EXTREME POINTS AND EXTREMUM PROBLEMS IN H_{1}

Karel de Leeuw and Walter Rudin

The class H_{1} consists of all functions f which are analytic in the open unit disc, and for which

$$
\|f\|=\sup _{0<r<1} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right| d \theta
$$

is finite. With this norm, H_{1} is a Banach space, whose unit sphere will be denoted by S; that is, S is the set of all $f \in H_{1}$ with $\|f\| \leqq 1$.

We are concerned in this paper with (a) the identification of the extreme points of S and some geometric properties of the set of these extreme points, (b) the closure of Pf (the set of all functions of the form $p \cdot f$, where p ranges over the polynomials and f is a fixed function in H_{1}) in various topologies, and (c) the structure of the set of those $f \in S$ which maximize a given bounded linear functional on H_{1}.

We find that the factorization $f=M_{f} Q_{f}$ (see Lemma 1.3), which was apparently first used by Beurling [1], is of basic importance in these problems.

Our results are summarized at the beginning of Sections II, III, and IV.

We wish to acknowledge several helpful conversations with Halsey Royden.

I. PRELIMINARIES

1.1 Let C be the boundary of the open unit disc U in the complex plane. If $f \in H_{1}$, then $f\left(e^{i \theta}\right)$, which we define to be $\lim _{r \rightarrow 1} f\left(r e^{i \theta}\right)$, exists almost everywhere on C and differs from 0 for almost all $e^{i \theta}$, unless f is identically 0 . Moreover, the one-to-one correspondence between an $f \in H_{1}$ and its boundary function is an isometric embedding of H_{1} in L_{1}, the Banach space of all Lebesgue integrable functions on C, normed by

$$
\begin{equation*}
\|f\|=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f\left(e^{i \theta}\right)\right| d \theta . \tag{1.1.1}
\end{equation*}
$$

Thus (1.1.1) may be taken as the norm in H_{1}. We also have

$$
\begin{equation*}
\lim _{r \rightarrow 1} \int_{-\pi}^{\pi}\left|f\left(r e^{i \theta}\right)-f\left(e^{i \theta}\right)\right| d \theta=0 \tag{1.1.2}
\end{equation*}
$$

[^0]for every $f \in H_{1}$, and
\[

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{f\left(e^{i \varphi}\right)}{1-e^{-i \varphi} z} d \varphi=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(e^{i \varphi}\right) P_{r}(\theta-\varphi) d \varphi \tag{1.1.3}
\end{equation*}
$$

\]

where $z=r e^{i \theta}$ and the Poisson kernel is defined by

$$
\begin{equation*}
P_{r}(\theta)=\frac{1-r^{2}}{1-2 r \cos \theta+r^{2}}=\mathfrak{R}\left[\frac{1+r e^{i \theta}}{1-r e^{i \theta}}\right] \tag{1.1.4}
\end{equation*}
$$

For proofs of these facts we refer to [6] and [10; Section 7.5].
1.2. Inner functions and outer functions. A Blaschke product is a function of the form

$$
\begin{equation*}
B(z)=z^{m} \prod_{n=1}^{\infty} \frac{a_{n}-z}{1-\bar{a}_{n} z} \cdot \frac{\left|a_{n}\right|}{a_{n}} \tag{1.2.1}
\end{equation*}
$$

where m is a non-negative integer, $0<\left|a_{n}\right|<1$, and $\sum\left(1-\left|a_{n}\right|\right)<\infty$. The set $\left\{a_{n}\right\}$ may be finite, or even empty. If $\left\{a_{n}\right\}$ is finite, we call B a finite Blaschke product.

A function of the form

$$
\begin{equation*}
M(z)=B(z) \exp \left\{-\int_{-\pi}^{\pi} \frac{e^{i \theta}+z}{e^{i \theta}--z} d \mu(\theta)\right\} \quad(z \in U) \tag{1.2.2}
\end{equation*}
$$

where B is a Blaschke product and μ is a non-negative singular (with respect to Lebesge measuree) measure on C, is called an inner function [1]. A function f, analytic in U, is an inner function if and only if f is bounded in U, f has radial limits of modulus 1 almost everywhere on C, and the first non-zero Taylor coefficient of f is positive [9].

An outer function [1] is a function of the form

$$
\begin{equation*}
Q(z)=c \cdot \exp \left\{\int_{-\pi}^{\pi} \frac{e^{i \theta}+z}{e^{i \theta}-z} h(\theta) d \theta\right\} \quad(z \in U) \tag{1.2.3}
\end{equation*}
$$

where $c \neq 0$ is a constant and $h \in L_{1}$.
The following factorization is crucial for what follows (see [1] and [9]).
1.3. Lemma. Each $f \in H_{1}$ (except $f=0$) has a unique factorization of the form $f=M_{f} Q_{f}$, where M_{f} is an inner function and Q_{f} is an outer function; there is a real α such that

$$
\begin{equation*}
Q_{f}(z)=\exp \left\{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{e^{i \theta}+z}{e^{i \theta}-z} \log \left|f\left(e^{i \theta}\right)\right| d \theta+i \alpha\right\} \quad(z \in U) \tag{1.3.1}
\end{equation*}
$$

also, $Q_{f} \in H_{1}$, and $\left\|Q_{f}\right\|=\|f\|$.

It is known [1] that $f=Q_{f}$ if and only if

$$
\begin{equation*}
\log |f(0)|=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log \left|f\left(e^{i \theta}\right)\right| d \theta . \tag{1.3.2}
\end{equation*}
$$

Indeed, if $f=Q_{f}$ then (1.3.1) leads immediately to (1.3.2); on the other hand, if $M_{f} \neq 1$, then the left member of (1.3.2) is less than the right member.
1.4. Lemma. If $f \in H_{1}$, either of the following two conditions implies that $f=Q_{f}$:
(i) $1 / f \in H_{1}$
(ii) $\Re[f(z)]>0$ for all $z \in U$.

Proof. If $g=1 / f$ and $g \in H_{1}$, then $1=f g=M_{f} M_{g} Q_{f} Q_{v}$. By Lemma 1.3, the factorization of 1 is unique, so that $Q_{f} Q_{g}=M_{f} M_{g}=1$. This implies $M_{f}=1$, so $f=Q_{f}$.

If $\Re[f(z)>0]$ define $f_{\mathrm{e}}(z)=f(z)+\varepsilon$ for $z \in U$. Then $1 / f_{\mathrm{e}}$ is bounded and by (i) we have

$$
\begin{equation*}
f_{\mathrm{\varepsilon}}(z)=\exp \left\{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{e^{i \theta}+z}{e^{i \theta}-z} \log \left|f_{\mathrm{\varepsilon}}\left(e^{i \theta}\right)\right| d \theta+i \arg f_{\mathrm{\varepsilon}}(0)\right\} \quad(z \in U) . \tag{1.4.1}
\end{equation*}
$$

As $\varepsilon \rightarrow 0$, the integrable functions $\log \left|f_{s}\right|$ decrease monotonically to $\log |f|$; by the Lebesgue convergence theorem, (1.4.1) thus remains valid if f_{e} is replaced by f, so that $f=Q_{f}$.
1.5. Some topologies on H_{1}. Besides the norm topology, we shall be most concerned with the weak* topology, which may be described as follows : The space L_{1} can be isometrically embedded in M, the space of bounded Borel measures on $C ; M$ is the dual space of the space of all continuous functions on C; and H_{1} is a closed subspace of M, in the weak* topology of M. The restriction of this topology to H_{1} will be called the weak ${ }^{*}$ topology of H_{1}. Since M is a dual space, its unit sphere is weak*-compact. Hence S, the unit sphere of H_{1}, is weak*compact. The fact that the space of all continuous functions on C is separable implies that S is metrizable in the weak* topology. Thus, when discussing weak* convergence in S, it suffices to consider simple countable sequences.

