NEW BOUNDS FOR SOLUTIONS OF SECOND ORDER
ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

L. E. PAYNE AND H. F. WEINBERGER

1. Introduction In a previous paper [10] the authors presented
methods for determining, with arbitrary and known aceuracy, the Dirichlet
integral and the value at a point of a solution of Laplace’s equation.
These methods have the advantage that upper and lower bounds are
computed simultaneously. Moreover all error estimates are in terms of
quadratic functionals of an arbitrary function, so that the Rayleigh-Ritz
technique gives a systematic way of making the error arbitrarily small.
These methods depend on an identity of F. Rellich [12]. As a consequence
it is necessary to assume that the boundary is star-shaped with respect
to some point, and it is not possible to treat differential equations with
variable coefficients by these methods.

In this paper a generalization of Rellich’s 1dent1ty to general second
order elliptic operators as well as to a large class of elliptic systems of
second order operators is employed to extend the results of the previous
paper to equations involving such operators and rather general domains.

The identity in question was obtained and used for hyperbolic oper-
ators by L. Hormander [7] who, in a mimeographed note kindly com-
municated to the authors, has independently obtained therefrom some
estimates for boundary values of the solution of a second order elliptic
equation.

It is interesting to note the similarity in structure of the identity
(2.4) and the formula for the first variation of Green’s function for
du-pu given by Garabedian and Schiffer [6].

For the sake of simplicity only the case of a self-adjoint second
order operator without zero order terms is treated in detail. However
the method is easily extended to more general operators, and even sys-
tems, as is shown in §86 and 7.

Section 2 is concerned with the above-mentioned identity. In §3 this
identity is used to estimate several important quadratic functionals (in-
cluding the generalized Dirichlet integral) in terms of Dirichlet data for
a general non-homogeneous boundary value problem in N dimensions.
We obtain an approximation to the generalized Dirichlet integral by
means of a specific functional of an arbitrarily chosen function. The
error estimate is a quadratic functional in the deviation of the Dirichlet
data of the arbitrary function from the given data, and can be made
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small by a Rayleigh-Ritz technique. The previous paper [10] treated
only Laplace’s equation of which many solutions are known, so that the
arbitrary function could be assumed to satisfy the differential equation.
Here, however, a general differential equation is treated. Therefore pro-
vision must be made for errors of the arbitrary function both in the
differential equation and in the boundary values, and the error estimate
is a quadratic functional in both of these. This estimate can be useful
even in the case of the Laplace operator when the domain or the Dirichlet
data are such that it is inconvenient to work with harmonic functions.

Even in the special case treated in the previous paper, that is, when
the equation is Laplace’s equation, the domain is star-shaped, and the
arbitrary function is taken to be harmonie, the estimate (3.29) represents
an improvement over the estimate (3.15) of [10]. The same statements
apply to 84, where the value of the solution of a Dirichlet problem at
an arbitrary interior point is given.

In §5 similar estimates are derived for the exterior mixed boundary
value problem in three or more dimensions. Here the inequalities (5.10)
and (5.11) are basic, both to the estimate of the Dirichlet integral and
to the pointwise approximation of the function. In those Neumann prob-
lems which could be treated in the previous paper, the present method
represents a great simplification. In fact, the treatment of Neumann’s
problem is rendered simpler than that of Dirichlet’s problem. Unfor-
tunately, the occurrence of a zero eigenvalue prevents our results from
being extended to the interior Neumann problem.

Section 6 sketches the extension of all these results to non-self-
adjoint second order equations. In §7 these extensions are carried to a class
of elliptic systems of second order differential equations. This extension
permits the treatment of the first boundary value problem, the exterior
second boundary value problem, as well as certain mixed problems of
the classical theory of elasticity [13].

The treatment of the mixed boundary value problems is an exten-
sion of the results of the report [11] upon which this paper is based.

2. An integral identity. We consider the operator
(2.1) Au) = (a¥u,,),; , x=(a' -, ")

on a domain D of Euclidean N-space. The summation convention will
be used throughout this paper. The symbol ; indicates partial differenti-
ation with respect to z'. The components of the symmetric matrix
a'(x) are taken to be piecewise continuously differentiable functions in D.
We assume the existence of two positive constants a, and a,, such that
for all numbers (&, ---,&,) and all  in D

(2.2) 0> 8 < 0%, S a, HES



NEW BOUNDS FOR SOLUTIONS OF SECOND ORDER ELLIPTIC 553

It can be shown by direct differentiation that for any piecewise con-
tinuously differentiable functions f* (), ---, /()

2.3)  ([fa” —j'a™ — fla™Tuu ;) + 2%, Ww)
= [Fia¥ — fra¥ — fila* + ffaiTuu,; .

We integrate this identity over D and apply the divergence theorem to
the left-hand side. The result is

(2.4) f Lftat — fla® — fIa™u u mdS = — “ Fiu, Aw)dV

+ iz = riars - pia + ol ,av .
D

Here B is the boundary of D, n, is a Euclidean unit outward normal
vector (334 mi = 1), and dS and dV are Euclidean elements of area and
volume.

