
EXTREME POINTS AND EXTREMUM PROBLEMS IN Hλ

KAREL DE LEEUW AND WALTER RUDIN

The class Hλ consists of all functions / which are analytic in the
open unit disc, and for which

11/11= sup- 1 \2it\f(reiθ)\dθ
0<r<i 2π Jo

is finite. With this norm, H1 is a Banach space, whose unit sphere
will be denoted by S; that is, S is the set of all fe H, with \\f\\ ^ 1.

We are concerned in this paper with (a) the identification of the
extreme points of S and some geometric properties of the set of these
extreme points, (b) the closure of Pf (the set of all functions of the
form p f, where p ranges over the polynomials and / is a fixed func-
tion in HΎ) in various topologies, and (c) the structure of the set of
those f e S which maximize a given bounded linear functional on Hx.

We find that the factorization / = MfQf (see Lemma 1.3), which was
apparently first used by Beurling [1], is of basic importance in these
problems.

Our results are summarized at the beginning of Sections II, III,
and IV.

We wish to acknowledge several helpful conversations with Halsey
Royden.

I. PRELIMINARIES

1.1 Let C be the boundary of the open unit disc U in the complex
plane. If feHlf then f(eίθ), which we define to be lim f(reίθ), exists
almost everywhere on C and differs from 0 for almost all eίθ, unless /
is identically 0. Moreover, the one-to-one correspondence between an
fe Hλ and its boundary function is an isometric embedding of Hλ in Lu

the Banach space of all Lebesgue integrable functions on C, normed by

(1.1.1) 11/11= If* \f(4*)\dβ .
2π J-Λ

Thus (1.1.1) may be taken as the norm in H^ We also have

(1.1.2) limΓ \f(reiθ) -f(eίθ)\dθ = 0
r-*l J-Tt
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for every / e Hlf and

(1.1.3) f(z) = U * / ( g dΨ = A-Γ f(e*ηPr(θ - Ψ)dψ ,

where z = re iβ and the Poisson kernel is denned by

U14Ϊ P(θ)- 1~
(1.1.4) Ftf) - - Γ - -

For proofs of these facts we refer to [6] and [10 Section 7.5].

1.2. Inner functions and outer functions. A Blaschke product is a
function of the form

(1.2.1) B(z) = zm Π anZZ ^ L (z 6 U)
»=i 1— anz an

where m is a non-negative integer, 0 < | α n | < l , and Σ ( l — Iα»|)<α>. The
set {an} may be finite, or even empty. If {an} is finite, we call B a
finite Blaschke product.

A function of the form

(1.2.2) M(z) = B(z) exp ) - j ^ - ^ J

where 5 is a Blaschke product and μ is a non-negative singular (with
respect to Lebesge measuree) measure on C, is called an inner function
[1]. A function /, analytic in U, is an inner function if and only if /
is bounded in U, f has radial limits of modulus 1 almost everywhere on
C, and the first non-zero Taylor coefficient of / is positive [9].

An outer function [1] is a function of the form

(1.2.3) Q(z) = c exp { f* ^~±^h(θ)dθ\ (z e U) ,
U-tf eiθ—z )

where c^O is a constant and h β LL.
The following factorization is crucial for what follows (see [1] and [9]).

1.3. LEMMA. Eachfe HΎ (except / = 0) has a unique factorization
of the form f= MfQf, where Mf is an inner function and Qf is an outer
function there is a real a such that

(1.3.1) QJz) = exp { ^ (* -ζ±«- log \f(e^) \dθ + ia \ (zeU);

also, Q,eHlt and \\Q,\\ = \\f\\.
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It is known [1] that f—Qf if and only if

(1.3.2) log |/(0) I = _L [ log |/(e*«) \dθ .

Indeed, if f—Qf then (1.3.1) leads immediately to (1.3.2) on the other
hand, if MfΦl, then the left member of (1.3.2) is less than the right
member.

1.4. LEMMA. Iffe Hlf either of the following two conditions implies
thatf=Qf:

(i) l//efli
(ii) WtfizflXifσrattze U.

Proof. If 0 = 1// and g e Hly then l=fg = MjMgQjQg. By Lemma
1.3, the factorization of 1 is unique, so that QfQg = MfMg — l. This im-
plies Mf=l, so f—Qf.

If 3ΐ[/(2)>0] define f,(z)=f(z) + e for zeU. Then l//8 is bounded
and by (i) we have

(1.4.1) /.(*) = exp U ~ [ ^±*- log |/,(β«) \dθ + i arg /ε(0)l (z e U) .