There is also the weak topology of H_{1}, i.e., the weakest topology in which all bounded linear functionals on H_{3} are continuous. The weak topology is actually stronger than the weak* topology: S is weak*compact, but S is not compact in the weak topology [8; p. 54].

The following lemma describes the weak* topology on S in a manner which will be useful to us.
1.6. Lemma. Suppose $f_{n} \in S(n=1,2,3, \ldots)$. Each of the following
four properties implies the other three:
(i) $f_{n} \rightarrow f$ in the weak topology of H_{1}.
(ii) $f_{n}(z) \rightarrow f(z)$ or every $z \in U$.
(iii) $f_{n}(z) \rightarrow f(z)$ uniformly on all compact subsets of U.
(iv) $\lim _{n \rightarrow \infty} a_{n, k}=a_{k}$ for $k=0,1,2, \cdots$, where

$$
f_{n}(z)=\sum_{k=0}^{\infty} a_{n, z^{k}}, f(z)=\sum_{k=0}^{\infty} a_{k} z^{k} \quad(z \in U) .
$$

Proof. (i) means, by definition, that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi} f_{n}\left(e^{i \theta}\right) \phi\left(e^{i \theta}\right) d \theta=\int_{-\pi}^{\pi} f\left(e^{i \theta}\right) \phi\left(e^{i \theta}\right) d \theta \tag{1.6.1}
\end{equation*}
$$

for every continuous function ϕ on C. Since, for every $z \in U$, the function $\phi\left(e^{i \theta}\right)=\left(1-e^{-i \theta} z\right)^{-1}$ is of this type, (1.1.3) shows that (i) implies (ii).

Since the functions $\left\{f_{n}\right\}$ are bounded in norm, they are uniformly bounded on every compact subset of $U[8 ; \mathrm{p} .51]$ and hence form a normal family, so that (ii) implies (iii).

That (iii) implies (iv) follows immediately from the Cauchy integral formulae for the derivatives of f_{n} at the origin.

Finally, if (iv) holds, then (1.6.1) holds whenever ϕ is a trigonometric polynomial. Since every continuous function can be uniformly approximated on C by trigonometric polynomials, the boundedness of $\left\{\left\|f_{n}\right\|\right\}$ implies that (1.6.1) holds for every continuous ϕ. Thus (iv) implies (i).

II. THE EXTREME POINTS OF S.

2.1. An element f of S is called an extreme point of S if f is not an interior point of any line segment that lies in S. Since S is weak*compact and convex, the Krein-Milman theorem [2; p. 84] guarantees the existence of extreme points. However, the following more detailed information will be established, without use of the Krein-Milman theorem.

Theorem 1. A function $f \in H_{1}$ is an extreme point of S if and only if $\|f\|=1$ and $f=Q_{f}$.

Theorem 2. (a) If $\|f\|=1$ and f is not an extreme point of S, then there exist extreme points f_{1} and f_{2} such that $f_{1}+f_{2}=2 f$. (b) If $\|f\|<1$, then f is a convex combination of some two extreme points of S.

Theorem 3. A function $f \in H_{1}$ lies in the norm closure of the set of all extreme points of S if and only if $\|f\|=1$ and $f(z) \neq 0$ for all $z \in U$.

Theorem 4. A function $f \in H_{1}$ lies in the weak*-closure of the set
of all extreme points of S if and only if $f \in S$ and $f(z) \neq 0$ for all $z \in U$, or if f is identically 0 .

These results should be contrasted with the easily established fact that the unit sphere of L_{1} has no extreme points at all, and that in the unit spheres of the H_{p}-spaces (for $1<p<\infty$) every boundary point is an extreme point. The extreme points of the unit spheres of the space H_{∞} of all bounded analytic functions in U and of the subspace of all uniformly continuous functions have recently been determined (see § V).
2.2. For convenience, we shall now display some relations which furnish the key to several parts of our paper.

Suppose $f \in H_{1}, f=M_{f} Q_{f}$, and $M_{f} \neq 1$. Choose a real α such that

$$
\begin{equation*}
\int_{-\pi}^{\pi}\left|f\left(e^{i \theta}\right)\right| \Re\left[e^{i x} M_{f}\left(e^{i \theta}\right)\right] d \theta=0 ; \tag{2.2.1}
\end{equation*}
$$

this can be done, since the left member of (2.2.1) is a real continuous function of α which changes sign on the interval $[0, \pi]$. Put

$$
\begin{equation*}
u(z)=e^{i \alpha} M_{j}(z) \tag{2.2.2}
\end{equation*}
$$

$$
(z \in U)
$$

and

$$
\begin{equation*}
g(z)=\frac{1}{2} e^{-i \alpha} Q_{f}(z)\left(1+u^{2}(z)\right) \quad(z \in U) \tag{2.2.3}
\end{equation*}
$$

Then $g \in H_{1}$ and $g \neq 0$. Note that $e^{-i \alpha} Q_{f}=f / u$, that $\left|u\left(e^{i \theta}\right)\right|=1$ a.e. on C, and that

$$
\begin{equation*}
2 \Re[u]=u+\bar{u}=u+\frac{1}{u}=\frac{1+u^{2}}{u} \tag{2.2.4}
\end{equation*}
$$

whenever $|u|=1$. These facts imply

$$
\begin{equation*}
g\left(e^{i \theta}\right)=f\left(e^{i \theta}\right) \mathfrak{R}\left[u\left(e^{i \theta}\right)\right] \quad \text { (a.e. on } C \text {) } \tag{2.2.5}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left|f\left(e^{i \theta}\right) \pm g\left(e^{i \theta}\right)\right|=\left|f\left(e^{i \theta}\right)\right|\left(1+\mathfrak{R}\left[u\left(e^{i \theta}\right)\right]\right) \quad \text { (a.e. on } C \text {). } \tag{2.2.6}
\end{equation*}
$$

By (2.2.1) we have, therefore,

$$
\begin{equation*}
\|f+g\|=\|f-g\|=\|f\| \tag{2.2.7}
\end{equation*}
$$

Suppose next that λ is a real number, satisfying $\lambda \geqq 1$. Then there exists a real β such that
(2.2.8) $f \pm \lambda g=\frac{1}{2} e^{-i \alpha} Q_{f^{\bullet}}\left(\pm \lambda u^{2}+2 u \pm \lambda\right)= \pm \frac{\lambda}{2} e^{-i \alpha} Q_{f} \cdot\left(1 \pm e^{i \beta} u\right)\left(1 \pm e^{-i \beta} u\right)$,

Lemma 1.4 (ii) shows that each of the last two factors is an outer function.