An identity equivalent to (2.4) has been given by Hoérmander [7].
In the special case where (u) is the Laplace operator and f! = af, the
identity reduces to that of Rellich [12].

The usual Green’s identity for A(u) is

(2.5) ﬁju W)V + Afu] = § " %%ds ,

where we define the generalized Dirichlet integral

(2.6) Alul = Sga“u,iu,jdV
D

and the conormal derivative

(2.7) *au = LI/UZL’,;’)’LJ .

Y

We decompose the derivatives of u appearing in the boundary in-
tegral of (2.4) into conormal and tangential derivatives. To this effect,
we note that the vector

(2.8) T = a”[u,z - —%Zi(n /a“’%mq)]
Vv

is orthogonal to m;, and hence is a tangent vector. In fact, it is the pro-
jection into the tangent plane of the contravariant gradient of u. We
introduce the inverse matrix a;, of &/, and renormalize by setting

D 1/2
2.9 # = Tf[ @ f’”ﬂ’?q,]
(2.9) O T
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so that
(2.10) a ittt = ann, =n .

(This defines the function n on B).
The directional derivative

ou
2.11 == = u
(2.11) v "

is in a tangential direction. Furthermore it follows from (2.8) and (2.9)
and the fact that u T/ = a,,T*T’ that

Vi g, = n- 9&)2 a_uﬂ
(2.12) A, =m [( Y 4 ( o
and
(2.13) flu, = n-l[ﬁnﬁl + a“fitfal] :
ov ot

Then (2.4) may be written as

(2.14) f n-l[,fknk{@_’i)z - (al)z} — 2a,, 74 0% "’_“]ds

ot ov oy 0t
S 2“f*u,g>1(u)dv + Sg[f,;ga“ _ fla® — fla® 4 fia Pl AV .
D D

This identity is fundamental to our estimates in the Dirichlet prob-
lem,

3. Bounds for quadratic functions in Dirichlet’s problem.

(a) Homogeneous boundary conditions.

Let u(x) be a function satisfying
3.1 u=20 on B,

with A(») given in D.

We first bound the generalized Dirichlet integral A[u] defined by
(2.6). Noting that the right-hand side of (2.5) vanishes, we have by
Schwarz’s inequality

(3.2) (Au]) < “wd VSS[?I(u)]ZdV.

D

In order to bound the integral of u* we use the lowest eigenvalue 1, of
the fixed membrane problem
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3.3) dp + 2o =0 in D
¢ =0 on B.

It is well known [1] that since ¥ = 0 on B.

(3.4) Huzdv < % SS S (. ydV .

1=1
D

Thus, from (2.2) it follows that

(3.5) SDSuZdVg 11 Al] .

0”1

Hence, by (3.2) we find the bound

12 SS[%[(u)]ﬂdV.

(L S

(3.6) - Alu] =

From (3.5) we also have the bound

(3.7) Sjuﬁd V< }ZL SS[EJI(u)]Zd V.

T

A lower bound for A, is easily obtained. For example the isoperi-
metric inequality of Faber [4] and Krahn [9] states that A, is at least
as large as the lowest fixed membrane eigenvalue of a sphere of the
same volume ag that of D.

We now seek a bound for § (Oufov)dS. By (3.1) ou/ot = 0 on B, and
B

the left-hand side of (2.14) reduces to a single term.

We choose the vector field f* in such a way that f* n, is bounded and has
a positive minimum on B. For example, if B is star-shaped with respect
to the origin, one can take f* = a%. If D is a region between two sur-
faces that are star-shaped with respect to the origin, and if D contains
the spherical shell of radius r, one can take f* = z* (r — 7).

Because of the fact that o'/ is positive definite, there exists a con-

stant ¢ such that

(3.8) —[fla" — flia® — fila* + frailuu; < catlu u,

throughout D. (¢ is any upper bound for the largest eigenvalue of the
coefficient matrix on the left with respect to a¥).
From (2.14) together with (2.5) and (3.8) follows the inequality

(3.9) f -1 fn, (%%)st < H[z Fiu, — cl(w)dV .

D

Thus by Schwarz’s inequality we have
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(3.10) [ f - < ou ) ds] Sg[z Fiu, — oufd VSS[?I(u)]"d V.

Application of the triangle inequality and Schwarz’s inequality as
well as (3.6) and (3.7) yields

(3.11) | “[2 Fiu, = eubdV | < 2maxfa P AB + c[“u“d V]”Z

< {2max [a{;ﬂi{lﬁ]w T }{Sj[%(u)]’dv}w

If we first integrate the left-hand side of (3.11) by parts and then apply
the same inequalities, we arrive at an inequality similar to (3.11) but
with the first factor of the second line on the right replaced by

/
[max afft L (2max fi 4 ¢) jl” .
ol aAl

Thus we have

(3.12) f nt %‘: Jas = KSS[%I(u)]ZdV

where
3.13) K= 7%7 [4 max(a,,f*fmi, + ¢ + 2¢inf{maxf},

ks max(wufif’)]llz}]llz .