As ε->0, the integrable functions log |/ 8 | decrease monotonically to
log I/I by the Lebesgue convergence theorem, (1.4.1) thus remains
valid if f2 is replaced by /, so that / = Q/#

1.5. Some topologies on Hτ. Besides the norm topology, we shall
be most concerned with the weak* topology, which may be described
as follows : The space Lλ can be isometrically embedded in M, the space of
bounded Borel measures on C; M is the dual space of the space of all
continuous functions on C and H± is a closed subspace of M, in the
weak* topology of M. The restriction of this topology to Hλ will be
called the weak* topology of Hλ. Since M is a dual space, its unit
sphere is weak*-compact. Hence S, the unit sphere of Hu is weak*-
compact. The fact that the space of all continuous functions on C is
separable implies that S is metrizable in the weak* topology. Thus,
when discussing weak* convergence in S, it suffices to consider simple
countable sequences.

There is also the weak topology of H1} i.e., the weakest topology
in which all bounded linear functionals on ίζ are continuous. The weak
topology is actually stronger than the weak* topology : S is weak*-
compact, but £ is not compact in the weak topology [8 p. 54].

The following lemma describes the weak* topology on S in a manner
which will be useful to us.

1.6. LEMMA. Suppose fn e S(n — ly 2, 3, •). Each of the following
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four properties implies the other three :

( i ) fn~>f in the weak* topology of Hτ.

(ii) fn(z)-+f(z) or every z e U.

(iii) fn(z)-+f(z) uniformly on all compact subsets of U.

(iv) lim an^ — ak for k = 0,1, 2, , where

fn(z) = Y,anxz\ f{z) = ±a*z« (z e U) .

Proof, (i) means, by definition, that

(1.6.1) l i m Γ fn(eίθ)φ(eίΘ)dθ = f* f(eίθ)φ(eίθ)dθ
ft->oo J -it J -Tt

for every continuous function φ on C. Since, for every z e U, the
function φ(eίθ) = (1 — e~iθz)~ι is of this type, (1.1.3) shows that (i) im-
plies (ii).

Since the functions \fn} are bounded in norm, they are uniformly
bounded on every compact subset of U [8 p. 51] and hence form a
normal family, so that (ii) implies (iii).

That (iii) implies (iv) follows immediately from the Cauchy integral
formulae for the derivatives of fn at the origin.

Finally, if (iv) holds, then (1.6.1) holds whenever φ is a trigono-
metric polynomial. Since every continuous function can be uniformly
approximated on C by trigonometric polynomials, the boundedness of
{||/Λ||} implies that (1.6.1) holds for every continuous φ. Thus (iv) im-
plies (i).

II. THE EXTREME POINTS OF S.

2.1. An element / of S is called an extreme point of S if / is not
an interior point of any line segment that lies in S. Since S is weak*-
compact and convex, the Krein-Milman theorem [2 p. 84] guarantees
the existence of extreme points. However, the following more detailed
information will be established, without use of the Krein-Milman theorem.

THEOREM 1. A function fe ΈLX is an extreme point of S if and only

if H/|| = l cmdf=Qf.

THEOREM 2. (a) If \\f\\ = 1 and f is not an extreme point of S, then
there exist extreme points f and f2 such that f+Λ — ̂ f (b) // | | / | | < 1 ,
then f is a convex combination of some two extreme points of S.

THEOREM 3. A function feHτ lies in the norm closure of the set
of all extreme points of S if and only if | | / | | = 1 and f{z)Φθ for all zeU.

THEOREM 4. A function feHτ lies in the weak*-closure of the set
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of all extreme points of S if and only if f e Sand f(z) Φ 0 for all ze U,
or iff is identically 0.

These results should be contrasted with the easily established fact
that the unit sphere of Lx has no extreme points at all, and that in the
unit spheres of the iϊp-spaces (for l < p < o o ) every boundary point is an
extreme point. The extreme points of the unit spheres of the space
i/oo of all bounded analytic functions in U and of the subspace of all
uniformly continuous functions have recently been determined (see § V).

2.2. For convenience, we shall now display some relations which
furnish the key to several parts of our paper.

Suppose f e Hlf / = MfQf, and Mf Φ 1. Choose a real a such that

(2.2.1) f* \f(eiΘ)\3i[e^Mf(eiθ)]d0 = 0

this can be done, since the left member of (2.2.1) is a real continuous
function of a which changes sign on the interval [0, π\. Put

(2.2.2) u(z) = el«Mf(z) (z e U)

and

(2.2.3) g(z) = \e-^Qf{z){l + u\z)) (z e U) .

Then g e Hτ and g Φ 0. Note that e~ioύQf =fju, that \u(eiθ)\ = l a.e.
on C, and that

(2.2.4) 25R[w] = u + H = u + - ~ = 1+M
u u

whenever \u\ = 1. These facts imply

(2.2.5) g(eiθ) = f(eίθMu(eίθ)] (a.e. on C) ,

so that

(2.2.6) \f(eiθ) ± g(eί9)\ = |/(βw)[(l + Sft[%(βw)]) (a.e. on C) .