We conclude that $f+\lambda g$ and $f-\lambda g$ are outer functions, if $\lambda \geqq 1$.
2.3. Proof of Theorem 1. Suppose $\|f\|=1$ and $f=Q_{f}$. To prove that f is an extreme point, it evidently suffices to show that the conditions

$$
\begin{equation*}
\|f+h\|=\|f-h\|=1, \tag{2.3.1}
\end{equation*}
$$

where $h \in H_{1}$, imply $h=0$.
Let us assume that h is not identically 0 and that (2.3.1) holds. Define

$$
\begin{equation*}
k(z)=h(z) \mid f(z) \tag{2.3.2}
\end{equation*}
$$

and let $k\left(e^{i \theta}\right)$ denote the boundary values of k, which exist a.e. on C. By (2.3.1) we have

$$
\begin{equation*}
\int_{-\pi}^{\pi}\left\{\left|1+k\left(e^{i \theta}\right)\right|+\left|\left(1-k\left(e^{i \theta}\right) \mid-2\right\}\right| f\left(e^{i \theta}\right) \mid d \theta=0 .\right. \tag{2.3.3}
\end{equation*}
$$

Since $f\left(e^{i \theta}\right) \neq 0$ a.e. on C, (2.3.3) implies that $k\left(e^{i \theta}\right)$ is real a.e. on C, and in fact that

$$
\begin{equation*}
-1 \leqq k\left(e^{i \theta}\right) \leqq 1 \tag{2.3.4}
\end{equation*}
$$

(a.e. on C).

Thus $\log \left|h\left(e^{i \theta}\right)\right| \leqq \log \left|f\left(e^{i \theta}\right)\right|$ a.e. on C, and the factorization $k=$ $M_{h} Q_{h} / Q_{f}$, combined with (1.3.1), shows that k is bounded in U. Having real boundary values a.e. on C, k must therefore be constant. But (2.3.1) then implies that $(1+k)\|f\|=(1-k)\|f\|$, so that $k=0$, and therefore $h=0$. Consequently, f is an extreme point of S.

It is clear that $\|f\|=1$ if f is an extreme point of S. To prove the converse, let us therefore assume that $\|f\|=1$ and $f \neq Q_{f}$. If g is then defined as in §2.2, we see from (2.2.7) that $f+g \in S$ and $f-g \in S$, so that f is not an extreme point of S. Theorem 1 is thus proved.
2.4. Proof of Theorem 2. Suppose $\|f\|=1$ and f is not an extreme point of S. By Theorem 1, f is not an outer function; define g as in $\S 2.2$, and put $f_{1}=f+g, f_{2}=f-g$. By (2.2.8), f_{1} and f_{2} are outer functions, (2.2.7) shows that $\left\|f_{1}\right\|=\left\|f_{2}\right\|=1$, so that f_{1} and f_{2} are extreme points of S and $2 f=f_{1}=f_{2}$.

Suppose next that $\|f\|=t$, with $0<t<1$ (the case $t=0$ is trivial). If f is an outer function, so are the functions $f_{1}=f / t$ and $f_{2}=-f_{1}$, and f is clearly on the segment bounded by f_{1} and f_{2}, that is, by extreme points of S. If f is not an outer function, define g as in $\S 2.2$, and choose $\lambda_{1}>1$ and $\lambda_{2}>1$ such that

$$
\begin{equation*}
\left\|f+\lambda_{1} g\right\|=\left\|f-\lambda_{2} g\right\|=1 \tag{2.4.1}
\end{equation*}
$$

By (2.2.8), $f+\lambda_{1} g$ and $f-\lambda_{2} g$ are outer functions, hence extreme points of S, and f lies on the segment bounded by them.

This completes the proof of Theorem 2.

2.5. Proof of Theorem 3. Suppose

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|=0 \tag{2.5.1}
\end{equation*}
$$

where $\left\{f_{n}\right\}$ is a sequence of extreme points of S. Then $\|f\|=1$, and since $f_{n} \rightarrow f$ uniformly on compact subsets of U and no f_{n} has a zero in U, we conclude that either f has no zero in U or f is identically 0 . The last alternative contradicts the fact that $\|f\|=1$.

To establish the converse, suppose $\|f\|=1$ and f has no zero in U. For each $r<1$, define $f_{r}(z)=f(r z)$ for $z \in U$, and put $g_{r}=f_{r} /\left\|f_{r}\right\|$. Then g_{r} is bounded away from 0 , and is therefore an outer function, by Lemma 1.4, and an extreme point of S, by Theorem 1. Since

$$
\begin{equation*}
f-g_{r}=f_{r}\left\{1-1 /\left\|f_{r}\right\|\right\}+\left(f-f_{r}\right), \tag{2.5.2}
\end{equation*}
$$

and since $\left\|f_{r}\right\| \rightarrow 1$ as $r \rightarrow 1$ (see (1.1.2)), we have

$$
\begin{equation*}
\lim _{r \rightarrow 1}\left\|f-g_{r}\right\|=0 \tag{2.5.3}
\end{equation*}
$$

This proves Theorem 3.
2.6. Proof of Theorem 4. Suppose $\left\{f_{n}\right\}$ is a sequence of extreme points of S and $f_{n} \rightarrow f$ in the weak* topology. Since S is weak*-compact, $f \in S$. By Lemma 1.6, $f_{n} \rightarrow f$ uniformly on compact subsets of U, so that f either has no zero in U or f is identically 0 .

To establish the converse, suppose $\|f\|=1, f$ has no zero in U, and λ is a real number satisfying $0 \leqq \lambda<1$. Choose θ such that

$$
\begin{equation*}
f\left(e^{i \theta}\right)=\lim _{r \rightarrow 1} f\left(r e^{i \theta}\right) \tag{2.6.1}
\end{equation*}
$$

exists and is not 0 and define

$$
\begin{equation*}
h(z)=\frac{f(z)}{z-e^{i \theta}} \quad(z \in U) \tag{2.6.2}
\end{equation*}
$$

If h were in H_{1}, then the Poisson integral representation (1.1.3) of h would lead to the relation

$$
\begin{equation*}
\lim _{r \rightarrow 1}(1-r) h\left(r e^{i \theta}\right)=0 \tag{2.6.3}
\end{equation*}
$$

so that $f\left(e^{i \theta}\right)=0$, a contradiction. Thus $h \notin H_{1}$.

For each $a>1$, define

$$
\begin{equation*}
f_{a}(z)=f(z)\left\{\lambda-\frac{\varepsilon_{a} e^{i \theta}}{z-a e^{i \theta}}\right\} \quad(z \in U) \tag{2.6.4}
\end{equation*}
$$

where ε_{a} is chosen positive and so that $\left\|f_{a}\right\|=1$. Note that the second factor in (2.6.4) is 0 only when $z=\left(a+\varepsilon_{a} / \lambda\right) e^{i \theta}$, and this number is not in U. Thus (by Theorem 3) each f_{a} is in the norm closure, and hence in the weak*-closure, of the extreme points of S.