Hence we have finally

(3.14) § (%ﬁ)zds < K )SS[%I(u)]”dV .

min(n='f*n
(b) Homogeneous differential equation.
Let v(x) be a solution of
(3.15) Aw)=0in D

and let v be a given piecewise continuously differentiable function on
B.
Upon use of (3.8) and (2.5) the identity (2.14) gives

020~ (1) - (7)o 30 s < efo s

We again choose f* in such a way that f* n, has a positive lower bound
on B. Completing the square in (3.16) yields
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- a;, ftt? ov cenv |
G170 Jroom 5w szcm]ds

< frlrm(G)+ Aol - s

In order to estimate A[v] we rewrite the Green’s identity (2.5) as

B

(3.18) Afv] + f oy (a2 w_om Y

" 62 _ cnv
i AN T N
§ 6” Sy 3 )

Applying Schwarz’s inequality and (3.17) yields

@19) {41+ § o (arr 2% — 22 as}

G e ¥

o fknlc nfrn,

ds .

B

All the quantities other than A[v] occurring in this inequality can be
computed and are small if the given boundary value of v and its gradient
are small in a mean square sense.

In order to compute the quantities (9v/0t)* and a,f*t’ov/6t, we recall
that they depend only on the given values of v on B. Let v be a fune-
tion defined in a neighborhood of B, and coinciding with v on B (that
is, an extension into D of the given boundary values). Then by the
definitions (2.12) and (2.13)

(3.20) (O0/o8) = (95/08) = nas 5., — (g"’)

. OV — ;. 0V
a,f it —=nfv;, — fin,——
of ot foa=r1 oy

(¢) Approximation in the general problem.

Let w be the solution of an arbitrary Dirichlet problem. That is,
WA(w) is given in D and w is a given piecewise continuously differentiable
function on the boundary B.

We approximate w by a twice differentiable function ¢ in the sense
that 2(¢) approximates 2A(w) and the boundary values of ¢ approximate
those of w. We shall show how to estimate A[w] from a knowledge of
the function ¢ and the degree of approximation of the given data.
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The triangle inequality states that
(3.21) {Alel}'* — {Alw — ¢]}'" < {A[w]}" = {Ale]}'* + {Alw — ¢]}" .

Since A[¢] can be computed explicitly, it is only necessary to bound
Alw — ¢]. It follows from the existence theorem for the Dirichlet prob-
lem that one can write w — ¢ in the form

(3.22) wW—@¢=u-+v
where

(3.23) u=0 on B

and

(3.24) Aw) =0 in D.
Furthermore,

(3.25) v=w—¢ on B

and

(3.26) WA(u) = Ww) — A(¢) in D.

These quantities are known explicitly. It follows from (2.5) and
Green’s second identity

. ov _ | 0u
(3.27) Sj[u%[(v) — Aw)dV = i [uva; v—aj:ldS
that
(3.38) Alw — ¢] = Alu] + Alv] .

Hence we need only use the estimates (3.6) and (3.19) together with
(3.25) and (3.26) to find

L) — ateyrav

[USF I

(3.29) Alw — ¢] <

n(w — ¢)
+ f MO as

(I:f"nk —%(w—ga)]z + [ai,fitf ?% (w — ¢) — g@z;g)*]z) 172

% § nf*n, S

B

_ @9 1 9y — ) — MW = @)
i o, [auf e Gl ) 2 ]dS .
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Here f* is again a vector field that points outward on B, and ¢ is de-
termined by both ¢ and f* in the inequality (3.8).

The right-hand side of (8.29) can be computed explicitly. If 2(¢)
approximates 2(w) in mean square, and if ¢ and its tangential gradient
on B approximate w and its tangential gradient, then the bound for
Alw — ¢] is small, and (3.21) gives close upper and lower bounds for
Alw]. From the computational point of view, it is easier to make
a quadratic form small. Consequently, we replace (3.29) by the slightly
worse estimate

(3.30) Alw — ¢] <

L {2t — weyrav

(ol

+ § e P+ s ] Do — )]
— (e -+ D w ~ ¢) D w — ¢) + (ﬁ" R ﬂ>n(w — oyfas .

Here f is an arbitrary positive constant. The optimum value of 3 yields
(3.29) again. If, however, we fix f, the right-hand side of (3.30) is a
quadratic form in (w — ¢). Thus we can take for ¢ an undetermined
linear combination

&
(3.31) ¢ = g; b,

where the ¢; are arbitrary functions. The right-hand side of (3.30) is
then a non-homogeneous quadratic form in the coefficients b,, so that
minimization with respect to the b, reduces to inverting a k by k ma-
trix. This is just the well-known Rayleigh-Ritz method.

Improved bounds can be obtained when either the differential equa-
tion or the boundary condition is homogeneous. For example, let w
satisfy

(3.32) Aw) =0.