By (2.2.1) we have, therefore,

(2.2.7) \\f+g\\ = \\f-g\\ = ll/ll.

Suppose next that λ is a real number, satisfying λ ^ 1. Then there
exists a real β such that

(2.2.8) f±λg = -1_β- |ΛQ/.(± te2 + 2%±Λ) = ± -~ ^ ^ - ( 1 :

Δ Δ
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Lemma 1.4 (ii) shows that each of the last two factors is an outer
function.

We conclude that f+λg and f — λg are outer functions, if λ ^ 1.

2.3. Proof of Theorem 1. Suppose ||/|[ = 1 and f=Qf. To prove
that / is an extreme point, it evidently suffices to show that the con-
ditions

(2.3.1) ll/+A|| = ||/-λ|| = l,

where h e H19 imply h — 0.
Let us assume that h is not identically 0 and that (2.3.1) holds.

Define

(2.3.2) k{z) = h(z)lf(z) (z e U)

and let k(eiθ) denote the boundary values of k, which exist a.e. on C.
By (2.3.1) we have

(2.3.3) J* βl + k{e»)\ + 1(1 - MO I ~ 2}\f(4*)\dβ = 0 .

Since f(eiθ)Φθ a.e. on C, (2.3.3) implies that k(elθ) is real a.e. on C, and
in fact that

(2.3.4) - 1 ^ k(eίθ) ^ 1 (a.e. on C) .

Thus log\h(eiβ)\ ^log\f(eiθ)\ a.e. on C, and the factorization k =
MhQh\QfJ combined with (1.3.1), shows that k is bounded in U. Having
real boundary values a.e. on C, k must therefore be constant. But
(2.3.1) then implies that (1 + k)\\f\\ = (1 - h)\\f\\, so that k = 0, and there-
fore h — 0. Consequently, / is an extreme point of S.

It is clear that | | / | | = 1 if / is an extreme point of S. To prove
the converse, let us therefore assume that \\f\\ = 1 and/^Q/ If ^ is
then defined as in § 2.2, we see from (2.2.7) that f+g e Sand f-geS,
so that / is not an extreme point of S. Theorem 1 is thus proved.

2.4. Proof of Theorem 2. Suppose \\f\\ = 1 and/is not an extreme
point of S. By Theorem 1, / is not an outer function define g as in
§ 2.2, and putΛ —f+g, fλ =f — g. By (2.2.8), fλ and / 2 are outer func-
tions, (2.2.7) shows that \\fx\\ =• | | / 2 | | = 1, so that fλ and / 2 are extreme
points of S and 2 / = ^ = / , .

Suppose next that \\f\\ = t, with 0 < £ < l (the case t—0 is trivial).
If / is an outer function, so are the functions fτ = f\t and / 2 = — f19 and
/ is clearly on the segment bounded by fτ and f2, that is, by extreme
points of S. If / is not an outer function, define g as in § 2.2, and
choose λι > 1 and Λ2 > 1 such that
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(2.4.1) | | / + λlβ\\ = \\f - ^ | | = 1 .

By (2.2.8), f+λλg and / — lzg are outer functions, hence extreme points
of S, and / lies on the segment bounded by them.

This completes the proof of Theorem 2.

2.5. Proof of Theorem 3. Suppose

(2.5.1) Km | | Λ - / | | = 0,
n~*oo

where {fn} is a sequence of extreme points of S. Then | | / | | = 1, and
since fn-+f uniformly on compact subsets of U and no /„ has a zero in
U, we conclude that either / has no zero in U or / is identically 0.
The last alternative contradicts the fact that \\f\\ = 1.

To establish the converse, suppose | | / | | = 1 and / has no zero in U.
For each r < 1, define fr(z) = f(rz) for z e U, and put gr = / r / | | / r | | . Then
gr is bounded away from 0, and is therefore an outer function, by
Lemma 1.4, and an extreme point of S, by Theorem 1. Since

(2.5.2) f~gr =/r{l - 1/IIΛH} +<f-fr) ,

and since | |/ r | |->l as r-*l (see (1.1.2)), we have

(2.5.3) lim \\f-gr\\ = 0.

This proves Theorem 3.

2.6. Proof of Theorem 4. Suppose {fn} is a sequence of extreme
points of S and fn-+f in the weak* topology. Since S is weak*-compact,
f e S. By Lemma 1.6, fn->f uniformly on compact subsets of U, so
that / either has no zero in U or / is identically 0.