Since $h \notin H_{1}, \varepsilon_{a} \rightarrow 0$ as $a \rightarrow 1$, so that $f_{a}(z) \rightarrow \lambda f(z)$ as $a \rightarrow 1$, for all $z \in U$. By Lemma 1.6, this implies that λf is in the weak*-closure of the extreme points of S. Since this is true for all $f \in H_{1}$ with $\|f\|=1$ and without zeroes in U, and for all λ with $0 \leqq \lambda<1$, it is also true for $\lambda=1$, and the theorem is proved.

III. THE SETS $P f$.

3.1. For any $f \in H_{1}$ the collection of all functions g of the form

$$
g(z)=p(z) f(z) \quad(z \in U)
$$

where p is a polynomial, will be denoted by $P f$. In other words, $P f$ is the linear subspace of H_{1} which is generated by the functions $z^{n} f(z)(n=$ $0,1,2, \cdots)$. We are concerned with finding conditions on f under which $P f$ is dense in H_{1}.

Theorem 5. If $f \in H_{1}$ and $f \neq 0$ the following three statements are equivalent :
(i) $f=Q_{f}$.
(ii) Pf is dense in H_{1} in the norm topology.
(iii) Pf is dense in H_{1} in the weak* topology.

The corresponding problem for H_{2} in the norm topology was solved by Beurling [1]; here too a necessary and sufficient condition is that $f=Q_{f}$.

If $\|f\|=1$, Theorems 1 and 5 imply that $P f$ is dense in H_{1} in either of these topologies (and hence in any intermediate one) if and only if f is an extreme point of S. One would like to have a direct proof of this equivalence (i.e., a proof not involving the Poisson integral and the factorization $f=M_{f} Q_{f}$), but we have been unable to find such a proof. Indeed, there may not exist one, since the analogous statement is false in H_{2}, where every f with $\|f\|=1$ is an extreme point of the unit sphere.
3.2. Proof of Theorem 5. Suppose $f=Q_{f}$, and suppose ϕ is a bounded measurable function on C such that

$$
\begin{equation*}
\int_{-\pi}^{\pi} p\left(e^{i \theta}\right) f\left(e^{i \theta}\right) \phi\left(e^{i \theta}\right) d \theta=0 \tag{3.2.1}
\end{equation*}
$$

for all polynomials p. By the Theorem of F. and M. Riesz [10; p. 158] there is a function $h \in H_{1}$ such that $h(0)=0$ and

$$
\begin{equation*}
f\left(e^{i \theta}\right) \phi\left(e^{i \theta}\right)=h\left(e^{i \theta}\right) \quad(\text { a.e. on } C) \tag{3.2.2.}
\end{equation*}
$$

The function g defined by

$$
\begin{equation*}
g=\frac{h}{f}=M_{h} \frac{Q_{h}}{Q_{f}} \tag{3.2.3.}
\end{equation*}
$$

is analytic in U and has radial boundary values equal to $\phi\left(e^{i \theta}\right)$ a.e. on C. By (3.2.2), $\log \left|h\left(e^{i \theta}\right)\right|-\log \mid f\left(e^{i \theta}\right)$ is bounded above on C, so that (3.2.3), combined with (1.3.1), implies that g is bounded in U. Also, $g(0)=0$ since $h(0)=0$.

Consequently, for any $k \in H_{1}$ we have

$$
\begin{equation*}
\int_{-\pi}^{\pi} k\left(e^{i \theta}\right) \phi\left(e^{i \theta}\right) d \theta=\int_{-\pi}^{\pi} k\left(e^{i \theta}\right) g\left(e^{i \theta}\right) d \theta=0 . \tag{3.2.4}
\end{equation*}
$$

In other words, every bounded linear functional on H_{1} which annihilates $P f$ also annihilates H_{1}, so that $P f$ is dense in H_{1}, in the norm topology. Thus (i) implies (ii).

It is trivial that (ii) implies (iii).
Suppose next that $P f$ is weak*-dense in H_{1} but that $f \neq Q_{f}$. By Lemma 1.6, f cannot have a zero in U. Hence

$$
\begin{equation*}
M_{f}(z)=\exp \left\{-\int_{-\pi}^{\pi} \frac{e^{i \theta}+z}{e^{i \theta}-z} d \mu(\theta)\right\} \quad(z \in U) \tag{3.2.5}
\end{equation*}
$$

for some positive singular measure μ. There is a closed subset E of C with $\mu(E)>0$, whose Lebesgue measure is 0 . Define

$$
\begin{equation*}
M_{1}(z)=\exp \left\{-\int_{E} \frac{e^{i \theta}+z}{e^{i \theta}-z} d \mu(\theta)\right\} \tag{3.2.6}
\end{equation*}
$$

and $M_{2}(z)=M_{f}(z) / M_{1}(z)$. Then $f=M_{1} M_{2} Q_{f}$.
There exists an outer function Q_{1} which is uniformly continuous in U, such that $Q_{1}\left(e^{i \theta}\right)=0$ for every $e^{i \theta} \in E$ (compare [9; p. 433]). Define

$$
\begin{equation*}
\phi\left(e^{i \theta}\right)=\overline{M_{1}\left(e^{i \theta}\right)} \cdot Q_{1}\left(e^{i \theta}\right) e^{i \theta} . \tag{3.2.7}
\end{equation*}
$$

Then ϕ is continuous on C; since $f=M_{1} M_{2} Q_{f}$, we have $\left(p f \bar{M}_{1} Q_{1}\right)\left(e^{i \theta}\right)=\left(p M_{2} Q_{f} Q_{1}\right)\left(e^{i \theta}\right)$ a.e. on C, and since $p M_{2} Q_{f} Q_{1} \in H_{1}$,

$$
\begin{equation*}
\int_{-\pi}^{\pi} p\left(e^{i \theta}\right) f\left(e^{i \theta}\right) \phi\left(e^{i t}\right) d \theta=0 \tag{3.2.8}
\end{equation*}
$$

for every polynomial p. Since $P f$ is weak ${ }^{*}$-dense in H_{1} and ϕ is continuous, (3.2.8) implies

$$
\begin{equation*}
\int_{-\pi}^{\pi} h\left(e^{i t}\right) \phi\left(e^{i \theta}\right) d \theta=0 \tag{3.2.9}
\end{equation*}
$$

for every $h \in H_{1}$. By (3.2.7), it follows that there is a bounded analytic function g in U such that

$$
\begin{equation*}
\left.g\left(e^{i \theta}\right)=\overline{M_{1}\left(e^{i \theta}\right)} Q_{1}\left(e^{i \theta}\right) \quad \text { (a.e. on } C\right) \text {. } \tag{3.2.10}
\end{equation*}
$$

Thus $Q_{1}=M_{1} g$. Since Q_{1} is an outer function and M_{1} is a non-constant inner function, we have arrived at a contradiction.