Then if we choose ¢ to satisfy the same equation
(3.33) W) =0

we find the identity

(3.34) Alw] =2 § w %ds — Alg] — Alw — ¢] .

All but the last term on the right can be computed explicitly. The fact
that A[w — ¢] is non-negative gives a lower bound for A[w] (this is just
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Thomson’s principle). The inequality (3.29) or (3.30) yields an upper
bound. The error term is homogeneous of degree two (rather than one
as in (3.21)) in the boundary values of w — ¢ and 8/0t (w — ¢).

A similar situation occurs if we take ¢ to satisfy

(3.35) ¢=w on B.
In this case we have the identity
(3.36) Alw] = Al¢] — Alw — ¢] .

The upper bound is just Dirichlet’s principle, while a lower bound is
obtained with the aid of (3.29) or (3.30). Again, the error term is of
degree two in w — ¢. Such a result also occurs when

(3.37) w=0 on B,

and ¢ is chosen to satisfy either the differential equation or the boundary
condition.

In the special case in which 9 is the Laplace operator a number of
methods for obtaining bounds in harmonic problems have been proposed
(see in particular Diaz [2], and the papers referred to in the bibliogra-
phies of [2] and [10]).

4. TPointwise bounds in Dirichlet’s problems. We now give bounds
for the value at an interior point p ~ (z}, ---, xy) of the solution w
of a Dirichlet problem. As in section (3c), we suppose that A(w) is given
in D and the value of w itself is given on the boundary B.

We again consider the arbitrary funection ¢ which is chosen so that
A(¢) is close to AWw) and the values of ¢ on B are close to those of w.
We shall approximate the value of w at p not by ¢(p), but by a funec-
tional depending only on ¢ and the given data for w.

For this purpose we first introduce the function I",(x) having the
following properties':

(a) At all points of D except p, I',(x) is twice continuously dif-

ferentiable, so that A(I",) is continuous except at p;

N-1
(b) [lﬁ (@ — x;)]“f[%t(rp)y is integrable over D;
(4.1)
(¢) I, is singular at P in such a manner that if S, is a sphere of
radius p centered at P, lim j; ?élzfidS =1
Y
Sp

p—0
where 9/0v is the outward conormal derivative.

1 As pointed out by J. B. Diaz the function I'p is the so called ¢ parametrix’’ intro-
duced by E. E. Levi, (Rend. Circ Mat. Palermo 24 (1907), 275-317).
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If A(7",) =0, ', is just a fundamental solution. However, such
a function may be quite difficult to construct. On the other hand, one
can always take

4.2)
41ﬂ |a(a,) | log {ay (@)@ — )@’ — @)} for N = 2
F,,(x) - 1 1/2f j J ( ) £ N
| 2 gy e et = wige = ap) ) tor N> 2

where ¢ is the determinant of «;;,, and wy is the surface of the N-
dimensional unit sphere.

By means of Green’s identity (3.27) we find the representation
@) w) = el) = || (1L020) = Ae)] = (0 = AL )Y
D
ol 0
—) % Y  — .
+ i{(w ) % v, (w sv)}dS

In order to bound the last term on the right, we again write w — ¢ =
u + v, where v =0 on B and (v) = 0. Then

(4.4) § r, (w — ¢)dS + § [ Ufzttwr =)= % w- go)]dS

_§p { ((szf 28 at—chJdS §1 ou ds |

where f* and t* have the same significance as in section 8b. Since u = 0
on B,v=w — ¢ and 9v/dt = 0/0l (w — ¢) on B, the second term on the
left is known. We subtract this term from both sides of (4.3), trans-
pose the second and third terms (which are known), and apply Schwarz’s
inequality together with (3.12) and (8.17) to find

i n: dS:J {[i;;;k {(f"nk —(,Zf(w — <,0)>2

+ (o Jpo =)= 07O Plas [P+ (x gj["l[(w ~g)rav)"|

(4.5) [w(p) — 7(p)] = [ §

2
+ m (w — 90)91(Fp)dVl .

Here we have written
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@8) 2 = o) + || 1,1%w) — Aenav

D

+§{(w —9) or, + *Cp‘k'[awfitj -gt“(’w —¢)— fﬁ'wz——?’):”ds .

ov S*n

It is only necessary to bound the last term on the right of (4.5).
We first consider the three-dimensional case, N = 3. Let

4.7 r= 3 — al)
By the divergence theorem we have for any function ¢(x)

“48) 2 Sgﬁ%ﬁw,idV - f L”L‘Tf_?)ﬁ’ﬁds — SS%dV .

Applying Schwarz’s inequality and completing the square yields
2 I
(4.9) {Hizdv}l = {H |gradg pav
;)T

D

H([leradgray + § €= 5 gas)”

1.2
D
It follows from (2.2) that
(4.10) SS lgradg |"dV < %A[gb] .
D 0

If we let ¢ = w — ¢, and use the bound (8.30) for A[w — ¢], (4.9) yields
a bound for §{§{r*(w — ¢)*dV. Thus, we can apply Schwarz’s inequality

D

to the last term of (4.5) to obtain

4.11) Sg(w - ¢/>)i)l(l",,)dV) < {Sgr‘z(w - ¢)2dV}IIZ{SSr2[?I(Fp)]2dV}"2 .