To establish the converse, suppose | | / | | = 1, / has no zero in U, and
λ is a real number satisfying 0<:Λ<l. Choose θ such that

(2.6.1) f(eiθ) = lim f(reίθ)
r->l

exists and is not 0 and define

(2.6.2) h(z) = ^ ( 4 r (zeU).
z — eιθ

If h were in Hu then the Poisson integral representation (1.1.3) of h
would lead to the relation

(2.6.3) lim (1 - r)h(reίθ) = 0 ,
r-»l

so that f(eίθ) — 0, a contradiction. Thus h $ Hλ.
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For each α > l , define

(2.6.4) fa(z) = f(z)\ λ - ^ - U (* 6 V)'
ί z—aeiθ)

where εa is chosen positive and so that | | / J | = 1. Note that the second
factor in (2.6.4) is 0 only when z—(a-\-εaiλ)eiθ, and this number is not
in U. Thus (by Theorem 3) each fa is in the norm closure, and hence
in the weak*-closure, of the extreme points of S.

Since h $ Hlf εα->0 as α->l, so that fa{z)-+λf(z) as α->l, for all
z 6 U. By Lemma 1.6, this implies that λf is in the weak*-closure of
the extreme points of S. Since this is true for a l l / e ίZi with | | / | | = 1
and without zeroes in U, and for all λ with 0 ^ λ < 1, it is also true for
λ — 1, and the theorem is proved.

III. THE SETS Pf

3.1. For any fe Hτ the collection of all functions g of the form

(3.1.1) g(z) = p(z)f(z) {zeϋ)y

where p is a polynomial, will be denoted by Pf. In other words, Pf is
the linear subspace of Rx which is generated by the functions znf(z)(n =
0, 1, 2, •). We are concerned with finding conditions on/ under which
Pf is dense in Hx.

THEOREM 5. If f e Hλ and f Φ 0 the following three statements are
equivalent:

( i ) f=Qf.

(ii) Pf is dense in Hλ in the norm topology.

(iii) Pf is dense in Hx in the weak* topology.

The corresponding problem for H2 in the norm topology was solved
by Beurling [1] here too a necessary and sufficient condition is that
f= Qf.

If [ |/ | | :=l, Theorems 1 and 5 imply that Pf is dense in Hτ in either
of these topologies (and hence in any intermediate one) if and only if
/ is an extreme point of S. One would like to have a direct proof of
this equivalence (i.e., a proof not involving the Poisson integral and the
factorization f—MfQf), but we have been unable to find such a proof.
Indeed, there may not exist one, since the analogous statement is false
in H2, where every / with [|/|| = 1 is an extreme point of the unit sphere.

3.2. Proof of Theorem 5. Suppose f=Qf, and suppose φ is a
bounded measurable function on C such that
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(3.2.1) f* p(eiΘ)f(eίθ)φ(eiθ)dθ = 0

for all polynomials p. By the Theorem of F. and M. Riesz [10 p. 158]
there is a function h e Hλ such that h(Q) = 0 and

(3.2.2.) f(eiθ)φ(eίθ) = h(eί9) (a.e. on C) .

The function g defined by

(3.2.3.) g = A- = MhQ±
J W/

is analytic in U and has radial boundary values equal to φ{eiθ) a.e. on
C. By (3.2.2), log \h(eiθ)\-log \f(eίθ) is bounded above on C, so that
(3.2.3), combined with (1.3.1), implies that # is bounded in U. Also,
0(0) = 0 since Λ(0) = 0.

Consequently, for any k e Hτ we have

(3.2.4) V k(eίθ)φ(eίθ)dθ - Γ k(eίθ)g(eίθ)dθ = 0 .

In other words, every bounded linear functional on Hτ which annihilates
Pf also annihilates Hu so that Pf is dense in Hλ, in the norm topology.
Thus (i) implies (ii).

It is trivial that (ii) implies (iii).
Suppose next that Pf is weak*-dense in Hx but that / Φ Qf. By

Lemma 1.6, / cannot have a zero in U. Hence

(3.2.5) Mf(z) = exp ( - \* -ζ+?-^(«)i (z e U)

for some positive singular measure μ. There is a closed subset E of C
with /i(£7)>0, whose Lebesgue measure is 0. Define

(3.2.6) MM = exp { - [ ^±

and M2(z) = Mf(z)lM1(z). Then / =
There exists an outer function QL which is uniformly continuous in

U, such that Q^e*0) = 0 for every eiθ e E (compare [9 p. 433]). Define

(3.2.7) φ(eίθ) = M1(eiθ) Q^W .

Then φ is continuous on C since / = Λί1Λί2Q/, we have

iKβ^) a.e. on C, and since pM.QjQ, e Hί9
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(3.2.8) Γ p(eίθ)f(eiΘ)φ(eiθ)dθ - 0

for every polynomial p. Since Pf is weak*-dense in Hx and φ is con-
tinuous, (3.2.8) implies

(3.2.9) Γ h(eίθ)φ(eiθ)dθ = 0

for every h e Hλ. By (3.2.7), it follows that there is a bounded analytic
function g in U such that

(3.2.10) g(eίθ) = M1(ei$)Qι(eiθ) (a.e. on C).