Thus (iii) implies (i), and Theorem 5 is proved.
3.3. Additional remarks. We wish to point out that the full analogue of Theorem 1 of [1] is valid in our situation. Since it can be established by the same methods which were used to prove our Theorem 5 , we content ourselves with the statement of the result:

Theorem 6. For any $f \in H_{1}$, the closures of Pf in the norm topology and in the weak ${ }^{*}$ topology are identical. Moreover, the closure of Pf contains the closure of Pg if and only if M_{g} / M_{f} is bounded in U (i.e., if M_{f} divides M_{q}).

Finally, the analogue of Theorem 4 of [1] is also valid in this context. Again we simply state the result, this time since the proof is almost identical with that on p. 432 of [9]:

Theorem 7. Each closed linear subspace X of H_{1} which is invariant under multiplication by z is the closure of some Pf, where f is an inner function which is uniquely determined by X.

IV. EXTREMUM PROBLEMS IN H_{1}

4.1. We shall now apply some of the material of Section II to extremum problems in H_{1} and will obtain some results which go beyond those of [5] and [7].

If ϕ is a bounded measurable function on C, we shall denote by T_{ϕ} the functional defined on H_{1} by

$$
\begin{equation*}
T_{\phi}(f)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(e^{i t}\right) \phi\left(e^{i \theta}\right) d \theta . \tag{4.1.1}
\end{equation*}
$$

T_{ϕ} is a bounded linear functional and, conversely, every bounded linear
functional on H_{1} is of the form (4.1.1). The norm of T_{ϕ} is

$$
\begin{equation*}
\| T_{\phi}\left|=\sup _{s \in S}\right| T_{\phi}(f) \mid \tag{4.1.2}
\end{equation*}
$$

and we let S_{ϕ} denote the set of all $f \in S$ for which

$$
\begin{equation*}
T_{\phi}(f)=\left\|T_{\phi}\right\| . \tag{4.1.3}
\end{equation*}
$$

The set S_{ϕ} is simply the set of solutions of the extremum problem: " Maximize $T_{\phi}(f)$ for f in S," where we restrict ourselves to those f for which $T_{\phi}(f) \geqq 0$.

If $f \in H_{1}$ and $\|f\|=1$, S^{f} will denote that S_{ϕ} which contains f. (We will see in 4.2 that every f with $\|f\|=1$ belongs to one and only one S_{ϕ}.)

All results of this section deal with the structure of the sets S_{ϕ}.
Let us note right away that S_{ϕ} may be empty; the function

$$
\phi\left(e^{i \theta}\right)=\left\{\begin{array}{l}
e^{i \theta} \quad(0 \leqq \theta<\pi), \tag{4.1.4}\\
0 \quad(\pi \leqq \theta<2 \pi),
\end{array}\right.
$$

leads to an example of this sort (see [7; p. 308]).
We need one more definition before we state our results. An outer function $f \in H_{1}$ is a strong outer function if for every a with $|a|=1$ the function g_{a} defined by

$$
\begin{equation*}
g_{a}(z)=(z-a)^{-2} f(z) \quad(z \in U) \tag{4.1.5}
\end{equation*}
$$

fails to be in H_{1}.
Our first theorem concerns the question of uniqueness of the solution of an extremum problem of the above type :

Theorem 8. (a) If $\|f\|=1$ and $|f(z)|>\delta$ for all $z \in U$ and some $\delta>0$, then S^{f} consists of f alone.
(b) If S^{f} consists of f alone, then f is a strong outer function.

Unfortunately, the gap between these two conditions seems quite large.

Theorem 9. If S_{ϕ} contains more than one function, then S_{ϕ} contains infinitely many outer functions, and for every $a \in U$ there is an $f \in S_{\phi}$ with $f(a)=0$.

Lemma 4.6 contains some more information along these lines.
Theorem 10. If ϕ is continuous on C, then the following assertions are true:
(a) S_{ϕ} is weak*-compact and not empty.
(b) There is a non-negative integer n such that no $f \in S_{\phi}$ has more
than n zeros in U; for every $f \in S_{\phi}$ the function M_{f} is a finite Blaschke product.
(c) There exists a unique strong outer function g with $\|g\|=1$ and with the following property: for any choice of points a_{1}, \cdots, a_{n} in U (where n is the smallest integer for which (b) holds) there is a uniqne $f \in S_{\phi}$ such that $f\left(a_{1}\right)=\cdots=f\left(a_{n}\right)=0$, and this f is of the form

$$
\begin{equation*}
f(z)=\lambda g(z) \prod_{i=1}^{n}(a-z)\left(1-\bar{a}_{i} z\right) \quad(z \in U) \tag{4.1.6}
\end{equation*}
$$

where λ is a positive constant.
If some a appears more than once in the sequence a_{1}, \cdots, a_{n}, it is of course understood that f is to have a zero of the appropriate multiplicity at a.

Finally, if we strengthen the conditions on ϕ even more, we obtain a complete description of S_{ϕ}; we do not know whether the conclusion of Theorem 11 holds even if ϕ is merely continuous but not analytic.

Theorem 11. If ϕ is analytic in $|z|>R$, for some $R<1$, there is a non-negative integer n and a unique strong outer function g, such that every $f \in S_{\phi}$ is of the form

$$
\begin{equation*}
f(z)=\lambda g(z) \prod_{i=1}^{n}\left(a_{i}-z\right)\left(1-\bar{a}_{i} z\right) \quad(z \in U) \tag{4.1.7}
\end{equation*}
$$

where $\left|a_{i}\right| \leqq 1(1 \leqq i \leqq n)$ and λ is a positive constant. Conversely, every f of the form (4.1.7) is in S_{ϕ}, provided $\|f\|=1$.
4.2. Before proceeding to the proofs, we briefly present some of the background material.

Suppose S_{ϕ} is not empty. The functional T_{ϕ} can be extended to L_{1} in a norm-preserving manner; hence there is a function ψ with $\left|\psi\left(e^{i \theta}\right)\right| \leqq\left\|T_{\phi}\right\|$ a.e. on C, such that for every $f \in S_{\phi}$

$$
\begin{equation*}
\left\|T_{\phi}\right\|=T_{\phi}(f)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(e^{i \theta}\right) \psi\left(e^{i \theta}\right) d \theta \leqq\|f\| \cdot\left\|T_{\phi}\right\|=\left\|T_{\phi}\right\| \tag{4.2.1}
\end{equation*}
$$

Thus the equality sign holds in the above inequality, which implies that $\left|\psi\left(e^{i \theta}\right)\right|=\left\|T_{\phi}\right\|$ a.e. on C and that

$$
\begin{equation*}
f\left(e^{i \theta}\right) \psi\left(e^{i \theta}\right) \geqq \quad \quad \text { (a.e. on } C \text {) } \tag{4.2.2}
\end{equation*}
$$

for every $f \in S_{\phi}$ (this type of argument is the basis of the work in [7]).
Consequently, f and g belong to the same S_{ϕ} if and only if

$$
\arg f\left(e^{i \theta}\right)=\arg g\left(e^{i \theta}\right) \quad \text { (a.e. on } C \text {) ; }
$$

of course, we must also have $\|f\|=\|g\|=1$.