The second factor on the right converges because of condition (4.1b), and
is explicitly known. The first factor is explicitly bounded by (4.9), (4.10)
and (3.30). Thus, all the terms on the right of (4.5) are known explicitly.
In fact, this right-hand side is a linear combination of square roots of
quadratic forms in (w — ¢) and 8/6t (w — ¢) on B, and A(w) — A(y) in
D. By means of the inequality

(4.12) (a+b+c)”§(1+a+%)a2+(1+ﬂ+%)b2+(1+r+%)cﬁ

where «, 8 and 7y are any positive numbers, one can bound the right-hand
side of (4.5) with the square root of a single explicitly known quadratic
functional. This can then be made arbitrarily small by the Raleigh-
Ritz method. Thus, the bounds for w(P) can be made arbitrarily close.
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For N = 2, we replace the identity (4.8) by

(4.13) 2 SSL”: £ G AV = § (117 n¢'2dS Sg%dv
to derive ’ ”

@iy {{[Zar}" = {[[r1eraagrav )

+ {SsrlgradSl’lde + §(wi; ) ’nisl’zdS}l/z '
Now v A

(4.16) SST lgrade|?dV < -Tmax_4le] ,
5 a

0
where 7,.. i8 the maximum distance of a point on B from p.
By Schwarz’s inequality
(4.16) M(w - (p)%I(F,,)dV‘ < m,,(w,:,ﬁe)”;d V}mmmt(ryd V}w
r
D D D

and the right-hand side is again explicitly bounded.
For N > 3, we let

(4.17) Pt = ay(x,) (@' — a )@’ — a))
and put
- (-3
p + « » P =Py
(4.18) F(p) = _ ﬁ(N,bf 3lp0-<,v—3+"’p" + Po_(N_s)(l + ———Nb 3) +a,p>p

where p,, b, and « are constants to be specified later. F(p) is con-
tinuously differentiable for p > 0 and has continuous second derivatives
except for p = p, and p = 0.

For small p we have

(4.19) WF)= — %":131 + O(p~@-2y

N

Thus, (%) is negative for sufficiently small p, and we choose p, so
that A(F) < 0 for p < p,. For p > p,

(4.20) A(F) = — (N — 8)p,” W=*+> {[a (@) a45(x,) + @, } (@) (0,)(* — wF)]p*~*
+ (b — 2)aM(@)a(w,)a,(w,) (@ — af) (@t — af)p’~*} .
Noting that the second term in the braces is bounded below for b = 2

by (b — 2)ae,'p®®, we can make (% ) negative throughout D by
choosing b sufficiently large, i.e.,
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(4.21) b—2= max{O, a“(@)a (x,) + a5 (@)au(@,) (@ — xf) 0 }

pZpy “(x) k(xp)a'ﬂ(wp)(mk - xp)(x p)

Finally, « is chosen so large that .&# is positive in D. By Green’s
identity (3.27)

(4.22) H.,7a~(w — @) w — ¢) AV + S g[ _ %‘)I(ﬂ')(w _ goﬂdv
= § [Fw-0L w-9p-Lw-e?" lis
- SSf(w — ) (w — )V .

By the construction of &% both terms on the left are positive.
Dropping the first of them and applying Schwarz’s inequality and the
inequalities (3.12) and (3.17) one obtains

(4.23) {SS’—%(%)(w - </>)‘“’dV}”2 < m [ Ww) — We)P dv} .

5 —A(F)
]} Ztﬁgﬁ%ﬁ@dv - fw-oZ
+ 27% - 9) {a fttJ ( 2 _Cg,(w _ 90)}]013
+2( § ﬁ-z,}(%é:e)j as)"

{[fkn 7"(7'” - 9”)1 [a“fitf%_ (w — @) — c?n(w _ ¢):|Z}dS 12

B

+ (KSS[%I(w) _ %I(qo)]de)llz]}m .

The last term of (4.5) is now bounded by the Schwarz’s inequality

—A(F)

The last factor converges because of (4.19) and condition (4.1b), and can
be computed explicitly. The first factor is bounded by (4.23). The right-
hand side of (4.5) may thus again be bounded by the square root of
a quadratic form in w — ¢ and 9/6¢ (w — ¢) on B and A(w — ¢) in D,
which can be made arbitrarily small by the Rayleigh-Ritz method. Thus
arbitrarily close upper and lower bounds for w(P) are obtained in any
number of dimensions.