Thus Qi = M&. Since Qx is an outer function and Mλ is a non-constant
inner function, we have arrived at a contradiction.

Thus (iii) implies (i), and Theorem 5 is proved.

3.3. Additional remarks. We wish to point out that the full an-
alogue of Theorem 1 of [1] is valid in our situation. Since it can be
established by the same methods which were used to prove our Theorem
5, we content ourselves with the statement of the result:

THEOREM 6. For any fe Hl9 the closures of Pf in the norm topology
and in the weak* topology are identical. Moreover, the closure of Pf
contains the closure of Pg if and only if Mg\Ms is bounded in U (i.e., if
Mf divides Mg).

Finally, the analogue of Theorem 4 of [1] is also valid in this con-
text. Again we simply state the result, this time since the proof is
almost identical with that on p. 432 of [9]:

THEOREM 7. Each closed linear subspace X of Hτ which is invariant
under multiplication by z is the closure of some Pf, where f is an inner
function which is uniquely determined by X.

IV. EXTREMUM PROBLEMS IN Hx

4.1. We shall now apply some of the material of Section II to
extremum problems in Hλ and will obtain some results which go beyond
those of [5] and [7].

If φ is a bounded measurable function on C, we shall denote by
Tφ the functional defined on Hλ by

(4.1.1) Tφ(f) = A Γ f(ei(>)φ(e")dθ .

Tφ is a bounded linear functional and, conversely, every bounded linear
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functional on Hλ is of the form (4.1.1). The norm of Tφ is

(4.1.2) l|Γφφ φ ( )
ses

and we let Sφ denote the set of all / e S for which

The set Sφ is simply the set of solutions of the extremum problem:
" Maximize Tφ(f) for / i n S," where we restrict ourselves to those / for
which Γφ(/)^0.

If / e Hλ and | |/ | | = 1, Sf will denote that Sφ which contains /. (We
will see in 4.2 that every / with ||/|[ = 1 belongs to one and only one

sΦ.)
All results of this section deal with the structure of the sets Sφ.
Let us note right away that Sφ may be empty the function

(4.1.4) φ ( O = f <° ̂ ' < *> '

leads to an example of this sort (see [7 p. 308]).
We need one more definition before we state our results. An outer

function fe Hλ is a strong outer function if for every a with \a\ — 1 the
function ga defined by

(4.1.5) ga(z) = (z - a)~Y(z) (z e U)

fails to be in JHΊ.
Our first theorem concerns the question of uniqueness of the solu-

tion of an extremum problem of the above type :

THEOREM 8. (a) If \\f\\ = 1 and \f{z)\ > δ for all ze U and some
£>0, then Sf consists of f alone.

(b) If Sf consists of f alone, then f is a strong outer function.
Unfortunately, the gap between these two conditions seems quite

large.

THEOREM 9. If Sφ contains more than one function, then Sφ contains
infinitely many outer functions, and for every a e U there is an f e Sφ

with f(a) = 0.
Lemma 4.6 contains some more information along these lines.

THEOREM 10. // φ is continuous on C, then the following assertions
are true:

(a) Sφ is weak*-compact and not empty.
(b) There is a non-negative integer n such that no f e Sφ has more
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than n zeros in U for every f e Sφ the function Mf is a finite Blaschke
product.

(c) There exists a unique strong outer function g with \\g\\ = 1 and
with the following property: for any choice of points au * , α n in U
(where n is the smallest integer for which (b) holds) there is a uniqne
f e Sφ such that f(aλ) = =f(an) = 0, and this f is of the form

(4.1.6) f(z) = λg(z) Π (a - z)(l - a,z) (z e U) ,

where λ is a positive constant.
If some a appears more than once in the sequence a19 , σn, it is

of course understood that / is to have a zero of the appropriate multi-
plicity at a.

Finally, if we strengthen the conditions on ψ even more, we obtain
a complete description of Sφ we do not know whether the conclusion
of Theorem 11 holds even if φ is merely continuous but not analytic.

THEOREM 11. If φ is analytic in \z\ > R, for some R < 1, there is a
non-negative integer n and a unique strong outer function g, such that
every f e Sφ is of the form

(4.1.7) f(z) = λg(z) Π (αt - z)(l - a,z) (z e U) ,
1 1

where l a j ^ l (l^i^ri) and λ is a positive constant. Conversely, every f
of the form (4.1.7) is in Sφ, provided \\f\\ — 1.

4.2. Before proceeding to the proofs, we briefly present some of
the background material.

Suppose Sφ is not empty. The functional Tφ can be extended to
Lλ in a norm-preserving manner hence there is a function ψ with
\φ{eiθ)\ £ \\TΦ\\ a.e. on C, such that for every fe Sφ

(4.2.1) | | Γ Φ | | - Tφ(f) = M* f{j«)φ(e™)dθ £ \\f\\ \\Tφ\\ = | | Γ Φ | | .