Furthermore, if $\|f\|=1$ and $\phi\left(e^{i \theta}\right)=\left|f\left(e^{i \theta}\right)\right| \mid f\left(e^{i \theta}\right)$, then $f \in S_{\phi} . \quad$ It follows that every f with $\|f\|=1$ belongs to some S_{ϕ}.

It is obvious that every S_{ϕ} is convex.
It is well known (and easy to prove) that every function of the form

$$
\begin{equation*}
w(z)=\prod_{i=1}^{n} \frac{\left(z-b_{i}\right)\left(1-\bar{b}_{i} z\right)}{\left(z-a_{i}\right)\left(1-\overline{a_{i}} z\right)} \tag{4.2.4}
\end{equation*}
$$

where $\left|a_{i}\right| \leqq 1$ and $\left|b_{i}\right| \leqq 1$, is real and non-negative on C; conversely, if f is meromorphic in $|z|<R$ for some $R>1$, and if $f(z) \geqq 0$ for all $z \in C$ (except for poles), then f is a positive multiple of some function of the form (4.2.4).

In this connection we state the following lemma which will be used frequently.
4.3. Lemma. Suppose $f \in H_{1},||f|=1$ and

$$
f\left(a_{1}\right)=f\left(a_{2}\right)=\cdots=f\left(a_{n}\right)=0,
$$

where $a_{i} \in U(1 \leqq i \leqq n)$. If $\left|b_{i}\right| \leqq 1(1 \leqq i \leqq n)$ then a positive multiple of the function g defined by

$$
g(z)=f(z) \prod_{i=1}^{n} \frac{\left(z-b_{i}\right)\left(1-\bar{b}_{i} z\right)}{\left(z-a_{i}\right)\left(1-\bar{a}_{i} z\right)} \quad(z \in U)
$$

is in S^{f}.
The proof follows immediately from (4.2.3) and the positivity of (4.2.4) on C.
4.4. Proof of Theorem 8. If $g \in S^{f}$, then $g\left(e^{i \theta}\right) / f\left(e^{i \theta}\right) \geqq 0$ a.e. on C, by (4.2.4). If $|f(z)|>\delta$ in U, then $1 \mid f$ is bounded, so that $g \mid f \in H_{1}$. Having real boundary values a.e. on $C, g \mid f$. if therefore constant, and since $\|f\|=\|g\|$, this constant is 1 . Thus $g=f$, and part (a) is proved.

Suppose next that S^{f} consists of f alone. If $f \neq Q_{f}$, we can choose $g \neq 0$ as in $\S 2.2$, and (2.2.5) implies that

$$
\begin{equation*}
\arg \left(f\left(e^{i \theta}\right) \pm g\left(e^{i \theta}\right)\right)=\arg f\left(e^{i \theta}\right) \quad \text { (a.e. on } C \text {) } \tag{4.4.1}
\end{equation*}
$$

Since $\|f \pm g\|=1$, by (2.2.7), we see that $f \pm g \in S^{f}$, so that S^{f} contains more than one function.

This contradiction shows that f is an outer function. Suppose f is not a strong outer function. Then some g_{a} defined by (4.1.5) is in H_{1}, and so is the function h defined by

$$
\begin{equation*}
h(z)=\frac{-a z}{(z-a)^{2}} f(z) \quad(z \in U) \tag{4.4.2}
\end{equation*}
$$

Since

$$
\begin{equation*}
\left.\arg h\left(e^{i \theta}\right)=\arg f\left(e^{i \theta}\right) \quad \text { (a.e. on } C\right) \tag{4.4.3}
\end{equation*}
$$

some constant multiple λh of h is in S^{f}. But $\lambda h \neq f$, which is again a contradiction.

Thus part (b) is proved.
4.5. Proof of Theorem 9. If S_{ϕ} contains more than one function, then since S_{ϕ} is convex it contains a line segment and hence infinitely many functions f which are not outer functions (by Theorem 1). To each such f we assign a g as in $\S 2.2$; arguing as in the proof of Theorem 8, we see that $f+g$ and $f-g$ are outer functions which belong to S_{ϕ}. Thus S_{ϕ} contains infinitely many outer functions.

If $f(b)=0$ for some $f \in S_{\phi}$ and some $b \in U$, then Lemma 4.3 shows that S_{ϕ} contains, for every $a \in U$, a function f_{1} such that $f_{1}(a)=0$.

The proof of the theorem will therefore be complete if we can show that S_{ϕ} contains a function which has a zero in U. Since S_{ϕ} contains functions which are not outer functions, the required conclusion is a consequence of the following lemma, which actually proves a little more.
4.6. Lemma. Suppose $\|f\|=1$ and M_{f} is not a finite Blaschke product (in particular, $M_{f} \neq 1$). Then S^{f} contains a function h with infinitely many zeros in U. Also, for any n prescribed points of U, S^{f} contains a function k which vanishes at those points.

Proof. If g is associated with f as in §2.2, then, as we saw in the proof of Theorem $8, f+g$ and $f-g$ are in S^{f}, and so is every h of the form

$$
\begin{equation*}
h=\lambda(f+g)+(1-\lambda)(f-g) \quad(0 \leqq \lambda \leqq 1) \tag{4.6.1}
\end{equation*}
$$

since S^{f} is convex. We shall show that h has infinitely many zeros in U if λ is chosen appropriately.

If $\lambda \neq 1 / 2$, (2.2.3) leads to the following representation of h :

$$
\begin{equation*}
h=\left(\lambda-\frac{1}{2}\right) e^{-i \alpha} Q_{f}\left\{u^{2}+\frac{2}{2 \lambda-1} u+1\right\} ; \tag{4.6.2}
\end{equation*}
$$

we recall that $u=e^{i \alpha} M_{f}$, so that $|u(z)|<1$ in U and $\left|u\left(e^{i \theta}\right)\right|=1$ a.e. on C.
Let $x(\lambda)$ denote that solution of the equation

$$
\begin{equation*}
x^{2}+\frac{2}{2 \lambda-1} x+1=0 \quad\left(0<\lambda<1, \lambda \neq \frac{1}{2}\right) \tag{4.6.3}
\end{equation*}
$$

which lies in U; the set of these points $x(\lambda)$ covers an arc $\Gamma \subset U$. Since Γ has positive logarithmic capacity, a theorem of Frostman [4;
p. 111] implies that for some λ_{0} the equation

$$
\begin{equation*}
u(z)=x\left(\lambda_{0}\right) \tag{4.6.4}
\end{equation*}
$$

has infinitely many solutions $z \in U$. If we put $\lambda=\lambda_{0}$ in (4.6.2), the resulting function h has infinitely many zeros in U.

This proves the first assertion of the lemma. The second is an immediate consequence, for if a_{1}, \cdots, a_{n} are preassigned in U, pick points b_{1}, \cdots, b_{n} in U such that $h\left(b_{1}\right)=\cdots=h\left(b_{n}\right)=0$, and apply Lemma 4.3 .
4.7. Proof of Theorem 10. If ϕ is continuous, T_{ϕ} is continuous in the weak*-topology of H_{1}. Since S is weak*-compact, $\left|T_{\phi}\right|$ attains its maximum on S, so that S_{ϕ} is not empty ; S_{ϕ} is weak*-compact since it is the set of all $f \in S$ at which $T_{\phi}(f)=\left\|T_{\phi}\right\|$. Hence (a) holds.