(4.24) M(w - gD)?I(FP)dVl < SS-%(%)@U )”dV} {SS KON P)]de}m
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To find a given derivative of w at p, it is only necessary to dif-
ferentiate the representation (4.3). We can then proceed exactly as be-
fore, providing only that the given derivatives of ¢, I",(x), and 2(I",)
with respect to the coordinates a exist and are continuous for z, # =z,
and the derivative of /',(x) again satisfies conditions (4.1a) and (4.1Db).
In general for variable a'/, the derivatives of the functions (4.2) will
violate condition (4.1b). If the a'/ are twice continuously differentiable,
it is easily verified that in two dimensions the function

425) [, = — - la@ol,) " log{lay(®) + au@)e - a)e’ — o))}

satisfies (4.1a, b, and c) and its first derivatives satisfy (4.1a and b). In
N dimensions with N > 3, one uses the function

(4.26) I',(x)

N-2 [ 2))

= e gy, P l[0e) + e — e )

Thus one can always estimate the derivatives of the solution of
Dirichlet’s problem with arbitrary accuracy.

It is clear that great simplifications in the above results occur if
I’ (x) is a fundamental solution, that is, if (/°,) = 0, so that the last
term in (4.5) is absent.

5. The exterior mixed problem. Let u be an arbitrary twice dif-
ferentiable function defined in the exterior D of a closed surface B in
N- space (V= 3). We assume that at infinity % tends to zero in such
a way that the integrals of »=* »* and »[2(u)]* exist, where r is the

distance from some origin inside B. We further assume that Su ouloydS

Sg
approaches zero as R — o, where Sy is the sphere of radius R centered
at the origin. (These conditions imply the existence of Afu]).

Finally, we let the boundary B consist of two parts B, and B, and
suppose that u vanishes on B,. A non-negative function % is given on
B,.

Let o%x), k=1,2,38, ---, N be a continuous piecewise differentiable
vector field defined in D and satisfying

(5.1) G=g9!—a,6'¢’>0 inD
and

(5.2) G=—¢*n,+h>0 on B,
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where n, is the unit normal on B pointing outward from D (into the
interior of B). Furthermore, we assume that

(5.3) g =0(r") as r—
and
(5.4) g =0(r? asr— o

If B, is star-shaped with respect to the origin, one can take
(5.5) g =arkr? O<a<(N-—2)a,

where a, is the constant defined in (2.2). Otherwise, one can take this
function outside a sphere containing B, and continue it in such a way
that ¢* satisfies (5.1) and (5.2).

From the divergence theorem it follows that

(5.6) SSg,ﬁu“dV — S R —2ssgkuu,kdv.
D By D

Since a scalar product is less than half the sum of the squares of
the norms,
5.7 —20"uu , < ayg'g’u’ + aYu ., .
Combining (5.6) and (5.7) we find that

(5.8) SSGu”dV + S GurdS < Afu] + S heds .
B, B2

D 2

Now

6.9 {am+ SBZkuzdS}z - {——SSu?I(u)dV + Su(% + hu)dS}Z

o ()
< foear + pens [ av- ], s

By

Squaring both sides of (5.8), inserting (5.9), and dividing by the common

factor yields
g ()
(5.10) “Gude-l-S GuwdV < “,[?lgt)] dv+§ v L as.

By

On the other hand, inserting (5.10) into (5.9) yields

(22i + ku)z
G.11) Al + SBzthds < SSB‘,(é‘ldV + S 0 63‘5; s,

By
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Thus, when g* satisfies (5.1) and (5.2), we have bounds for the integral
of u* in D and on B,, as well as for Alu] + S hu*dS in terms of a quad-

B,
ratic functional in A(w) and ou/dv + Au. ’

Let us now consider the mixed boundary value problem for a funec-
tion w(x). That is, U(w) is given in D, w is given on By, and 6w/0y + hw
is given on B,. We assume that w = O(r~(,™») as r —> . Let ¢ be
an arbitrary function of order r~(,~» at infinity which takes the given
values of w on B,. Let u =w — ¢. We suppose A(¢) to approximate

A(w) sufficiently well that “[%I(u)]"dV converges. Then Alw] + S hw*dS
J B,

D
is estimated by

(5.12) HA[w] + SBZthds}”z — {are1+ SBlhgozdS}llzi < {apu + SBJthdS}”?

Thus, the upper and lower bounds may be made close by mimimizing the
right-hand side of (5.11) with respect to a family of admissible func-
tions ¢ (Rayleigh-Ritz technique).

Bounds at an interior point p follow as in §4. We write down the
representation (4.3), transpose known terms, and apply Schwarz’s inequali-
ty and (5.10) to find

(5.13) {w) — ¢ = |[r1200) — wenav

— [——(w — @) + w — 90)]dS }

or,
[QI(FP)] dV__l_S ,v,ay,—’_ds

[au(w—sv)Jrh(w—so)]

][ = gy | B2 .

D

Here I', is a function having the properties (4.1) vanishing on B, and
satisfying the conditions that I", = O(r~(,~®) and A(/",) = O(r~y) as r—> co.
We note that everything on the left of (5.18) except w(p) is known, so
that upper and lower bounds for w(p) are obtained. They are close if the
right-hand side is small. This depends on minimizing a quadratic func-
tional (the second factor on the right of (5.13)) with respect to admissible
functions ¢.