Thus the equality sign holds in the above inequality, which implies
that \Φ(eiθ)\ = | |Γφ| | a.e. on C and that

(4.2.2) f(eiθ)ψ(eίθ) ^ 0 (a.e. on C)

for every / e Sφ (this type of argument is the basis of the work in [7]).
Consequently, f and g belong to the same Sφ if and only if

(4.2.3) arg/(β i θ) = arg g(eiθ) (a.e. on C)

of course, we must also have | | / | | — ||gr|| = 1.
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Furthermore, if | | / | | = 1 and φ{etθ) = \f(eiB)\lf(ef9), t h e n / 6 Sφ. It
follows that every / with ||/|] = 1 belongs to some Sφ.

It is obvious that every Sφ is convex.
It is well known (and easy to prove) that every function of the

form

(4.2.4) w(z) = Π^-Md-M
i 1 ( M l )

where \at\ <£ 1 and |64 | <̂  1, is real and non-negative on C; conversely,
if / is meromorphic in \z\<R for some R>1, and if f(z) >̂ 0 for all
z e C (except for poles), then / is a positive multiple of some function
of the form (4.2.4).

In this connection we state the following lemma which will be used
frequently.

4.3. LEMMA. Suppose fe Hu \\f\ = 1 and

where at e U (1 ^ i ^ n). If \bt\ ̂  1 (1 ^ i ^ n) then a positive multiple of
the function g defined by

g(z) = /(s)Π-*?=Mί=^- (z e U)

is in Sf.

The proof follows immediately from (4.2.3) and the positivity of
(4.2.4) on C.

4.4. Proof of Theorem 8. If g e Sf, then g(eίΘ)lf(eίΘ) ^ 0 a.e. on C,
by (4.2.4). If \f{z)\ > δ in ϋ9 then 1// is bounded, so that g\f e Hx.
Having real boundary values a.e. on C, g\f if therefore constant, and
since | | / | | = | | # | | , this constant is 1. Thus g=f, and part (a) is proved.

Suppose next that Sf consists of / alone. If fψ Qf, we can choose
as in §2.2, and (2.2.5) implies that

(4.4.1) arg (f(eίΘ) ± g(eίΘ)) = arg/(e ίθ) (a.e. on C) .

Since | | / ± g\\ = 1, by (2.2.7), we see that f± g e Sf, so that Sf contains
more than one function.

This contradiction shows that / is an outer function. Suppose / is
not a strong outer function. Then some ga defined by (4.1.5) is in Hlf

and so is the function h defined by

(4.4.2) h(z) = -f™ f(z) (zeU).
(z-af
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Since

(4.4.3) arg h(eiθ) = arg/(eίθ) (a.e. on C) ,

some constant multiple λh of h is in Sf. But λh Φ /, which is again a
contradiction.

Thus part (b) is proved.

4.5. Proof of Theorem 9. If Sφ contains more than one function,
then since Sφ is convex it contains a line segment and hence infinitely
many functions / which are not outer functions (by Theorem 1). To
each such / we assign a g as in § 2.2 arguing as in the proof of
Theorem 8, we see that f + g and/ — g are outer functions which belong
to Sφ. Thus Sφ contains infinitely many outer functions.

If f(b) = 0 for some / e Sφ and some b e U, then Lemma 4.3 shows
that Sφ contains, for every a e U, a function fλ such that fλ(a) = 0.

The proof of the theorem will therefore be complete if we can
show that Sφ contains a function which has a zero in U. Since Sφ con-
tains functions which are not outer functions, the required conclusion
is a consequence of the following lemma, which actually proves a little
more.

4.6. LEMMA. Suppose \\f\\ = 1 and Mf is not a finite Blaschke
product {in particular, MfΦl). Then Sf contains a function h with in-
finitely many zeros in U. Also, for any n prescribed points of U, Sf

contains a function k which vanishes at those points.

Proof. If g is associated with / as in § 2.2, then, as we saw in the
proof of Theorem 8, f+g and f—g are in Sf, and so is every h of the
form

(4.6.1) h = λ{f + g) + (1 - λ)(f -g) (0 ^ λ^ 1)

since Sf is convex. We shall show that h has infinitely many zeros
in U if λ is chosen appropriately.

If λ Φ 1/2, (2.2.3) leads to the following representation of h :

(4.6.2) h=(λ- ^y^Qffr + ̂ u + l}

we recall that u = eiΛMf9 so that \u(z)\ < 1 in [7and \u(eiθ)\ = 1 a.e. on C.
Let x(λ) denote that solution of the equation

(4.6.3) x2 + γ-Λx +1 = 0 (o < λ < 1, λΦ J

which lies in U the set of these points x(λ) covers an arc Γ c U.
Since Γ has positive logarithmic capacity, a theorem of Frostman [4
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p. I l l ] implies that for some λ0 the equation

(4.6.4) u(z) = x(λ0)

has infinitely many solutions z e U. If we put λ = λQ in (4.6.2), the re-
sulting function h has infinitely many zeros in U.