If there were functions in S_{ϕ} with arbitrarily many zeros in U, then, by Lemma $4.3, S_{\phi}$ would contain functions $f_{m}(m=1,2,3, \cdots)$ with

$$
\begin{equation*}
f_{m}\left(\frac{1}{2}\right)=f_{m}\left(\frac{1}{3}\right)=\cdots=f_{m}\left(\frac{1}{m}\right)=0 . \tag{4.7.1}
\end{equation*}
$$

By Lemma 1.6, S_{ϕ} is compact in the topology of pointwise convergence in U. Thus $\left\{f_{m}\right\}$ must have a limit point in S_{ϕ}, but this is impossible since any limit point g would satisfy

$$
\begin{equation*}
g\left(\frac{1}{m}\right)=0 \quad(m=2,3,4, \cdots) \tag{4.7.1}
\end{equation*}
$$

and thus be identically 0 .
It now follows from Lemma 4.6 that M_{f} is a finite Blaschke product, for every $f \in S_{\phi}$. Hence (b) holds.

For the rest of this proof, n will denote the smallest non-negative integer for which (b) holds. Our proof of (c) will use the fact that (b) holds, but will not make any direct use of the continuity of ϕ.

We shall first prove that there is a unique $h \in S_{\phi}$ which has a zero of multiplicity n at $z=0$ (the existence of such an $h \in S_{\psi}$ follows from our choice of n and Lemma 4.3). Assume that there are two such functions, h_{1} and h_{2}. Define

$$
\begin{equation*}
g_{i}(z)=z^{-n} h_{i}(z) \quad(i=1,2 ; z \in U) \tag{4.7.2}
\end{equation*}
$$

Since $h_{i} \in S_{\phi}, \arg h_{1}=\arg h_{2}$ a.e. on C, so that $\arg g_{1}=\arg g_{2}$ a.e. on C, and thus $S^{g_{1}}=S^{g_{2}}$. Since $g_{1} \neq g_{2}$, Theorem 9 shows that $S^{g_{1}}$ contains a function g_{3} with $g_{3}(0)=0$. If

$$
h_{3}(z)=z^{n} g_{3}(z) \quad(z \in U)
$$

then $h_{3} \in S_{\phi}$ (since $\arg h_{3}=\arg h_{1}$ a.e. on C), and h_{3} has a zero of multiplicity at least $n+1$ at $z=0$. This contradicts our choice of n.

Thus S_{ϕ} contains a unique function h with a zero of multiplicity n at $z=0$. Define the function g by

$$
g(z)=z^{-n} h(z) \quad(z \in U)
$$

S^{g} consists of g alone, for if some $g_{4} \neq g$ were in S^{a}, the function h_{4} defined by

$$
\begin{equation*}
h_{4}(z)=z^{n} g_{4}(z) \quad(z \in U) \tag{4.7.5}
\end{equation*}
$$

would be in S_{Φ}, would have a zero of multiplicity n at $z=0$, and would be distinct from h. By Theorem 8(b), g is therefore a strong outer function, and it is clear from the foregoing that g is the only such function which satisfies (4.1.6), with $a_{1}=\cdots=a_{n}=0$.

The remaining assertion of the theorem is now an immediate consequence of Lemma 4.3 .
4.8. Proof of Theorem 11. If ϕ is analytic in $|z|>R$, for some $R<1$, the conclusions of Theorem 10 are of course valid. Let g be the strong outer function whose existence is guaranteed by Theorem 10. Then if f with $\|f\|=1$ is of the form (4.1.7), with $\lambda>0$ and $\left|a_{i}\right| \leqq 1, f$ will be in S_{ϕ} because of Lemma 4.3.

It remains to be proved that every $f \in S_{\phi}$ is of the form (4.1.7). Our argument now is similar to that of Section 8.4 of [7]. Let ψ be the function which is related to ϕ as in $\S 4.2$. Since $T_{\psi}=T_{\phi}, \psi\left(e^{i \theta}\right)$ and $\phi\left(e^{i \theta}\right)$ differ by the boundary values of a bounded analytic function in U, and since ϕ is analytic in $|z|>R, \psi$ is bounded and analytic in $R_{1}<|z|<1$, for any R_{1} which satisfies $R<R_{1}<1$.

Our discussion in $\S 4.2$ shows that a function $f \in H_{1}$ with $\|f\|=1$ is in $S_{\psi}=S_{\phi}$ if and only if

$$
f\left(e^{i \theta}\right) \psi\left(e^{i \theta}\right) \geqq \quad \quad \text { (a.e. on } C \text {). }
$$

For any such f, define F_{f} by

$$
\begin{equation*}
F_{f}(z)=f(z) \psi(z) \quad\left(R_{1}<|z|<1\right) \tag{4.8.2}
\end{equation*}
$$

F_{f} is analytic in $R_{1}<|z|<1$, has real boundary values a.e. on C, and satisfies

$$
\begin{equation*}
\lim _{r \rightarrow 1} \int_{-\pi}^{\pi}\left|F_{f}\left(r e^{i \theta}\right)-F_{f}\left(e^{i \theta}\right)\right| d \theta=0 ; \tag{4.8.3}
\end{equation*}
$$

hence it can be extended, by the Schwarz reflection principle, so as to be analytic in $R_{1}<\mid z<R_{1}{ }^{-1}$.

Let g be the strong outer function chosen earlier, and define h by
$h(z)=z^{n} g(z)$. Then $h \in S_{\phi}$. Since $F_{f}=f \psi$ and $F_{h}=h \psi$, the function $f / h=$ $F_{f} \mid F_{h}$ is meromorphic in $|z|<R_{1}^{-1}$; it is real and non-negative on C, except possibly for poles, since f and h are both in S_{ϕ}. Hence f / h is of the form (4.2.4), i.e.,

$$
\begin{equation*}
f(z)=\lambda z^{n} g(z) \prod_{i=1}^{m} \frac{\left(z-a_{i}\right)\left(1-\overline{a_{i}} z\right)}{\left(z-b_{i}\right)\left(1-\overline{b_{i}} z\right)} \quad(z \in U) \tag{4.8.4}
\end{equation*}
$$

for some $\lambda>0$ and $\left|a_{i}\right| \leqq 1,\left|b_{i}\right| \leqq 1$.
We can assume that none of the a_{i} is equal to any b_{j}. Then, since f is analytic in U, either all b_{i} are 0 and $m \leqq n$, or some b_{i} satisfies $\left|b_{i}\right|=1$. This last alternative would contradict the fact that g is a strong outer function.

Thus each $f \in S_{\phi}$ is of the form (4.1.7), and the proof is complete.
4.9. Remarks. The hypothesis of Theorem 11 can be (apparently) weakened; instead of assuming that ϕ is analytic in $|z|>R$ for some $R<1$, it is enough to assume that ϕ is analytic in $R<|z|<1$ (and, of course, bounded on C). Indeed, any such ϕ is of the form $\phi=\phi_{1}+\phi_{2}$, where ϕ_{1} is bounded and analytic in $U, \phi_{1}(0)=0$, and ϕ_{2} is analytic in $|z|>R$. Thus $T_{\phi}=T_{\phi_{2}}$, and we are back in the situation covered by Theorem 11.