We note that the first factor on the right of (5.13) is the same
quadratic form in 77,. Since it is easy to find a whole family of admis-
sible I", (one 7", plus any sufficiently regular function will do), one can
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minimize the first factor also. This may result in considerable improve-
ment of the bounds.

The same procedure may be applied to the interior mixed boundary
value problem. However, the construction of the vector field ¢* satis-
fying conditions (5.1) and (5.2) becomes more difficult. (Conditions (5.3)
and (5.4) are clearly unnecessary here). If B,= B and h vanishes
identically (Neumann problem), it is an immediate consequence of the
divergence theorem that no such vector field g* exists.

On the other hand, if 4 is everywhere positive and B, = B is star
shaped, the vector aa* with « sufficiently small satisfies (5.1) and (5.2).

6. More general operators. All the results which have been pre-
sented in the preceding sections for the special operator 2(x) can be
extended to elliptic second order operators of the form

(6.1) () = (@(2)u,),; — b(e)us — gl .

The coefficients a'/ and b’ are assumed piecewise continuously differentia-
ble in D, while ¢ is assumed bounded. We must, of course, exclude
the occurrence of non-positive eigenvalues of this operator. To this
effect, we assume

(6.2) o) = 0

and the existence of two positive constants b, and b, such that for all
x € D and all real numbers (&, &, -+ -, &x).

N N
(6:3) b 356 +a@)éi | < aV8g, + VEE + a@) < B[ S8+ o) ]

It is clear that the inequalities (3.5), (3.6), and (3.7) remain valid when
the quadratic form A[u] is replaced by

©6.4) Blu] = Sg[a“u,iu,, o+ bun, + quldV
D

A(n) by #(u), and the constant a, by b, (Actually, 1, may be replaced
by 4, + min g).
In the identity (2.14) one uses the fact that

(6.5) Aw) = Z (u) + dbu, + qu .

Then the right-hand side becomes the integral of —2jf"u ,<% (u) plus
a quadratic form in % and its first derivatives. Because of (6.3), the
latter part is bounded by

(6.6) —claYu u , + buu, + qu'],

where ¢ is a constant. This replaées the inequality (3.8). One can now
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follow the procedure of section (3a) to arrive at inequalities of the form
(3.12) and (3.14) for a function » vanishing on the boundary with (u)
replaced by <#(u). It is only necessary to replace a, by b, and ¢ by ¢ in
the definition (3.13) of K.

In a similar fashion one finds the inequality (3.17) with ¢ replaced
by ¢, and the inequality (3.19) with A[v] replaced by B[v] and ¢ by ¢ for
a function v satisfying <# (v) = 0.

Thus, the quadratic from B[w] of the solution of Dirichlet’s problem
can again be estimated with arbitrary accuracy. The triangle inequality

(6.7 {Blel}'” — {Blw — ¢I}'* = {Blw]}'* = {B[¢]}'* + {Blw — ¢]}'*

holds, and B[w — ¢] is bounded by the inequality (3.29) with A[w — ¢]
replaced by Blw — ¢], &7 (w — ¢) by <Z (w — ¢), a, by b, and ¢ by ¢c.

In the pointwise approximation of the solution w of Dirichlet’s prob-
lem we replace the representation (4.3) by

68) win) — ¢t) = || 11,7 -9 - @- 9z @)}av

D

+ § {e—o(°Lr +vnr,) - 1,2 - g} ds .
)

Here <7 * is the adjoint operator
(6.9) P ) = (@ ), + Eu), — qu

and I', is again a singular function satisfying the conditions (4.1) but
with o7 (1",) replaced by <7 *(I",). (The function (4.2) still satisfies these
conditions). The pointwise bounds are now found exactly as in §4.

Section 5 is also easily extended to operators of the form <7 (u).
It is only necessary to recall that Blu] = b,A[u]/a, and that Green’s
Theorem

(6.10) Blu] = —“ug@(u)dvju §u?j~ ds

D

holds, in order to obtain inequalities like (5.8) through (5.11) with Afu]
replaced by B[u] and o7 (u) by <7 (w). These, together with the
representation (6.8), yield the pointwise approximation.

7. Second order systems. The results are just as easily extended
to a large class of elliptic systems of second order equations®. We simply
substitute an M-vector for the unknown function » and M x M matrices
for the coefficients in the definition (6.1) of <7 (x). Then we have

2 The extension to systems was suggested to the authors by A. Douglis.
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(7.1 B ou) = (agpuby) ; — bigufs — qupuf, a,f=1,---, M.

The coefficients ai; and bls are again piecewise differentiable and g,z is
assumed bounded. The al} are such that ai; = al;. We replace (6.2) by

(7.2) 0up€*6P = 0

for any M-vector £%, and
N
(13) b5 3@ + e | < atheres + bsktit + qulié?
N M
< b[Z S+ qmﬁes*eﬂ ,

for two positive constants b, and b, any set of N + 1 M-vectors
(56“) Etlt; °tty Sim\r') and any zeD.