This proves the first assertion of the lemma. The second is an
immediate consequence, for if alt ,an are preassigned in U, pick
points b19 , bn in U such that h{bλ) — = h(bn) — 0, and apply Lemma
4.3.

4.7. Proof of Theorem 10. If φ is continuous, Tφ is continuous in
the weak*-topology of Hλ, Since S is weak*-compact, \TΦ\ attains its
maximum on S, so that Sφ is not empty Sφ is weak*-compact since it
is the set of all fe S at which Tφ(f) = | |ΓΦ |Ϊ. Hence (a) holds.

If there were functions in Sφ with arbitrarily many zeros in U,
then, by Lemma 4.3, Sφ would contain functions fjjn — 1, 2, 3, •) with

By Lemma 1.6, £ φ is compact in the topology of pointwise convergence
in U. Thus {fm} must have a limit point in Sφ9 but this is impossible
since any limit point g would satisfy

(4.7.1) g(JL)=:θ ( w = 2 , 3 , 4 , . - . )
\ m /

and thus be identically 0.
It now follows from Lemma 4.6 that Mf is a finite Blaschke product,

for every / 6 Sφ. Hence (b) holds.
For the rest of this proof, n will denote the smallest non-negative

integer for which (b) holds. Our proof of (c) will use the fact that (b)
holds, but will not make any direct use of the continuity of φ.

We shall first prove that there is a unique h e Sφ which has a zero
of multiplicity n at z — 0 (the existence of such an h e Sψ follows from
our choice of n and Lemma 4.3). Assume that there are two such
functions, hλ and h2. Define

(4.7.2) gi(z) - z-nhlz) (i = 1, 2 z e U) .

Since hi e Sφ, arg hλ = arg hz a.e. on C, so that arg gλ == arg #2 a.e. on C,
and thus S9^ — Sg*. Since gλ Φ g2, Theorem 9 shows that S î contains a
function g3 with g3(0) = 0. If

(4.7.3) h,{z) = ^ 3 ( 2 ) (s e tf) >
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then ks 6 Sφ (since arg h3 = arg hx a.e. on C), and h3 has a zero of mul-
tiplicity at least n + 1 at z = 0. This contradicts our choice of y&.

Thus Sφ contains a unique function h with a zero of multiplicity n
at z — 0. Define the function # by

(4.7.4) <?(*) - z~nh(z) {zeU) .

S 9 consists of # alone, for if some g±Φg were in Sg, the function &4

defined by

(4.7.5) h(z) = zng,{z) (z e U)

would be in SΦ, would have a zero of multiplicity n at z — 0, and would
be distinct from /*,. By Theorem 8(b), g is therefore a strong outer
function, and it is clear from the foregoing that g is the only such
function which satisfies (4.1.6), with aλ = ••• = an = 0.

The remaining assertion of the theorem is now an immediate con-
sequence of Lemma 4.3.

4.8. Proof of Theorem 11. If φ is analytic in \z\>R, for some R<1,
the conclusions of Theorem 10 are of course valid. Let g be the strong
outer function whose existence is guaranteed by Theorem 10. Then if
/ with 11/11 = 1 is of the form (4.1.7), with λ>0 and |α, | ^ 1, / will be
in Sφ because of Lemma 4.3.

It remains to be proved that every fe Sφ is of the form (4.1.7).
Our argument now is similar to that of Section 8.4 of [7]. Let ψ be
the function which is related to φ as in §4.2. Since Tφ— Tφ, ψ(eiθ) and
φ(eίθ) differ by the boundary values of a bounded analytic function in
U, and since φ is analytic in \z\ > R, ψ is bounded and analytic in
Rι<\z\<l, for any Rv which satisfies R < Rι < 1.

Our discussion in §4.2 shows that a function fe ^ with | | / | | = 1 is
in Sψ—Sφ if and only if

(4.8.1) f(eίθ)φ(eiθ) ^ 0 (a.e. on C) .

For any such /, define Ff by

(4.8.2) Ff(z) =f(z)ψ(z) (R, < \z\< 1) .

