φ(%), x=£θ. The
function h(xyt)—~t + φ(x) vanishes on t — φ(x) and is positive in D8.
Therefore, if ε>0 is sufficiently small, then v~u + eh is smaller than M
at all points on the boundary of Dδ with the exception of P°, where
v(PQ)—M. Noting that ^'(0) = 0 and using (5), we conclude that

if R has been chosen sufficiently small. Hence, Lv=Lu+εLh>0. It
follows that v cannot assume its positive maximum at interior points of
D8 and, therefore, it assumes its maximum M at P°. We thus obtain
dvjdt>0 at P° and, consequently,

θt dt dt

(Here

liminf
dt f-o — t
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On the other hand, letting in (4) P -> P° in an appropriate way and
using (2) and the inequality Lu(P)^0, we get

lim a(P) dvJ^- +C(PQ)M - l i m s u p — ( - Ώ ^
dx dt

+ lim a(P) +(P)M lim sup
dx2 dx dt

dt

We have thus obtained

lim sup du{P)jdt ^ 0 < ε £ dujdt.

This is however a contradiction (since

du
dt ~ p^pO dt

for an appropriate sequence {£&}), and the proof is completed.

REMARK (a) Consider the following example: n = l, P° = (0, 0) and
D defined by

x2 + t2<R, £<7Ί#, t<γ2x

The function u(x, ί) = (ί —Γi^K^^—0 satisfies the following proper-
ties: w<0 in DjU = Q at P°, and

9ί

provided R is sufficiently small. Consequently, (3) and the second assump-
tion in (2) are not satisfied and also the assertion of Theorem 1 is false.

REMARK (b). Consider now the case in which the tangent hyper-
plane at P° is not of the form t — const.. We shall prove that in this
case Theorem 1 is false. Take n — \ and consider first the case in which
D is defined by

If Lu^^d2uldx2—duldtf then the function u(x,t)=—x takes its maximum

in D at P°=(0, 0), Lu = 0, but uφO in S(P°).

Consider next the case in which D is defined by

x>at,

and take Lu — θ2uldx2~aduldx—duldt.
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The transformation tr — t,x''—x—at carries the present case into the
previous one.

Note that if the tangent hyperplane H at P° is not the plane t — 0
and the axes are rotated so as to give H the equation £' = 0 (in new x\
t! coordinate), then Lu loses the form (1), for ux,t, and uvt, will appear
in it.

REMARK (C). If in Theorem 1 the domain D is on the side t>φ(x),
then the theorem is false. Indeed, as a counter-example take u=—t,
and D bounded from below by t — 0.

2. Consider the linear operator

L'u^ Σ aυ(x, t)-^- + Σ bi}(x, t) -?>-- + Σ <x, t) du-

(6)

+ Σ &.O> ί) ~+a(x, t)u a(x, ί)^0,
* 9ί

where x = (^:,
 # ,^w) and t — (tu •••,£,„) vary in the closure of a given

(?z+m)-dimensional domain D. We assume that Lr is elliptic in the
variables x and parabolic in the variables t, that is, for every real
vector λΦθ,

(7) Σ ^ M X), ΣMA^o.

All the coefficients appearing in (6) are assumed to be continuous in D

and u is assumed to be continuous in D and to have a continuous t-
derivative and continuous second ^-derivatives in D. Under these as-
sumptions, Nirenberg [3 Th. 2] has proved a weak maximum principle
from which it follows that, if Πu^.0 in D then u must assume its posi-
tive maximum on the boundary.

Let P° = (α°, t°) be a point on the boundary of D such that u(P°) =

ikf>0 is the maximum of u in D. Assume that there exists a neighbor-
hood V: \x-x°\2+\t~-t°\2<R2o of P° such that u(x,t)<M in VdD. We
then can prove the following theorem.

THEOREM 2. If there exists a sphere S: \ x—xf |2 +11 — t' |2 < R2 passing
through P° and contained in D, and if x°φx; then, under the assump-
tions made above {in particular, L'w^O, 6̂(̂ , ̂ )<Λί in Vc\D), every non-
tangential derivative dujdτ at (x°, t°)y understood as the limit inferior
of Δu Δτ along a non-tangential direction τ, is negative.

By a non-tangential direction we mean a direction from P° into the
interior of the sphere S
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REMARK (a). If a(x, t)=Q then the assumption M>0 is superflous.