The equations of the classical theory of elasticity [13] satisfy these
conditions. Methods for obtaining bounds for this particular system of
equations have been given by Diaz and Greenberg [3] and Synge [14].
Their method differs considerably from the one proposed here. The
analogue of the conormal derivative is the M-vector.

(7.4) (%’:‘_) = alubm, .

In terms of this vector, we have the Green’s theorem

(7.5) SS s o7 () AV + Afu] = § u(%) ds

where .97(u) is the operator consisting of the first set of terms on the
right of (7.1), and

(7.6) Alu] = SS ausuf, dV .

In the case of the equations of elasticity, (6u/dv), is the surface traction,
while A[«] is the strain energy. In analogy with (2.12), one finds that
if one defines

2

@1 (%) = ashutnt, — Lahman,(22) (2

where [ ] denotes matrix inversion, then (6u/0¢)* is a positive semi-
definite quadratic form in the tangential derivatives of the components
u®. If u® vanishes on B, the left-hand side vanishes. If u®is given on
B, the left-hand side may be computed by using another vector field
% having the same values on B. Similarly, in analogy with (2.13) we
have
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i@ i o ia OU
(7.8) Sl = fiuladgnm] (=) + 1 T¢——,
ov /s ot

where T/ is a matrix with the property
(7.9) abT¢T = 1.

With these decompositions and the identity analogous to (2.3), one finds
the analogue of (2.14), namely

a0 § (2] i (1) (2),) 2w 2) 2 o

SSf’%%ﬁUdV+SS[§%W~Zﬂ@ + fraily Jutuf, dV

One may write this in terms of the operator <%, by means of the relation
(7.11) ) = Fftt) + Bl + qustt® .

It follows from (7.3) that [alfn,m,]™' is positive definite. Thus, one can
proceed as in §3 to estimate the quadratic form Afu] or

(1.12) Blu) = || [z, + bursts + quuur)ayv .
D

In order to get pointwise estimates, one uses the representation

(1.13) w(p) — ¢°(p) = “ [ Zaw — ) — (wP — P FH ()] AV

D

i), rn 19 0 9) s
B

Here
(7.14) .@w*(u) = (azygu?t ¥ + (biéwuﬁ)'t - qﬁwus ’

and I"™P(x) is, for fixed « and point p an M-vector field with properties
analogous to the properties (4.1) of I",(x). The most important of these
is the presence of a singularity at p such that if S, is a sphere of
radius p centered at p,

ory

vy

(7.15) lim (

)dS—M
p—0 %o
For the construction of such a parametrix tensor see [8].

The results of §5 can be extended to the exterior problem with
values of (0u/6v), + h.su? given on the boundary B. Here h,g is a given
positive semidefinite matrix field on B.
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Let the inverse of the matrix ai; be denoted by ai® so that
(7.16) aihall = 0LoY .
Let gis be a tensor field in the exterior D of B with
(7.17) Gap = Gbpi — Gar 33935

positive definite in D, and

(7.18) Gop = —Gug¥i + Pug

positive definite on B. The analogue of (5.8) is

(7.19) SS Goat™uf AV + § ngu“uﬁ dS = Alu] + § hagtuf dS .
D B B

From this follows the inequality

(7.20)  Afu] + f hog®u? dS < Sg G A () () AV

JOL() (), has

where G*# and G are the inverse matrices of G,s and G,,. This is the
analogue of (5.11) and, together with (7.19), gives the analogue of
(56.10). Thus we can proceed as in §5 to approximate the solution of
the problem where /.(u) is given in D and (0u[dv), + h.qu® is given on
B. These results may be extended as outlined in § 6 to the more general
operator <Z,(u).

More generally, we may divide B into components By, B, B,, -+, B,.
On B, we prescribe (0u/0v), + h,uf. On B, we are given k linearly in-
dependent vector fields. Then u is required to be orthogonal to these
k vectors, while (0u/0v), + h.gu? is prescribed to within an arbitrary
linear combination of the % vectors on B,. As a special case we obtain
the mixed boundary value problem of the theory of elasticity [13] where
the displacement in certain directions and the components of force in
the other directions are given.

It is clearly only necessary for the quadratic form @wﬁu“’uf‘ with u®
subject to the orthogonality conditions on each component B, to be posi-
tive. Then the quadratic form in the second term on the right of (7.20)
is defined, positive and known when the arbitrary linear combination of
the & vectors on B, is so chosen that (0u/dv), + h.euf satisfies the same
orthogonality relations as u®.

The approximation proceeds from (7.20) as in §5.
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Added in Proof. In the special case of the mixed boundary value
problem when the given values of w and the approximating function ¢
on B, are zero or when B, = B, the estimate (5.12) may be replaced by
the identity

sa(%’f + hav)dS

(5.123) A[w] + SBZthdS - {—2”9»91(20)(1, i 25

— Afg] — S hgozds}
By
— Alu] + S hurdS
which gives an error bound quadratic in .
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