Ff is analytic in R^lzlKl, has real boundary values a.e. on C, and
satisfies

(4.8.3) limΓ \Ff(retθ) - Ff(eiθ)\dθ = 0
r-»l J -it

hence it can be extended, by the Schwarz reflection principle, so as to
be analytic in R1<\z<R1~\

Let g be the strong outer function chosen earlier, and define h by
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h(z) = zng(z). Then h e Sφ. Since Ff =fψ and Fh = /^, the function ///& =
FfjFh is meromorphic in \z\<RϊΊ; it is real and non-negative on C,
except possibly for poles, since / and h are both in Sφ. Hence f\h is
of the form (4.2.4), i.e.,

(4.8.4) f{z) = λzng{z) ft ̂ z~a^1 ~^f) (z e U)
«=i (z-btXl-btz)

for some λ > 0 and |αj rg 1, |64| ^ 1.
We can assume that none of the at is equal to any b3. Then, since

/ is analytic in £7, either all δ, are 0 and m <^n, or some bt satisfies
|δi| = l. This last alternative would contradict the fact that g is a
strong outer function.

Thus each/e Sφ is of the form (4.1.7), and the proof is complete.

4-9. Remarks. The hypothesis of Theorem 11 can be (apparently)
weakened; instead of assuming that φ is analytic in |^|>JS for some R<1,
it is enough to assume that φ is analytic in R < \z \ < 1 (and, of course,
bounded on C). Indeed, any such φ is of the form φ — φL + φ2, where
φ1 is bounded and analytic in U, φ^O) = 0, and φ2 is analytic in \z\>R.
Thus Tφ = Γφ2, and we are back in the situation covered by Theorem 11.

Our second remark is that the functionals Tφ with φ analytic in
\z\>R(R<l) can be neatly characterized in terms of functional analysis.
If Tφ is of this type, suppose fn e Ht and fn converges to /, uniformly
on compact subsets of U; we do not assume that {||/J|} is bounded;
then Tφ(fn)-+Tφ(f). This is a consequence of the Cauchy integral
theorem : if R < r < 1, then

fn(eίΘ)Φ(eίθ)dθ = r\ fn(reiθ)φ(reίθ)dθ .
TT J —it

But the converse of this is also true :

4.10. If T is a linear functional on Hλ with the property that
T(fn)->T(f) whenever fn-^f uniformly on compact subsets of U, then
there exists a function φ, analytic in \z\ > R for some R < 1, such that

Proof. Let E be the linear space of all continuous functions on U,
with the topology of uniform convergence on compact subsets. Since
E is locally convex and since T is continuous on the linear subspace
Hλ of E, the generalized Hahn-Banach theorem [2, Corollary 1, p. I l l ]
allows us to extend T to a continuous linear functional on E, and this
functional is of the form
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(4.10.1)

where μ is a measure with compact support in U [3, Proposition 11, p. 73].
Choose R < 1, such that the support of μ lies in \z\ < R. If

(4.10.2) φ(w) =
w—z

then φ is analytic in \w\>R, and for a l l /6 iϊx we have

= Tφ(f) .

V. APPENDIX

Let Hco be the class of all functions which are analytic and bounded
in U, and let A consist of all uniformly continuous analytic functions
in U (so that every f e A can be extended continuously to the closed
unit disc). With the norm

IL/ΊL=βuP |/(*)|,
zβU

both Hoo and A are Banach spaces. The extreme points of their unit
spheres have been identified jointly by Arens, Buck, Carleson, Hoffman,
and Royden, during the Princeton Conference on Functions of a Complex
Variable in September, 1957. For the sake of completeness, we include
the result in the present paper.

THEOREM 12. Let Xbe ίL, or A suppose fe X and ||/IU = 1. Then
f is an extreme point of the unit sphere of X if and only if

Proof. S u p p o s e (*) h o l d s . If g e X a n d \\f + g|U= \\f - g|U = 1,

\g(z) I2 ύ 1 ~ \f(z) I3 ^ 2{1 - | / (z) |} (zeU).

Consequently, I log \g(eiθ)\dθ = — CXD, and this implies that # is identical-

ly 0. Hence / is an extreme point.
Conversely, suppose (*) is false and X = J?^. Define

gx(z) - exp j \* ~~P^- log [1 - \f(eίθ) \]dθ\ (z e U) .
IJ-vr eθ—z )
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Then gi(z) Ψ 0, \gλ{z)\ < 1, and |^(βw) | ^ 1 - |/(βlfl)| a.e. on C. It follows
that ||/+(7i||oo^l and ||/—^ilU^l, so t h a t / is not an extreme point.

Finally, if X=A and (*) is false, let E be the set of all eί9 e C at
which |/(β ia)| = l. There is then a continuous function φ on C such

that (i) 0^φ(β w )^ l- | / (β 4 % (ii) f* log φ(eίa)d#> - oo, (iii) on every

closed subarc of C which is disjoint from E, φ has a bounded deriva-
tive. Put

g%(z) = exp j - 1 ^ Γ _ ζ + * - . log φ(e»)dθ\ (z e U) .
I 2 J eιθ z )

Then g2 e A (by (iii)), and g2 has all the properties of gλ which were
used in the preceding paragraph. It follows, as above, that / is not an
extreme point.
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