Our second remark is that the functionals T_{ϕ} with ϕ analytic in $|z|>R(R<1)$ can be neatly characterized in terms of functional analysis. If T_{ϕ} is of this type, suppose $f_{n} \in H_{1}$ and f_{n} converges to f, uniformly on compact subsets of U; we do not assume that $\left\{\left\|f_{n}\right\|\right\}$ is bounded ; then $T_{\phi}\left(f_{n}\right) \rightarrow T_{\phi}(f)$. This is a consequence of the Cauchy integral theorem : if $R<r<1$, then

$$
\int_{-\pi}^{\pi} f_{n}\left(e^{i \theta}\right) \phi\left(e^{i \theta}\right) d \theta=r \int_{-\pi}^{\pi} f_{n}\left(r e^{i \theta}\right) \phi\left(r e^{i \theta}\right) d \theta
$$

But the converse of this is also true:
4.10. If T is a linear functional on H_{1} with the property that $T\left(f_{n}\right) \rightarrow T(f)$ whenever $f_{n} \rightarrow f$ uniformly on compact subsets of U, then there exists a function ϕ, analytic in $|z|>R$ for some $R<1$, such that $T=T_{\phi}$.

Proof. Let E be the linear space of all continuous functions on U, with the topology of uniform convergence on compact subsets. Since E is locally convex and since T is continuous on the linear subspace H_{1} of E, the generalized Hahn-Banach theorem [2, Corollary 1, p. 111] allows us to extend T to a continuous linear functional on E, and this functional is of the form

$$
\begin{equation*}
T(f)=\int f d \mu \tag{4.10.1}
\end{equation*}
$$

$$
(f \in E),
$$

where μ is a measure with compact support in U [3, Proposition 11, p. 73].
Choose $R<1$, such that the support of μ lies in $|z|<R$. If

$$
\begin{equation*}
\phi(w)=w \int \frac{d_{\mu}(z)}{w-z}, \tag{4.10.2}
\end{equation*}
$$

then ϕ is analytic in $|w|>R$, and for all $f \in H_{1}$ we have

$$
\begin{aligned}
T(f) & =\int\left\{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{f\left(e^{i \theta}\right)}{} e^{i \theta}-z d \theta\right\} d \mu(z)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(e^{i \theta}\right)\left\{\int \frac{d_{\mu}(z)}{e^{i \theta}-z}\right\} e^{i \theta} d \theta \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(e^{i \theta}\right) \phi\left(e^{i \theta}\right) d \theta=T_{\phi}(f) .
\end{aligned}
$$

V. APPENDIX

Let H_{∞} be the class of all functions which are analytic and bounded in U, and let A consist of all uniformly continuous analytic functions in U (so that every $f \in A$ can be extended continuously to the closed unit disc). With the norm

$$
\|f\|_{\infty}=\sup _{z \in U}|f(z)|,
$$

both H_{∞} and A are Banach spaces. The extreme points of their unit spheres have been identified jointly by Arens, Buck, Carleson, Hoffman, and Royden, during the Princeton Conference on Functions of a Complex Variable in September, 1957. For the sake of completeness, we include the result in the present paper.

Theorem 12. Let X be H_{∞} or A; suppose $f \in X$ and $\|f\|_{\infty}=1$. Then f is an extreme point of the unit sphere of X if and only if

$$
\begin{equation*}
\int_{-\pi}^{\pi} \log \left\{1-\left|f\left(e^{i t}\right)\right|\right\} d \theta=-\infty . \tag{*}
\end{equation*}
$$

Proof. Suppose (${ }^{*}$) holds. If $g \in X$ and $\|f+g\|_{\infty}=\|f-g\|_{\infty}=1$,

$$
|g(z)|^{2} \leqq 1-|f(z)|^{2} \leqq 2\{1-|f(z)|\} \quad(z \in U)
$$

Consequently, $\int_{-\pi}^{\pi} \log \left|g\left(e^{i \theta}\right)\right| d \theta=-\infty$, and this implies that g is identically 0 . Hence f is an extreme point.

Conversely, suppose (${ }^{*}$) is false and $X=H_{\infty}$. Define

$$
g_{1}(z)=\exp \left\{\int_{-\pi}^{\pi} \frac{e^{i \theta}+z}{e^{i \theta}-z} \log \left[1-\left|f\left(e^{i \theta}\right)\right|\right] d \theta\right\} \quad(z \in U)
$$

Then $g_{1}(z) \neq 0,\left|g_{1}(z)\right|<1$, and $\left|g_{1}\left(e^{i \theta}\right)\right| \leqq 1-\left|f\left(e^{i \theta}\right)\right|$ a.e. on C. It follows that $\left\|. f+g_{1}\right\|_{\infty} \leqq 1$ and $\left\|f-g_{1}\right\|_{\infty} \leqq 1$, so that f is not an extreme point.

Finally, if $X=A$ and $\left(^{*}\right)$ is false, let E be the set of all $e^{i g} \in C$ at which $\left|f\left(e^{i \theta}\right)\right|=1$. There is then a continuous function ϕ on C such that (i) $0 \leqq \phi\left(e^{i \theta}\right) \leqq 1-\left|f\left(e^{i \theta}\right)\right|$, (ii) $\int_{-\pi}^{\pi} \log \phi\left(e^{i \theta}\right) d \theta>-\infty$, (iii) on every closed subarc of C which is disjoint from E, ϕ has a bounded derivative. Put

$$
g_{2}(z)=\exp \left\{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{e^{i \theta}+z}{e^{i \theta}-z} \log \phi\left(e^{i \theta}\right) d \theta\right\} \quad(z \in U)
$$

Then $g_{2} \in A$ (by (iii)), and g_{2} has all the properties of g_{1} which were used in the preceding paragraph. It follows, as above, that f is not an extreme point.

References

1. Arne Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math., 81 (1949), 239-255.
2. N. Bourbaki, Livre V, Espaces vectoriels ípologiques.
3. - Livre VI, Intégration.
4. Otto Frostman, Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Medd. Lunds Univ. Mat. Sem. 3 (1935).
5. A. J. Macintyre and W. W. Rogosinski, Extremum problems in the theory of an alytic functions, Acta Math., 82 (1950), 275-325.
6. Frederic Riesz, ̈̈ber die Randwerte einer analytischen Funktion, Math. 18 (1923), 87-95.
7. W. W. Rogosinski and H. S. Shapiro, On certain extremum problems for analytic functions, Acta Math., 90 (1953), 287-318.
8. Walter Rudin, Analytic functions of class H_{p}, Trans. Amer. Math. Soc., 78 (1955), 46-66.
9. Walter Rudin, The closed ideals in an algebra of analytic functions, Canad. J. Math., 9 (1957), 426-434.
10. Antoni Zygmund, Trigonometrical series, Warsaw, 1935.

Stanford University and University of Rochester.

[^0]: Received February 13, 1958. The second author is a Research Fellow of the Alfred P. Sloan Foundation.