REMARK (b). In § 3 we shall show that the assumption x°Φxr is es-
sential. We shall also discuss the case in which u(x, t) is not smaller
than M at all the points of VriD.

Proof. For simplicity we give the proof in the case m — n — 1, so
that

(8) Lfu=A^+B^+a^ + b^- + σu A>0, B>0, c<0;
dx2 dtf dx dt ~

the proof of the general case is quite similar. Without loss of genera-
lity we can take (x'f t') — (0, 0) and #°>0. Furthermore, we may assume
that, with the exception of P°, S lies in FnZ), so that u(x,t)<M in
S—P°. Denote by C the intersection of S with the plane x>δ, where
0<δ<x\ The function

k(x, ί)= exp(—a(#2+f))—exp( —aR2)

satisfies the following properties : ft=0 on the boundary of S, k^>0 in
C; if a is large enough, then

Uh=exv(~a(x2+t2))[4:a2(Ax2+Bf)-2a(A+B+ax+bt)+c]

-cexp(-αβ2)>0.

(Here we used x>δ>0,
If ε is sufficiently small, then the function v—u + eh is smaller than

M at all points of the boundary of C with the exception of P°, where
v(P°) = M. Since Uv—Uu + εUhyQ, v cannot assume its positive maxi-
mum in C at the interior of C (since, otherwise, at such interior points
L'v would be non-positive). Hence, v assumes its maximum at P° and,
consequently, 9v/9r=lim inf (ΔvjΔτ)<L§. Since along the normal v (i.e.,
along the radius through P°) dh/dv>0 and since along the tangential
direction σ dhldσ — §, it follows that dhldτ>0. Using the definition of v,
we conclude that dujdτ=:dvldτ—εdhldτ<Of and the proof is completed.

Added in proof. Theorem 2 was recently and independently proved
also by R. Viborni, On properties of solutions of some boundary value
problems for equations of parabolic type, Doklody Akad. Nauk SSSR,
117 (1957), 563-565.

3. From now on we shall consider only parabolic operators of the
form (1). Suppose the assumption u<M in 7 n β , made in Theorem 2,
is replaced by u^M. If there exists a sequence of points {P*} such
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that Pk-+P\ PkeD, Pk = {xk, tk) and tk^t\ u{Pk)=M, then, by [3 Th. 5],
u=M in S(Pk). Hence, if the boundary of D near P° is sufficiently
smooth, u=M in some set V'n D where V is some neighborhood of P°.
Consequently dujdτ — 0 for every τ.

If u(P)^M for all PeVnD, if u(P) is not strictly smaller than M
for all Pe VnD, PΦP0, and if the previous situation does not arise, then
one and only one of the following cases must occur:

( i ) u<M at all points (x, t) in VnD with t^t°. Using [3; Th. 5]
one can easily conclude that there exists a neighborhood V of P such
that u<M in 7 ' n β , and Theorem 2 remains true.

(ii) u<M at all points (a?, £) in VnD with £>£0 and w=M at all
points (x,t) in VnD with /,Ξ>£0. We then consider only those directions
r along which u<M. We claim that Theorem 2 is not true for the pre-
sent situation. To prove this, consider the following simple counter-
example :

po — (o m M—() T —®2u_®u ( /Λ__f~£2 if £>0
θx* dt ' ' 1 0 if £<0 .

w satisfies Lu^O and assumes its maximum 0 for ί^O. But, the
derivative du\dτ at P° = (0, 0), along any direction τ, is zero.

As another counter-example (with Lu — 0) one can take a fundamen-
tal solution of the heat equation.

Note that the preceding counter-examples are valid without any
assumptions on the behavior of the boundary of D near P°.

We shall now consider the case x ^ x 0 which was excluded by the
assumptions of Theorem 2. We shall assume that at P° = (0, 0) there
passes a tangent hyperplane t — 0. If D is above this hyperplane, then
the preceding counter-examples show that Theorem 2 is not true. It
remains to consider the case in which D is "essentially" below t = 0,
that is, if we denote by t = φ(x) the equation of the boundary of D near
P°, then D is on the side t<φ(x). In this case, however, Theorem 1
tells us that in general we cannot assume both ^(P0)=max u(P)>0

(PeD) and u<u(P°) in VnD.
The example in § 1 Remark (a) can also serve as a counter-example

to Theorem 2 in case P° is a vertex-point. Indeed, along the ^-direction

du
dt dt

= 0

By a small modification of this counter-example one can get a
counter-example to the analogue of Theorem 2 for elliptic operators [2]
[4] in case P° is a vertex. Indeed, define D by

y<γλx,
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and take Lu—d^uldx^+Ad^uldy2, where A>\γλγ2\. The function u(x,y) =
(y—Tιx)(y—ϊ^x) satisfies : u<0 in D,u = Q at the origin, Lu=2rj2+2A>0.
But along any direction τ within D, duldτ\x=Q)y=0 = 0.

4. Let D be a domain bounded by the two hyperplanes t — 0f t —
T>0 and a surface B between them. Assume that the intersection

{t — T} nD is the closure of an open set on t — Tf and denote by A the
boundary of ΰ on ί = 0. The Neumann problem for the parabolic equa-
tion Lu=0 consists in finding a solution to the equation Lu — 0 which
satisfies the following initial and boundary conditions :

u—f on A, ——g on B
dv

(/, g are given functions).

From Theorem 2 and from the strong maximum principle [3 Th. 5] we

conclude: If for every point P° = (#°, t°) of B ( i ) there exists α sphere with

center {x\t')y x'Φx*, passing through P° and contained in D, and (ii)

S(P°) contains interior points of A, then the Neumann problem has at
most one solution. Clearly, this uniqueness property holds also for the
more general problem where du\dv is replaced by du\dτ and τ is a non-
tangential direction which varies on B.

As another application to Theorem 2, one can deduce the positivity
of dGldv, where G is the Green's function of Lu = 0.

5. Let flbea domain bounded by ί = 0, t = T(0<T£^) and sur-
faces ΓjoO^k^m, Γo being the outer boundary. Suppose further that
the intersection of each Γk with t — t0 (O^to<T) is a simple closed curve
γk(td) which belongs to C(3) and does not reduce to a single point. Write
uXt=dulθxt,ut = duldt. We shall consider the following problem P:

n

( 9 ) Σ 0u(#, t)ux.x—ut=c(x, t, u, pu)

(where ψu denotes the vector

fill n m

(10) °^~ = Σ oLt(x, t)ux.+a(x, t)ut = φ(x, t, u) (a?, t) e Γ = Σ Γ*

(11) u(z, 0) = ψ(x) on A A=DΓ\ {t = Q}

We make the following assumptions :

( a ) atJ(x, t) is continuous in D c(x, t, u, yu) and it first derivatives

with respect to u, pu are continuous for (x, t)e D and for all values
of u, ψu.
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( b ) φ and dφjdu are continuous for all (x, t)e Γ and for all u.
( c ) at{x, t), a(x, t) are continuous for (x, t)e Γ ψ{χ) is continuous in A.

( d ) (9) is parabolic in D, t h a t is, there exists a positive constant d
such that

holds for all real ξ and for all (a?, t) e D.
(e ) On each surface Γk (k — 0f 1, , m) either all the directions τ=(aif

a) are exterior or all are interior, and in the exterior case αΞ>0 and
the directions (aίf 0) are exterior while in the interior case <x<.0

and the directions (at9 0) are interior.

Denote by Σ the class of functions u(x, t) defined and continuous

in D and satisfying the following conditions :

(a) dujdt, dujdxl9 d'u/dxβxj are continuous in D

(β) For every R>09du/dxt is bounded in Dn {\x[z + t2<R2}.

THEOREM 3. Under the assumptions (a) —(e) the problem P cannot
have two different solutions in the class Σ

We shall need the following lemma.

LEMMA. There exists a function ζ(x) defined in A and having the
following properties : ( i ) ζ has continuous first derivatives in A and con-
tinuous second derivatives in the interior of A (ii) dζjdv— —1 and dζjdμ — ύ
on 7Ό(0), , rTO(0), where d\dv and d\dμ denote the derivatives with respect
to the interior normal and to any tangential direction, respectively.

PROOF OF THE LEMMA. It will be enough to construct a function
Xo(x) which is C" in A, which vanishes in a neighborhood of ^(0) (i = l,
• , m) and for which 0χo/9y=—1, dχJdμ = Q along ro(O) constructing
7Ί(#) in a similar manher, we can then take C(a?) = ΣZi(^) Since 7Ό(0)
belongs to C(3\ the normals issuing from γo(O) and inwardly directed
cover in a one-to-one manner a small inner neighborhood of TΌ(O), call it
AQ. To each point x in AQ there corresponds a unique point xl] on the
boundary of TΌ(O), such that x lies on the normal through x\ Denote
by σ(x) the distance |α?—a?°|. It is elementary to show that σ(x) has
continuous second derivatives in AQ. Denote by A1 the domain 0^σ^ε 0 ,
where εo>O is small enough so that Aλ(zA^ The function

0 if xeA-Aι

belongs to C" in A and satisfies: dχoldv = dχQldσ=-l and dχoldv = O on
7Ό(O), and χQ vanishes near rfc(0), (l^fc^m) the proof is completed.
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PROOF OF THEOREM 3. We first consider the case n>l. We may
suppose that the vectors (au a) are exterior directions on ΓQ, , Γq and
that {at9 a) are interior directions on Γa+lf * , Γ m . Suppose now that
u and v are two solutions in Σ of the problem P, and define w—v—u.
Writing

51 Q
—c(x, t, u + λWy \7u+λpw)dλ

odu

SI Q
c(x, t, u + λw,

odux.

S i Q
φ(χ9 t,

odu

and using (9), (10) and (11), we obtain for w the following system :

(13) ΣflijWvfj—Wt

(14) — == Σ<xiwX{+awt = Φw
dτ i

(15) w(α,0) = 0 .

Substituting ιυ(xft)=z(xft)exj)(Kt+Mζ(x)), where ζ(x) is the function
constructed in the lemma and K, M are constant to be determined later,
we get for z the following system :

(13') Σ<MVj-S '=

(14) —
dτ

(15')

If O^&gg, a>0 and Y^a^x, 0)ζ<ct(x)>0 on ^(0), since the angle between
the vectors (at) and grad ζ is <7r/2. By continuity we get Σai(χi £)C*t(a0^
^>>0 on rfc(t), provided O^t^T and T ; is sufficiently small. Hence, we
can choose M sufficiently large such that

(16)

holds on γk(t), provided K^O and

If g + l ^ f c ^ m , α ^ 0 and Σai(%,fyζχ.{%)<Q> since the angle between
(oct) and —grad ζ is <7r/2. Again, if K^>0 and Λf is sufficiently large,
then

(17)
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on r*(£), O^t^T'.
Having fixed M, we now choose K sufficiently large so that the

coefficient of z on the right side of (13') becomes positive in the domain
Dτ,^Du {0<t<T'}. We claim that z=0 in Dτ,. Indeed, if this is not
the case then, using (15') and the weak maximum principle [3 Th. 2]
we conclude that z assumes either its positive maximum or its

negative minimum on the boundary Σ7*(ί)> O^ί^T", of Dτ,. It will be

enough to consider the case in which z assumes its positive maximum
at a point P° on γk(t). If 0<^k^q, then dz/dr^O since τ is outwardly
directed. On the other hand, using (14') and (16) we get dzldτ<0,
which is a contradiction. If g + l g ά ^ m , then dz/dr^O since τ is in-
wardly directed. On the other hand, using (14') and (17) we get
dzldτ>0 which is a contradiction. We have thus proved that z=w~Q
in DTr. We can now apply a classical procedure of continuation and
thus complete the proof of the theorem for the case n>l.

In the case n=l, Γ~Γ0 is composed of two curves ΓQ1 aud Γ02.
Suppose ΓQk intersects £ = 0 at akf aL<a.z. The function

£(X)- (x-a>ι)(x-<h)

can be used in the preceding proof. Note that it is not necessary to
make any assumptions on the smoothness of the curves FOk.

REFERENCES

1. F. A. Ficken, Uniqueness theorems for certain parabolic equations, J. Rational Me-
chanics and Analysis, 1 (1952), 573-578.
2. E. Hopf, A remark on linear elliptic differential equations of second order, Proc.
Amer. Math. Soc, 3 (1952), 791-793.
3. L. Nirenberg, A strong maximum principle for parabolic equations, Comm. Pure and
Appl. Math., 6 (1953), 167-177.
4. O. A. Olainik, On properties of some boundary problems for equations of elliptic type,
Mat. Sb. (N.S.), 30 (72) (1952), 695-702.

INDIANA UNIVERSITY






